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AN ALGORITHM FOR THE ITERATIVE SOLUTION OF
A CLASS OF TWO-POINT BOUNDARY VALUE

PROBLEMS*

C. W. MERRIAM III
Abstract. The algorithm, which is based on second variations, is intended for a class
of two-point boundary value problems arising in control optimization. These optimi-
zation problems are characterized by positive definite second variations, the absence
of point constraints on control and state variables, and free-point terminal boundary
conditions. In a suitably small neighborhood of the optimal trajectory, the algorithm
gives one-step convergence within the limits of the accuracy obtained with numerical
integration. The relationships which are used here and arise in variational mathe-
matics are stated in an appendix.

Introduction. The computational aspects of the two-point boundary
value problem arising in control optimization and other variational prob-
lems recently have received considerable attention. In this paper, the
variational problem of interest is the minimization of

(1) e f0 f0(x,m,t) dt

with respect to m where

(u)

and

f(x,m,t)

(3) x(0) a.

The control and state vectors are taken to be m col (ml, m2, m)
and x col (xl, x., xN) respectively. The vector function f(x, m, t),
f0(x, m, t), and the required partial derivatives of these functions are as-
sumed to be continuous and bounded for all finite values of their arguments.
In addition, the assumption is made that f0(x, m, t) is formed properly
such that the optimal m is unique, bounded, and a continuous function of
a and t.
For this class of variational problems, Kelley [1] and Bryson [2] have pro-

vided a feasible and straightforward method,: variously called gradient or
steepest-ascent, for obtaining numerical solutions to these variational
problems. The method due to Kelley and Bryson offers many practical
advantages. Specifically, the iterative procedure guarantees a monotone

* Received by the editors December 1, 1962 and in revised form January 1, 1963.
General Electric Research Laboratory, Schenectady, New York.
This method requires fewer restrictions than imposed here.
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2 C. W. MERRIAM III

decreasing sequence* of values for e, and every suboptimal trajectory ob-
tained satisfies (2) and (3) so that the iterative procedure can be termi-
nated when an efficient trajectory has been obtained. Also, the computer
memory requirements are linear in N and M whereas they would be ex-
ponential in N for the approach of discrete dynamic programming. Finally,
the computations are performed with stable differential equations, unless
(2) is unstable, whereas boundary condition iteration methods using the
equations arising from the calculus of variations always involve unstable
equations and the ensuing numerical difficulties.
More recently, refinements of the basic method due to Kelley and Bryson

have been introduced [3] which primarily are intended to alleviate two
remaining difficulties. First, experience with the basic method indicates
that the convergence of e to the minimum value of e is considerably more
rapid than the convergence of m to the optimal control vector [4]. Second,
the rate of convergence tends to decrease in the neighborhood of the optimal
trajectory. The algorithm presented here also is directed toward these
two difficulties for the restricted class of variational problems discussed
previously and is a direct extension of the basic method due to Kelley and
Bryson.

Condition for a monotone decreasing sequence. The condition for
monotone decreasing sequence of values for e is related to the formalism
used in the calculus of variations. Specifically, the integral

(4) e f f0(x, t) + pn[f(x, t) ,1 dt
d0

is minimized in the calculus of variations where p is treated as a Lagrange
multiplier and is adjusted such that (2) is sutisfied. This procedure yields
the necessary conditions for a minimum givenin (Ag), (A10), and (All) of
the Appendix. The itertive procedure, however, is based on neglecting
the condition given in (A11) by arbitrarily assuming u vector m(. Then
the corresponding solution x() is obtained from (Ag), and also the corre-
sponding solution p() is obtained from (A10). The condition e

then is obtained in terms of

Omm() Omm(i)

which results from neglecting (All). The notational simplification f()
fn(X(), m(), t), etc., is adopted throughout. Also the notations

(6) M() m.(+) -m() () x(+)

r used.

* The question of whether the limit point of this sequence is in general also the
minimum vMue of e upparently is unresolved.
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The condition e(i+1) < e(i) is obtained directly from (4) with a Taylor
series about the ith trajectory under the assumption M(i> is maintained
sufficiently smM1. In this expansion, third and higher degree terms in the
elements of M’: and X’: are neglected. Therefore, the series required are

(7)
N N (i)

m=l k=l 2 0Xm(i)0xk (i)
X ()X ()

k

N

p(’) + 2 p)x/’)(8) p(+)
1---:l

where pk is defined in (A12). The expansion of (4) is completed by rear-
ranging terms, by substituting the definitions given in (5), (A14), (A15),
and (A16), and by substituting the equations given in (A10) and (A17).
Also, integration by parts is performed, and the boundary conditions
X(’)(0) 0, ccording to (3), and p()(T) p)(T) 0, according to
(A2), are imposed. These straightforward steps yield

(9) e(+) e() + v(),
where the integral v() is given by

J0 1 1

(10) + S() + "()X M
n=l m=l

LvnlX-nkm Ak
n=l ml

varatmns of aboutThis integral involves both the first and second * e(+1)

e(). The basic method due to Kelley and Bryson involves only first varia-
tions and is obtained by merely neglecting the second degree terms in the
elements of M() and X() which appear in (10). The condition for a mono-
tone decreasing sequence of values for e() is established in either case by
choosing M() such that v() < 0 according to (10) but restricting the mag-
nitudes of the elements of M() to suitably small values such that e(+) < e

according to (1). As opposed to the case of first variations only, however,
the iteration algorithm is not established by selecting M() such that the
integrand of (10) is negative definite for all t.

Iteration algorithm. The iteration algorithm introduced here is based on

* This term is used here in the classicM sense of the calculus of variations.
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a second variational problem. Specifically, the perturbation vector M() is
minimized subject to the linearized incrementalselected so that (10) is *

state equation

Ox(" + Om(O

The solution to this variational problem is well-known in linear optimum
controls [5], but unusual simplifications occur here. If V() is defined as
the minimum value of v(), then the methods used for linear optimum con-
trols yield

(12) - T*2 G(*)GJ) dr.
=1 m=l

The variable G( is defined by

and

where gk()(T) 0. The variable gk
() is analogous to pk(i) which arises in

()the original minimization problem. However the variable gk, which would
.(i)be analogous to p, is zero. In addition, the elements of the optimal vector

M() are given by
N

(15) M() G(i) () ()
lk nk Ak

k=l

As discussed previously, the elements of M must be restricted in mag-
nitude in order to validate the expansions which lead to (10) and (11).
Here, step-size is restricted by introducing the parameter e such that

nkAk

When (11) and (16) ure substituted into (10) and the appropriate manipu-
lations are performed, the integral v( becomes

(17) v( (e 2e)[- Y()].
However V() is negative which is insured by the property that the matrix
[() is positive definite when x() is in a suitably smM1 neighborhood of

A second two-point boundary value problem would be encountered here if the
control und state vuriubles were subject to point constraints.
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the optimal trajectory for the class of variational problems discussed here.
As a result, v(i) is a strictly convex function of the parameter e and also is
negative on the interval 0 e < 2. Therefore the iteration algorithm
based on both first and second variations is taken to be (16) where step-
size is adjusted on the interval 0 < e =< 1.
As expected, the algorithm given in (16) yields one-step convergence for

e 1 when f0(x, m, t) and f(x, m, t) are quadratic and linear, respectively,
with respect to the elements of x and m. This property results because no
approximations are introduced by the expansion of e(i+1). Also, this prop-
erty gives rise to extremely rapid convergence when x() is in a suitably
small neighborhood of the optimal trajectory.

lgumerical considerations. In actual numerical solutions, the incidence
of truncation errors, which are primarily due to numerical integration,
makes the exact computation of the optimal trajectory and hence one-step
convergence impossible. Therefore a suitable condition for terminating
the computations is needed. A condition of this type is obtained with the

(i) (i)introduction of the variables Um and mk such that

The variable G() then becomes
N

(19) ,() U(i)
-t- A_,

x-" (i)
(nk

k=l

The vector U(i) depends on S(), and the condition U() 0 occurs on the
optimal trajectory where S(i) 0 everywhere on the interval 0 _-< -_< T.
The condition for terminating the computations is written in terms of a
norm and is taken to be

The number ti, although somewhat difficult to specify, is chosen in corre-
spondence with the truncation errors.
The form of (16) suggested for actual numerical solutions is

N

(21) m(i+) eG,() -- K() ’() (i+)

where

(22) K,(i) m(:) + t.()x

and G() is given by (19). This form of the algorithm is a linear control
equation which can be used for control purposes [6] with 0 when x(+)
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and x(i) are in a suitably small neighborhood of the optimal trajectory.
Presumably, the iterations would continue until the test given in (20),
which can be performed during the backward-time integrations, is satisfied.
Another numerical aspect of the iteration algorithm based on first and

second variations concerns the stability of the differential equations used
in the computations. If x(i) is in a suitably small neighborhood of the optimal
trajectory, then the linearized equation given in (11) is a valid representa-
tion of (2). When (16) is substituted into (11), the incremental state
equations associated with the forward-time computations from 0 to

T are found to be

(i) (i) Ofn
mm(i)

In other words, the forward-time computations re performed with dif-
ferential equations, namely (2), that possess the subility properties of
linear optimum control systems [6], when x() is in a suitably smM1 neigh-
borhood of the optimal trajectory, us opposed to the stability properties of
(11). This property is prticulrly important from u numerical point of
view when (11) is unstable. Also, suitable mnipultions show that the
backward-time computations from T to 0 are performed with the
djoint equations of (23) as opposed to the adjoint equations of (11).
Specifically, the substitution of (19) into (14) and the use of the definitions
introduced in (18) and (A18) yield

M N M
2(i) g(i)

n= ) Om() "
Similar manipulations of (A10) in conjunction with (5) yield

(25)

These two backward-time equations also possess the stability properties
of linear optimum control systems when x() is in a suitable small neighbor-
hood of the optimal trajectory. Therefore the backward-time computa-
tions associated with this algorithm are performed with (24), (25), and
(A17) which is of the stable Ricatti type when x(i) is in a suitably small
neighborhood of the optimal trajectory. When (24) and (25) are used in
numerical integration, a procedure of setti.t.g the elements of U() equal to
zero wherever c()II < ti is satisfied on the interval 0 _-< <= 7’ usually is
adopted. This procedure appears to inhibit the propagation of truncation
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errors in the neighborhood of the optimal trajectory where (5) may in-
volve smM1 differences of large numbers.

Conclusions. This algorithm possesses the property of an exceedingly
rapid convergence rate when x(i) is in a suitably small neighborhood of the
optimal trajectory. The basic algorithm due to Kelley and Bryson many
times is characterized as a step-by-step gradient ascent on a convex surface.
However the algorithm based on only first variations does not account for
the surface deformations caused by the step taken. The algorithm based
on first and second variations includes a first order approximation to the
deformations in this surface, thereby giving rise to rapid convergence under
suitable conditions. The added elapsed computer time per iteration re-
quired to solve the added N -- N(N -- 1)/2 backward-time differential
equations when second variations are used appears to be more than com-
pensated for under these conditions. However this conclusion is based on
limited experience with the algorithm and most likely does not apply for
large N.
Another attribute of the algorithm developed here is that the computa-

tions always are performed with differential equations which tend to im-
prove the stability of (2) and (A10) when x(i) is within a suitably small
neighborhood of the optimal trajectory. This property eases the difficulty
of obtaining numerically accurate solutions which are required in order to
converge to a nearly optimal trajectory.
On the other hand, the algorithm based on first and second variations

suffers from the conceptual disadvantage that penalty functions must be
used to approximate point constraints on the control and state variables.
Also, penalty functions must be used for approximating fixed-point fermi-
nal boundary conditions. In this situation, (1) would have the Mternate
form

T

e f0(x, m, t) dt - F0(x, T),
J0

where F0 is a strictly convex, continuous function of the elements of x(T).
The only modifications required in the previous results are the boundary
conditions

(26) pk(T) 0F0(x, T) pk,(T) 1 0F0(x, T)
Ox 2 Ox Ox

This algorithm also has the practical disadvantage that an added set of MN
,(i)time functions, namely n, must be stored in tabulated form, thereby

increasing the amount of temporarily stored data.
Another disadvantage occurs in the selection of n initial trajectory when

(2) is both nonlinear and unstable. Specifically, numerical examples support
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the conjecture that the backward-time differential equations are unstable
when x() gives rise to an unstable form of (23). The numerical solution of
(A17) is particularly difficult when [p()] is not positive definite, a condition
which may occur if x() is not in a suitably small neighborhood of the optimal
traiectory. Similarly, the matrix [T mj may not be positive definite for
certain initial traiectories, thereby invalidating the required negative
definite property of (12). As a result of these difficulties, the algorithm
based on second variations is recommended only when x() is in a suitably
smM1 neighborhood of the optimal trajectory.

Acknowledgments. The author is deeply indebted to Mr. R. J. Ringlee
of the General Electric Company for many valuable discussions and sug-
gestions which contributed to the development of this algorithm. Dr. I.
Lee of the General Electric Research Laboratory made helpful suggestions
concerning notation and the exposition of this work.

Appendix. This appendix is included in order to define notatioa and
to state certain relationships arising in variational mathematics.
The minimum-error function is defined in accordance with dynamic

programming [7] as

](A1) E(x, t) min f0(x, m, a) d

subject to the boundary condition

(A2) ’(x, T) 0.

The Hamiltonian function is defined as

(A3) H(x, t) min fo(x, m, t) + pf,,(x, m, t)

where the variable p is defined as

(A.4) p
0E(x, t).

OXn
In accordance with these definitions, the minimum-error function satisfies
the Hamilton-Jacobi equation [8] which is written, as

(A5) OE(x, t) + H(x, t) 0.
Ot

The characteristic equations [9] which are associated with (A5) and
which are well known from the calculus of variations are derived readily.
Specifically, the total time derivative of p is expanded in terms of partial
derivatives as

_Op=
OXn

(A6) i5 + w-- n.
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In addition, the partial differentiation of (A5) with respect to x1 yields

(A7) Opk + OH(x, t) O,
Ot

so that (A6) becomes

OH(x, t) Opk
Ox =i "

If the partial differentiation of H indicated in (A8) is expanded and the
state equation

(A9) 2k fk(x, m, t)

is used, then (A8) becomes
hr

(A10) _p 0f0(x, m, t) + P
0f(x, m, t).

Ox =
The relationship

N

(All) 0f0(x, m, t) -t-

_
p

Of,(x, m, t)
0

also is used in obtaining (A10) and is found from the minimization indicated
in (A3). Equations (A9) and (A10) are the characteristic equations.

Additional relationships are required for the computational method
based on second variations. Specifically, the variable

10pk(A12) pit
20x

is introduced [6, 10] subject to the requirement that p pk. When
steps similar to those leading to (A8) are performed, the total time deriva-
tive of p becomes

10H(x, t) Opk(A13) -ib 20xkOx = x
The explicit form of the right-hand side of (A13) is found when the indi-
cared partial differentiation of H is expanded. For the sake of simplicity,
the definitions

A14) K, Om--2
cx

Om Ox = Om Ox
and

(A16) T 0f(x’ m, t) -t- p
Omn Omm k=i

+ 2p, Of,(x, m, t)|,]
am J
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are introduced for frequently occurring sets of terms. With these defini-
tions, (A13) reduces to

1 0/0(x, m, t)
_1_

1 @ Of(x, m, t)
2 Ox Ox - z...,

,=1 Ox
(A17) v [ Of(x, m, t) Of,(x, m, t) 1 1

n=l OXl OXl n=l
RnK..

The variable K, is found from the partial differentiation of (All) with
respect to x and is given by

M

(AlS) T Kml nl,
m=l

The matrices [pz] and [T,] are positive definite for the class of mini-
mization problems treated here. The condition on [pz], which is the matrix
of second derivatives of E(x, t), results because the minimum-error func-
tion is a continuous, strictly convex function. The condition on [T,] is
the Legendre condition which is sutficient for a unique bounded minimum
found from (A3).
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ASYMPTOTIC CONTROL THEORY*

RICHARD BELLMAN1 AND RICHARD BUCY:

1. Introduction. In recent years the mathematical theory of control
has received an increasing amount of attention. New theories have been
developed and older theories have been refined and extended [1, 2, 3, 4, 5, 6].

In this paper, we wish to initiate discussion of a problem in the calculus
of variations which has not had the attention due it in the classical litera-
ture. The problem is concerned with the asymptotic behavior of the solu-
tion of a variational problem as the time interval becomes infinite. From
the standpoint of control theory, and more generally from the standpoint
of dynamic programming, this is a very natural type o behavior to study.
In many significant cases, the "steady-state" policy is simpler conceptually,
analytically and computationally.
We shall consider the minimization of the functional

T1 fo u(1.1) J(u) - L(x) dt,

over all functions u where

(1.2) f(x) + u, x(0) c.

Let V(c, T) minu J(u). For finite and sufficiently small T the classical
calculus of variations, or dynamic programming applies, under certain
reasonable assumptions on L and f. We shall be interested, however, i
the following questions.

(1) When does the problem for infinite T make sense?
(2) When it does, are the optimal motions and policies for infinite T the

limits of the corresponding optimal motions and policies for finite T?
(3) What is the effect of using steady-state optimal policy for the

finite problem?
This is an example of what we mean by aeymptotic control theory.
For example, if f 0 and L x - 1/2x the problem is that of mini-

mizing the functional
7’

1.3 J(u) fo [c - x + 1/2 x] dt

* Received by the editors September 23, 1963.
This research is sponsored by the United States Air Force under Project RAND--

Contract No. AF 49(638)-700.
RAND Corporation, 1700 Min Street, Sant Monic, California.

: Consultant, RAND Corporation. Currently at RIAS, 7212 Bellonn Avenue,
Baltimore, Maryland.
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over all C curves for which x(0) c. The Euler equation, is

(1..4) 2- x x 0,
subject to the two-point bouLdary conditions

(1.5) x(0) c, 2(T) 0.

Establishing the existence and uniqueness of solutions of (1.4) and
determining the symptotic behavior as T -- is analogous to the classical
problem of Poincar-Lyapunov [5], but materially more ditficult because
of the two-point boundary-value condition.
We shall first, using quite general arguments, show that V(c, T) is

monotone increasing as a function of T, and uniformly bounded under
mild restrictions concerning L(x). Taking advantage of the fact that the
Euler equation posseses a first integral, we can analyze the behavior of the
solution in detail as T -+ .

This analysis shows that the formal asymptotic series obtained from the
partial differential equation

(1.6) Vr rain [1/2(u + L(x)) + V(ax -+- u)].

an equation derived from dynamic programming considerations which
yields the Hamilton-Jacobi equation relevant to the variational problem
when f(x) ax ([1] und [12]), is un uctuul asymptotic series for V(c, T).
This corresponds to the result easily derived in the case where the in-
tegrand in (1.1) is merely quadratic in x and u.

In the concluding section, we shall mention some open and apparently
quite difficult questions in connection with asymptotic behavior and give
some references to analogous results obtained for dynamic programming
processes by Kalman and Bucy [6], Beckwith [7], Iglehart [8], Freimer
[9], and Bellman [10].

2. lYIonotonicity and boundedness. Let us introduce the function

(2.1) V(c, T) rain J(u),

(with the ssumption that f(x) ax). Let x(t, T), u(t, T) represent the
functions that furnish the minimum of J(u) under the assumption that
L(x) is a nonnegtive entire function, of x. In most processes of interest
L(x) is a polynomial in x.

Since

T TnuA

,IT

T+

>= V(c, T) +
,T

we see that V(c, T) is monotone increasing in T.
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To show uniform boundedness in T, for fixed c, let us choose an ap-
propriate control policy, say

u 0, when a < 0,

(2.3) u -2ax, when a > 0,

u -x, when a 0.

In each case, we see that u ce-t with b positive. Hence,
T

(2.4) J(u) fo [0(e-2t) -t- L(ce-t)]dt.

Under the assumption that L(x) O(x) as x 0, the integral is uni-
formly bounded as T -- m.

Having established boundedness and monotonicity as T -- , we can.
assert convergence,

(2.5) V(c, T) V(c)
as T- .

It is not settled, however, whether or not the states x(t, T) and the
policies u(t, T) converge as T --. . The foregoing argument extends to
quite general situations, but leaves unanswered the interesting and im-
portant questions concerning the convergence of policies.

3. Detailed analysis. We will be interested in an explicit solution to the
partial differential equation

(3.1) Vr 1/2L(c) -4- acV 1/2V,
subject to the boundary conditions

V(c, T)l =0 0, a < 0,
(3.2)

V(c, T)lr=o ac, a > O.

As is well known [12], existence of a sufficiently smooth solution to (3.1)
is a sufficient condition for the variational problem (1.1) to have a solution.
The equation of (3.1) is (1..6) with the minimization carried out.

It will be assumed that L satisfies the following conditions.

(1) L is even., and positive.

(2)
(3.3)

(3)

L and L are continuous and increasing for positive x.

L(x) 0(I x I) as lx [--> 0.

(4) L is analytic.

Now the Cauchy-Kowalewski theorem implies (3.1) has a unique local
analytic solution [11].
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With the im of solving (3.1) we introduce the function y(c, T), which
corresponds physically to the final state of the controlled system long n
optimal triectory initiating t (c, 0) nd ending t (y, T). The following
lemm shows that y is well defined for c > 0. The cse c < 0 is similar.
When L(c) c + c, y will be defined by n elliptic integral of the first
kind.
LEMMA 1. Suppose c O, and assume conditions (3.3) are fulfilled. Then

for every K, > K > 0. there exists a unique 0 y <= c such that

dx K.(3.4) I(y)
%/ x + L(x) L(y)

Proof. Since it is clearly continuous, elementary bounding of I(y)
shows it takes on all finite positive values as y ranges over (0, c]. To show
uniqueness assume for some finite positive K that there exist yl and y2,

yl > y2 > 0, where both satisfy (3.4). Then

(3.5)
.1%/a-x - L(x)- L(yl) .2 V/a2x + L(x)- L(y2)"

But (3.5) implies

dx

V/-(x - A) -- L(x + A) L(yl)(3.)
dx>

%//-x + L(x) L(y)’
where A y y: > 0. It suffices to show (3.7) to contradict (3.6)"

(3.7) 2axA + aA > L(x) L(x + A) + L(yl) L(y2).

Consider the right-hand side of (3.7) for x >= y. The mean value theorem
gives

L(x + A) --.L(x) Lx(+)A >= Lx(y)A, (x,x + A),

L(yl) L(y2) Lx(O)A <= Lx(yl)A, 0 (y,

and for these x, (3.7) is satisfied. Then for y: < x < y,

L(x + A) L(yl) Lx()(x y) >= Lx(yl)(X y),

L(x) L(y) Lx(’)(x y) <= L(x)(x y2) <= Lx(y)(x y),

and (3.7) is satisfied for all x (y2, c A).
A closer examination of the previous lemma shows I(y) decreases strictly

as y increases through (0, c] and hence (O/Oy)I(y) < O. Defining y(c, T)
as that value of y which satisfies

T,dx(3.8)
%//ax + L(x)- i(y)
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it is easy to see by the implicit function theorem that y is C in c and T
on (0, c] X [0, ). Further, y is analytic! The following lemmu char-
acterizes the behuvior of y as T tends to infinity.
LEMMA 2. Under the assumptions (3.3) and a O, y defined by (3.8)

tends exponentially to zero as T -- .Proof.

0 < T
%/a2 + L(x) L(y)

or 0 <= y <= ce-Ilr.

<_ f dx 1 lnC

Now we will characterize the solution of (3.1) subject to (3.2).
THEOREM* 1. Equation (3.1) has the following analytic solutions in the

regions c > 0 and c < 0 under assumptions (3.3). For a O,

(3.9) V(c,T)

f., a + L() L(y) d -+ /a T

O, c O,

while for a > O,

(3.10) V(c, T)

where y satisfies

L(y)
2

,c>0,

a %/a + L() L(y) d- T L(y)
2

-,c<0;

fc a + - L() L(y) d

L(y)T---+ay,c >0,

O, c O,

fc a + L() L(y) d

T L(y) ay2, c < 0;

d
V/a2 -t- L() L(y)

Tforc

for c < O,d T
//a + L() L(y)

* Replacing at and (a) by f() and f()2 with f continuous and ay by 2f f() d,
provides a solution to the equation V, L Vf(x) 1/2Vz which is local unless y
is defined for all T. Further Haar’s uniqueness theorem [13] is applicable and implies
(3.9) for c > 0 is the unique C solution of (3.1).
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and y has the same sign as c. Further,

(3.11)
V(c, ) limr V(c, T) fo c>O,

V,(c, lira V,(c, T) ac -t- v/a.c -t- L(c) c > O,

and the corresponding formulae for c < 0 and c O. Finally, the optimum
control law is

(3.12) u(t) -ax(t) sgn x(t) /-a--(t) - L(x(t)) L(y).

Proof. Equations (3.9) and (3.10) follow from Lemma I and direct
substitution. Equation (3.11) follows, since for fixed c, V(c, T) and Vc(c, T)
are monotone in T and uniformly bounded, while the explicit form follows
from Lemma 2, (3.3)-(3) and the dominated convergence theorem. Equa-
tion (3.12) is just the principle of optimality.
COnOLLAnY 1. Under the previous assumptions, the value of the T-infinite

case V(c, satisfies 1/2L q- Vcac 1/2Vc O, just (3.1) with Vr O.

4. Asymptotic behavior. As mentioned above, the principle of optimality
yields the partial differential equation

(4.1) Vr 1/2L(c) q- acV 1/2.Vc.
It does not seem possible to obtain the asymptotic behavior of V, even
formally, by means of a series of the form

(4.2) V Vo(c) q- V(c, T) -t-’",

without some additional information concerning the analytic structure of
V e.g.,

(4.3) Vl(c, T) V(c)ul(T).

Here Vo(c) limr(R) V(c, T).
We can, however, obtain an interesting bound for V(c, V(c, T)

in the following fashion. Consider the expression

(4.4) V(c, min f [x if- u -I- L(x)] dt.
J0

Let u(t, T), x(t, T) denote the minimizing set of functions for the interval
[0, T]. Then, it is clear that

T

w(c, <= f tu(,, T) / x(t, T) -I- L(x(t, V) )] dt q- f [...] dr,
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where in the second integral our choice of u and x are constrained only by
the condition x(T) x(T, T). Write x(T, T) x(c, T), the state of the
system at time T starting in state c at time 0 associated with the finite
variational process over [0, T]. Then (4.5) yields the inequality

(4.6) V(c, <-_ V(c, T) -t- V(x(c, T), oo ).

Hence, we can obtain an estimate of the difference between V(c, oo

and V(c, T) if we obtain an estimate for x(c, T) as T
Observe that the estimate for V(c, is readily obtained by using a

convenient approximate policy of the type described in 2.
The estimate for x(c, T) is not readily obtained in general. Let us in-

dicate how elementary arguments yield the result for the problem of mini-
mizing

T

(4.7) J(x) f []c q- x q- x4] dr,

where x(0) c.
It is clear from the form of the integrand that if c > 0, then x is monotone

decreasing. For, as indicated in Fig. 1, if x reached a turning point and
started to increase, we could replace it by the dotted curve, obtaining
obviously a smaller value of the integral. The Euler equation is

(4.8) # x 2x O, x(O) c, c(T) O.

If x decreases monotonically, the limit must be zero as T -- . From the
Poincar-Lyapunov theorem, we know that all solutions of (4.8) which
approach zero as --, have an asymptotic expansion of the form c.e-t

’ c2e
-:t -t- Using this information in conjunction with the preceding

results, we readily obtain an asymptotic series for V(c, T) as T --+ .
5. Further problems. The technique we have used here to obtain the

asymptotic behavior of the state variables and the control variable is
quite special and does not extend to the multidimensional case, to control
processes with constraints, to more general control processes involving

FG. 1
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distributed parameters, to general stochastic control processes, or to adapt-
ive control processes. Some partial results can be derived, but on the whole
there appears to be a need for a development of some new techniques.
We feel that it is worthwhile, in one case at least, to show that the ex-

pected results actually hold.
For asymptotic results in dynamic programming for processes of quite

different nature, see [7, 8, 9, 10].
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MULTIVARIABLE LINEAR FILTER THEORY APPLIED
TO SPACE VEHICLE GUIDANCE*

GERALD L. SMITH
Abstract. Midcourse guidance of a spacecraft involves estimating the vehicle’s

trajectory from noisy observations and then computing velocity corrections on the
basis of this estimate. The estimation procedure is regarded as a filtering problem
and a guidance system concept is developed using multivariable linear filter theory.
The ability of such a system to guide the spacecraft accurately and efficiently is
demonstrated by the results of a digital computer simulation.

1. Introduction. Space-vehicle guidance presents a complex and exact-
ing design problem for which we need the most modern design techniques
available. Despite the complexity, this problem is recognizable as having
the features of a control problem, and we therefore seek to apply control
theory methods to its solution. In particular, recent developments in
multivariable filter theory have provided a useful new approach to such
problems [1]. In this paper we will show how these new ideas can be em-
ployed in a space-vehicle application. This application is described in more
detail in NASA papers recently published [2, 3].

SYMBOLS AND NOTATION CONVENTIONS

submatrix in M relating
subscript denoting the ]cth observation
weighting matrix in optimal filter
matrix relating tiy to x*
observation error vector
covariance matrix related to observation error n
covariance matrix of 2
covariance matrix of u
position deviation of spacecraft from reference trajectory
covariance matrix of n
white noise
velocity deviation of spacecraft from reference trajectory
state vector
augmented state vector
observation vector
transition matrix
inverse of matrix
transpose of matrix

* Received by the editors July 4, 1962, and in revised form September 30, 1963.
National Aeronautics and Space Administration, Ames Research Center, Moffet

Field, California.
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E( expected value of
(^) estimate of
(-) error in estimate of

2. Description of the space-vehicle guidance problem. We will be con-
cerned here with the midcourse phase of guidance. The general nature of
midcourse guidance is illustrated in block diagram form in Fig. 1. It is as-
sumed that the vehicle is in free all following injection, except for brief
periods of thrusting when corrections to the trajectory are executed. The
state of the vehicle--that is, its position and velocity--is therefore a func-
tion of the injection conditions and the trajectory dynamics. Since the
injection conditions are not perfect, the vehicle departs from its desired or
nominal trajectory, and it is the function of the control system to correct
the course so that prescribed end-point conditions will be satisfied.
The first step in performing this function is assigned to instruments or

sensors which measure observables related in some known way to the state.
The sensors could be, for instance, optical instruments on board the vehicle,
measuring the space angles between the lines of sight to certain celestial
bodies. These angles are geometrically related to the vehicle position. The
measurements are of course subject to errors, represented as observation
errors in the figure. Generally it is neither necessary nor desirable to make
continuous measurements, so some means must be provided for deciding
if and when certain measurements should be made. This amounts to the
selection of an optimum observation schedule which will be discussed later.
The next step is to make. use of the observational data in the best possible

manner to obtain an estimate of the state. This is seen to be essentially a
filtering process, and filter theory can be applied to the design of the data

KINEMATI S’i-- ;--- CONT OL SYSTEM

OBSERVAT ON_.......
ERRORS

OBSERVABLES--.

STATE"l
INJECTIONI TRAJECTOR
CONDITIONS DYNAMICS

VELOCITY ACORRECTION
ERRORS

DATA; PROCESSING
/ FOR STATE

OBSERVATIONS ESTIMATION
EST MATED.

[CONTROL}
DESIRED VELOCITY CORRECTIONS

Fie. 1. Schematic diagram of a midcourse guidance system



SPACE VEHICLE GUIDANCE 21

processing system. The output of the filter is an estimate of the state,
which is then used to estimate, or predict, what the end-point conditions
would be if no course corrections were made. Next, a guidance law is em-
ployed to compute the velocity correction which would change the pre-
dicted end-point conditions to correspond to those prescribed. (The pre-
scribed conditions might be, for instance, achievement of a given periapsis
at the target moon or planet at a given time.)

Finally, a decision must be made as to whether or not the computed
velocity correction should be made at the present time, and the eorreetion
implemented if the decision logic so indicates. The velocity correction when
made then closes the control loop, acting through the trajectory dynamics
to influence the state. The aetual velocity correction, of course, is not quite
the same as that intended, because of errors in the engine control mech-
anism.

3. Design of the guidance system. Itaving separated the midcourse
guidance problem into distinguishable elements, we now can proceed to
the application of design techniques to each of these elements. The sensor
and control element designs will not be discussed, and we will dispose of
the guidance law briefly by stating that in our studies we have used a
linear prediction law. Thus we will concentrate on the trajectory estima-
tion and decision aspects of the system.

First consider the trajectory estimation subsystem. Here we assume a
sequence of observations, perturbed by additive errors, which are to be
processed in the order in which they are received to maintain a continuous
estimate of the state. The injection conditions and observation errors are
not known exactly, hence can be described only probabilistically. Thus, the
series of observations is regarded as a stochastic process (assumed discrete
here since isolated observation times are presupposed). This stochastic
process is generated by physical phenomena which can be represented in
block diagram form as shown in Fig. 2. The injection conditions are ac-
tually trajectory initial conditions and thus not, strictly speaking, an input.
The state is a 6 vector of position and velocity which can be expressed as
a function of the injection conditions"

1 x(t) f[x(to)].

The observables constitute a vector having as components all those physi-
cal quantities to be measured by the sensors. The observation errors, n(t),
arc represented as the output of a linear dynamic system excited by white
noise, the standard engineering trick, valid when only second-order
statistics are concerned. It is noted that this representation can be used
for any type additive observation errors--for instance, bias type errors are
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WHITE INOISE OBSERVATION ERROR
u.(t) DYNAMICS

INJECTION
CONDITIONS TRAJECTORY

x(to) DYNAMICS

OBSERVATION
ERRORS

n(t)

/ SAMPLER

, OBSERVATIONS
Y(tk)

STATE I"OBSERVABLES
--,GEOMETRY P

x(t)

FIG. 2. Observation process

associated with dynamics having very long time constants. The sampler
represents the selection of a particular one (or set) of the observables for
measurement. The resulting observation is designated y(tk), the lc sub-
script being used to index the time of a member of the sequence of observa-
tions. For convenience, the observation can be written as a function of
x(tk) and n(t,)

(2) y(t) [z(t,), n(t)]
or more compactly,

(3) y(t) g[x*(t)],

where x* is an augmented state vector having as components all the com-
ponents of both x and n.

It is now assumed that the statistics of the iniection conditions x(t0) and
of the white noise u(t) are known. (If x(t0) and u() are gaussian, only
the means and covariance matrices are required.) If the trajectory dy-
namics (i.e., the vehicle equations of motion), the error dynamics, and the
geometry equations are also known, then the y(t) stochastic process is
completely specified as soon as the observation schedule is stipulated.
Having defined the observation process, we now wish to develop the

equations needed to process the observational data. We assume that we
desire an optimal linear estimate of the state. This estimate will also con-
tain an estimate of the observational error vector n. That is, we obtain an
estimate of x* (t) which we call *x (t). The/c subscript means that the esti-
mate is based on a total of ]c observations.
Assuming that we wish to process one observation at a time, the linear

estimation equations are of the form

(4) * * *g[x_ tx (t) Xk--l(tk,) + K(t){y(t) )]}

(5) * *Xk--1 (tk) f,k--l[Xk--i tk-1)],

where K(t) is a weighting matrix to be described later, and xk_(t) is the
estimate at time t based on the previous k 1 observations. The quan-
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tity Xk--l(tk-1) is known as a result of processing the previous observation,
y(t._), and it is clear that updating this estimate to time tk is simply a
matter of using the equations which describe the dynamics of the x* proc-
ess, (5).
The computation flow diagram is as shown in Fig. 3. It is seen that the

essential elements are a model of the kinematics and the matrix K. The
model of the kinematics simulates the vehicle equations of motion, the
error dynamics, and the geometrical relations between the state and ob-
servables. The operation of the system is described as follows. After injec-
tion, but before any observations have been made, the best estimate of x
is based solely upon a priori knowledge of injection conditions, and the
best estimate of n is zero. Thus, these are inserted as initial conditions on
the kinematics equations. When an observation is made and the data is to
be processed, the equations are integrated until computer time equals
observation time. Then the estimated observation is computed from this
updated estimate of x*, compared with the actual data and the residual
weighted by the matrix K to produce an incremental change in the esti-
mated position, velocity, and observation error. The new estimated state
variables serve as new conditions on the kinematics equations when the
entire process is repeated to process the next observation.
The optimality of the data-processing system described obviously de-

pends on the weighting matrix K. Linear filter theory is used to derive the
equations by which K is computed. To facilitate this derivation it is con-
venient to linearize the equations of the observation process. This lineariza-
tion is accomplished by expanding in a Taylor’s series about the mean of the
random variable x* (t). Thus, x*(t) Ex* (t) + x*(t), where x* (t)
now has zero mean and the same covariance matrix as x*(t).

EQUATIONS

_
OF MOT ION

OBSERVATION ERROR
DYNAMICS

[ESTIMATED OBSERVATION, xk.i(t k)

GEOMETRY
EQUATIONS

nk.l(tk)

FIG. 3. Trajectory estimation system
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The vehicle equations of motion and the observational error equations so
linearized are written in terms of the transition matrices (, and

(6)

(7)

z(t) (t, t0)x(t0).

n(t) (t, to)n(to) -t- ft (t, r)un(r) dr

.(t, to)n(to) -t- u’(t, to).

In (6) there is no torcing function since the vehicle is assumed to be iu free
fall. In (7) the forcing function un(t) appears under the integral, and the
entire integral is replaced by a new function u’(t, to) for convenience. It is
noted that since u(t) is uncorrelated with n(t0), u’(t, to) is also uncorre-
lated with n(t0).

Equations (6) and (7) may now be combined:

(8)
[n(t) 0 ,i,(t, to" [ n(to)

+
u’(t, to)

or in more compact form:

(9) x*(t) (t, to)x*(to) -t-- u(t, to).

The statistics necessary to describe the random process x* are the co-
variance matrices

(10)

P(to) E[x(to)X (to)],

R(to) E[n(to)nr(to)],
TQ(t) l[u(t)u, (t)]

P*(to)
R(to)

()

Q(t)
0 Qn(t)

The observation is also expressed in terms of a deviation quantity, y(t),
and the geometry equations are linearized to obtain"

y(t) H(t)Sx(t,) + n(t)

(12) [H I]
[ n(t)

M(t)x*(t),

In combined form we write
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where H is a matrix of partial derivatives of the observables with respect
to the state variables.
The linear estimation equations are now written in terms of the deviation

quantities:

(13) 8k*(tk) *

(14) 8x_(t) (I) (tk, t_) *c_(t:_).

For this linear problem the equations for the computation of the optimal K
have been derived by Kalman [1]:

(15) K P-IM[MPk-M

where

P-I E(k_lSx_l)

and

The argument of all these quantities is t, omitted here for simplicity.
The covariance matrix P* is computed from the recursion formulas as
given by [1]"

(16) P* tk * P-i tP_(t) K(tk)M(t) *

P_ t b t t_ Pk_
_
) (t(17) * * t_ -t- N t t_

where N is the covariance matrix of u. Now, although the K so computed
is not the optimal K or the original nonlinear problem, it certainly is
approximately the optimal K to the same degree that the linearized equa-
tions approximate the original nonlinear equations. This approximation
has been demonstrated by means of computer simulation to be good as
long as the actuM state does not depart radically from the reference (mean
value).
The computation of K is seen to be straightforward. At the time of the

kth observation, the matrix M and the transition matrix (tk t_) from
the last observation must be computed. The latter can be done in a number
of ways. One is to integrate a set of perturbation equations, each with a
set of suitable initial conditions at the time of the previous observation, to
give the several columns of the matrix. The M matrix and the coefficients
of the perturbation equations are functions of the state variables and re
computed using the estimated values of these variables. It should be noted
that using the estimated state variables, in effect, amounts to linearizing
about the estimated state. This is clearly the correct procedure because at
each step of the estimation process, the mean of the conditional random
vector (x* lYe, Y) is 2k*, and 2* thus has zero mean which is re-
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quired if the foregoing is to result in an unbiased estimate. In actual
practice if the actual trajectory does not depart very far from the nominal,
the nominal may be used with little effect on the results. However, in
some situations, such as an abort, the departure is substantial. Then either
the estimated trajectory or a new nominal trajectory sufficiently close to
the actual must be used.

The matrix N is also required. This can be eomputed

from the relationship

(18) N’ tk, tk-1) Pn tk, ’)Qn 7" )nT( tk, 7" dT,
tk_

where Qn(t) would presumably be a stored matrix, and is computed as
part of . In many cases Q(t) may be constant, or at least only slowly
time varying; also may be a function only of t- r (i.e., non-time-
varying). In these cases the computation (18) is substantially simplified.

In the data processing scheme we have described above, each observa-
tion is a vector whose components are a set of measurements made at the
same time. Now when it is seen that the observations can be processed
one at a time, it is natural to consider the further possibility that the com-
ponents of each observation can themselves be processed individually.
In fact, they can be, and that is the reason we have chosen to write the
estimation equations in the particular form given. If one piece of data (i.e.,
a measurement) has been processed at time t, then to process another
measurement taken at the same time, (5) and (17) are not used since there
is no time transition. Equations (4) and (16) give the new estimate and
the new P* matrix. In reference to Fig. 3 this means simply that the in
tegration parts of the computation are not employed. We note that in
processing data in this way MP*M’ is always a scalar, so the matrix in-
version required in (15) is avoided.

If the observations are uncorrelated, some simplification of the data
processing equations is possible. By "uncorrelated observations" we mean
that the errors in any pair of observations are statistically independent.
This may be because the time between the observations is large compared
to the "time constants" of the error dynamics, or because the observations
are of basically different types. In any case, this means that the previously
processed data contain no information regarding the present error in ob-
servation; hence, the estimate (t) is zero and need not be computed.
The error in estimate of n(t), namely (t), is of course just n(t), and
the portion of the P*(t) matrix containing the covarianee matrix of fi(tk)
is seen to be simply N’(t t_l). Furthermore, N’ is seen in this case to
be a function only of t, hence could be a simple stored matrix. The result
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is that the computation of the P* matrix can be simplified, omitting the
rows and columns having to do with n, thus reducing the order of the
matrix operations required. The estimation equations can then be written
in the form:

(19)

(20)

(21)

(22)

(23)

Consider now what happens to the estimation process when a velocity
correction is made. This situation is treated exactly the same as an ob-
servation. If the velocity correction is assumed to be monitored, the actual
correction (Av) differs from the desired (Ave) because of the control error,
and from the observed (Arm) because of the monitoring error. The a priori
statistics of the control error and monitoring error are assumed known.
The estimate of Av before the correction is Av, and we obtain the new
estimate by the formula

(23a)

where S is the covariance matrix of control error, T is the covariancc
matrix of monitoring error, and Kv S(S + T)-1. This A0 is added to
the estimated velocity vector in the trajectory estimation system. The
error in estimate, AO Av A0, has zero mean and covariance matrix
(S KS), which adds to the velocity portion of the P matrix. The sys-
tem is then ready to process new data.

This method of handling velocity corrections is seen to be quite simple
and is valid even for very large corrections, such as might occur in an

abort maneuver for instance. The assumption of an instantaneous correc-
tion is not valid, however, when the correction is large. In this case a con-
tinuous correction estimation, analogous but more complicated than the
above procedure, would have to be implemented.
One pitfall we must avoid in using the foregoing theory is that the P

matrix gives us the correct values of the error statistics only if we have
employed the correct model of the observation process. In practice, our
model can never be perfect. For instance, the equations of motion simu-
lated in the system described here are only approximations in that the
gravitational effects of only a few celestial bodies arc included and the
astrodynamic constants used in the equations are not known perfectly.
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Furthermore, any digital integration routine employed is in itself an
proximation to true integration and thus generates errors.
Such errors can be seen from Fig. 3 to enter the system in exactly the

same manner as do observation errors. Hence, they can be estimated and
compensated for in exactly the same manner as described before--at the
expense of a more complex system, of course. In practice one would first
determine the gross effects of such errors and implement only as sophisti-
cated a system as is justified by the accuracy desired; that is, for the sake
of simplicity, in general we would accept "off-design" performance a bit
poorer than might, theoretically be attainable.
An interesting by-product of the consideration of errors due to the im-

perfect knowledge of the astrodynamic constants is the thought that wc
have here a ready-made technique for obtaining by direct experiment
better estimate of these constants. For instance, a properly instrutnented
circumlunar vehicle could be used to improve current estimates of the
earth-moon distance and the earth and moon gravitational constants. It
may be noted that Pioneer V tracking data were used to obtain a good
estimate of the astronomical unit [4] although the shot was not designed
specifically for this experiment and the data processing technique em-
ployed was somewhat different from that described here.
To implement an estimating procedure for the astrodynamic constatts,

we define the an.certainties in these constants as additional random vari-
ables, augmenting the state vector with these variables. The transitio
matrix and the P atd K matrices are likewise augmented. If we then solve
the variance equation (using a digital computer), we can obtain a measure
of the improvement in the knowledge of these constants which could be
obtained from a prescribed sequence of observations.
Now, to complete the design of the midcourse guidance system, we must

consider the selection of an appropriate schedule of observations
velocity corrections. Specifically, we would like to find au optimal schedule,
where the optimality criter on must take into account practical considera-
tions such as the cost of executing the required operations and the interac-
riot,s that exist between these and other operations involved in the over-all
tission. The problem is seen to be complex and, worse, rather ill-defined.
Thus, an attempt to find a true optimum does not seem practical, at least
at present. In our studies we have resorted instead to a cut-and-try ap-
proach. First, a reasonable operational schedule is selected and its per-
formatme is computed. Then this schedule is varied systematically and
the chage in performance noted, t)rob]em solutions are obtained fairly
rapidly o the digital computer (typically about 10 minutes ot. the
7090 usig the particular programs we have written). Thus, a reasoable
schedule ca be generated without too much effort.
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To obtain a true optimum schedule it should be possible, at least in
principle, to mechanize the described variational procedure so all the work
is done by the computer. However, because of the varied nature of the
conditions one wishes to place on the schedule, a program for doing this
must necessarily be quite complex, and as yet we have not attempted it.

4. Results of simulation study. Computer simulation studies carried on
at Ames Research Center have demonstrated that the midcourse guidance
system described here can do an effective job in the assigned guidance
problem. Some of the results of these studies will now be presented for the
case of a hypothetical 61/2-day circumlunar flight in which the entire guid-
ance system is to be carried on board the space vehicle. The assumed
conditions for this mission are summarized as follows:

1. Each observation involves sighting upon either the earth or moon and
measuring the direction of the line of sight (two angles) and the angle
subtended by the disk of the planet.

2. Observation errors have zero mean and are uncorrelated from one
observation to the next. The error statistics are represented by a diagonal
covariance matrix, Q, whose elements are of the form

(24) a 100 -k (0.001’) seconds of arc squared,

where /is half the subtended angle; that is, the errors are assumed to be
greater when the vehicle is nearer the planet being observed.

3. Midcourse velocity corrections are computed using a simple linear
prediction fixed-time-of-arrival scheme. The corrections are intended to
null the position deviation of the vehicle from a reference perilune on the
outboard leg and from a reference atmospheric entry point on the return
leg.

4. Velocity correction errors are one degree rms in direction and 0.1
m/see in magnitude. Errors in the measurement of the correction are 0.01
m/see rms in each of three Cartesian coordinate directions.

5. Rms injection errors are 1 km and 1 m/see in each of the three Car-
tesian coordinates used in the computations.

It should be pointed out that these assumptions are not intended to
describe, even tentatively, any actual mission configuration. Although
hypothetical, they are nevertheless realistic and can be used to illustrate
the operation of the system described.
One of the trajectories studied is shown in Fig. 4. On the trajectory is

indicated one specific observation and velocity correction schedule for
which we have obtained perforance data. No attempt has been made to
optimize this schedule, which consists of 77 observations and 6 velocity cor-
rections. Earth observations are shown as tick marks, moon observations
as stars, and velocity corrections as circles.
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VELOCITY EARTH MOON
CORRECTIONS OBSERVATIONS OBSERVATIONS

8 18

TIME, HOURS

98
74 7672

92 68 70
78

MOON AT 78.8 HRS

FIG-. 4. Schedule of observaEons and velocity corrections

POSSIBLE ACHIEVED
AdECTORIES-- ACTUAL

REFERENCE

UNCERTAINTY IN
ESTIMATION

RREF RACT

FIG. 5. Errors at time of reference perigee

The manner in which we describe the performance of the guidance sys-
tem is shown in Fig. 5. The dotted line indicates the reference trajectory
selected to provide a near passage of the moon and a safe entry into the
earth’s atmosphere. A. measure of the guidance effectiveness is the differ-
enee between the actual and reference trajectories, tile statistics of which
we compute in our studies. The deviation in position is called r. 3"he devia-
tion in velocity is in like manner called v but not illustrated in the figure.
Similarly, we represent the difference between the actual and estimated
trajectories in terms of 5 and , the rms values of which are obtained from
the eovarian.ee matrix of estimation errors P. We also compute the rms
variation in perigee altitude, which is of significance for establishing the
probability of safe entry, regardless of the achievement of a particular
landing site.
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FIG. 6. Time history of the rms estimation errors

TABLE 1. Results at end points--rms values

PERIAPSIS
VARIATION

r(km)

v(m/sec)

<
_z I T(km)

(m/sec)
Z

TOTAL
APPLIED AV

m/sec

AT MOON

2.5

8.6

2.2

2.9

0.27

AT EARTH

26.4

23.8

15.0

15.2

20.0

Fig. 6 shows what happens to the rms errors in estimation as the flight
progresses. The points indicate the rms errors after each observation, and
the times at which velocity corrections are made are shown by arrows. It is
seen that rms position estimation errors do not exceed 26 kin. Rms velocity
estimation errors are highest at the beginning of flight and rise again near
the end but are never greater than 0.03 per cent of vehicle velocity. Thus,
the assumption of small deviations is valid and the linearization approach
employed in the analysis should be reasonable.
Table 1 summarizes the end-point data obtained for the case described,

showing how well the guidance system has performed at the times of nomi-
nal perilune and perigee. In the first column are perilune results and in the
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second column results at perigee. Note that the rms variation in virtual
perigee is only 1.1 kin, indicating a high probability of safe atmospheric
entry. The next two numbers ot 26.4 km and 23.8 m/see for the rms posi-
tion and velocity deviations from reference are given at virtual perigee
but are of the same order of magnitude at the time of actual atmosphere
entry.
The next two figures are the rms values of the errors in knowledge of

position and velocity, 15.0 km and 13.2 m/sec. These figures are to the
terminal guidance system what the uncertainty in knowledge of injection
conditions are to the midcourse guidance system. They result in an un-
certainty in the landing location which we have not calculated. Of course,
any tracking information acquired during the terminal phase would reduce
this uncertainty.
The last figure in the table shows the total corrective velocity required

for making the six corrections for the 6-da.y flight--a modest 20 m/sec
rlTlSo

The performance at perilune as shown in the second column is seen to be
similar to that at perigee.

[i. Conclusions. The simulation results presented demonstrate that the
described guidance system concept is capable of providing excellent mis-
sion performance. It is seen that an important advantage of the system is
a high degree of versatility in that a fixed observation and velocity cor-
rection schedue need not be dhered to nd there is no dependence upon
earth-vehicle communication. The required calculations are not overly
complex, so it is felt that the on-board digital computer can be of modest
size nd power consumption.
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OPTIMIZATION, A MOMENT PROBLEM, AND
NONLINEAR PROGRAMMING*

LUCIEN W. NEUSTADT

1. Introduction. Certain problems from optimal control theory and the
optimization of trajectories can be formulated as follows.

Given an n X r matrix Y whose elements y/(. are continuous, real-
valued functions on [0, 1], a normed linear function space Y whose elements
u(. are Lebesgue integrable functions from [0, 1] to Er (real r-dimensionM
Euclidean space), and a vector c in En find an element u*(t) Y of mini-
mum norm satisfying the equation

(1) f Y(t)u*(t) dt c.
.o

In this paper we restrict ourselves to spaces with norm defined by

[lu(’)[[, fo ]u(t)],dt,

where 1 =< p =< , and lull, for any vectoru (u,...,u),isde-
fined by

For such spaces :, the above described problem does not, in general,
have a solution. It is necessary to embed (while preserving the norm) in
the conjugate space * of an appropriate Banach space (to which the
vector functions y(-), which make up the rows of Y, belong) and inter-
pret 1 as conditions to be satisfied by an element of 6t*. We shall show that
a desired element of (* with minimum norm does exist, that it can be
characterized in a relatively simple manner, and that it can be thought of
as corresponding to a function u*(t), which is a linear combination of
"delta functions."

Before putting the initially given problem in this new formulation (in
4), we shall prove a general theorem in the theory of moments. This
theorem, which is stated and proved in 2, provides the existence and char-
acterization of the minimizing functional. When applied to the problem

* Received by the editors July 22, 1963, and in revised form October 14, 1963.
Aerospace Corporation, Los Angeles, California. On leave of absence at College

of Engineering, The University of Michigan, Ann Arbor, Michigan.
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described in the preceding paragraph, it makes it possible to reduce the
original variational problem to a relatively simple (nth order) problem in
nonlinear programming which is particularly suitable for solution on a
digital computer. This is described in detail in 5. Although the theorem,
in its essential features, is well-known, the proof we shall give is novel.
In 2 we prove another general theorem, as a consequence of which we

show that a minimizing "function" u*(t) can be constructed with at most
n "impulses."

In 6 the general theory is applied to the problem of determining a
minimum-fuel midcourse correction for a space flight. A particularly note-
worthy result is that if the equations of motion of the space vehicle can be
approximated by equations of a special form, and if n (n =<_ 6) components
of the vehicle’s position and velocity vectors must take on given values at
a given terminal time, then a minimum-fuel maneuver for achieving these
end values will consist of not more than n impulsive corrections.

2. Theorems from the theory of moments. We now prove two theorems
from the theory of moments.
The first theorem deals with the problem of finding a functional (on a

Banach space) of least norm taking on given values at a certain finite
number of given elements (or having a finite number of given "moments").
Our original problem will be put in this formulation in 4.
THEOREM 1. A. Let be a Banach space, let yl, y be n linearly in-

dependent elements of , and let c (el, c,) be a given nonzero vector
in En. Then there exists a functional gt* such that l(yi) ci for each
i, and l X, where

(3) X sup .c,

and

(4) H v" v E, wy
i-1

(the dot in (3) denotes the ordinary vector dot product, and denotes the
norm either in ( or in *). Further, if is any element in (* satisfying the
tios () 1,..., n, thn 11 >= (i.e., o is a nii,un-

norm solution of the equations l(y) c).
B. The supremum in (3) is attained. If ) is any member

ofH which achieves the maximum, and is any element of (* such that l(y)
II ll

(5)

(by definition of H, the right-hand side in (5) is equal to ).
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C. An element 6* satisfies the relations l(yi) ci for i 1, .-., n,
and X if and only if

(a) there exists a vector (1, ,) in H such that l( iy" )
III .c> O, and

(b) o E 0.
We note that the number X in (3) can glso be given gs

(6) X= sup n.c VL inf [[v.y [IJ- [inf V’Y 1[--
where v’Y, with v (w, w), is used to denote =,y. Also,
except possibly for a positive scalr multiple, the same vectors v achieve
cch of the extrema in (6) nd (3).

Relations (3) und (4) (or (6)), together with (5), may be used to obtain
the minimum-norm functional which is being sought. As a result of (3) (or
(6)), the variational problem in * has been reduced to a variational prob-
lem in the n-dimensional space E, since a minimizing functional is usually
easy to obtain, because of the necessity und suificiency of relation (5), once
a maximizing element in (3) has been found.
The basic result of Theorem 1 is contained in Part A. This was first

proved by Hahn [1], and is a consequence of the Hahn-Banach theorem.
Earlier references pertaining to the same result in particular Banach spuccs,
together with a proof of the general theorem, are given in Dunford and
Schwartz [2, p. 86]. The sme problem was also treated in detail by Krein
[3, Article IV], who pointed out the necessity of relation (5) in order that
be a minimum-norm solution. Kmsovskii [4, 5] first applied these results

to specific optimization problems of the type mentioned in the introduc-
tion. In many of these problems, relation (5) essentially specifies the func-
tional (or the function u*(. in the original problem formulation), once

is known.
The application of Theorem 1 to particular optimization problems has

Mso been derived independently. The case of spaces ff with the norm de-
fined by

ql/p
[I u( t) I] atI

J

where 1 < p < oo, or u(.)ll sup0=<t=<l u(t)l , has been extensively
studied by Krasovskii [4, 5], the author [6], Reid [7], and Kreindler [8]
among many others. In this problem, relation (5) usually defines the mini-
mum-norm function u*(. uniquely, as is pointed out in the above-cited
references. In [6], a successive approximation scheme is suggested for the
computation of the extremum in (6).
We shall present a proof of Theorem 1 which is distinct from that given

in [1] or [3], and which, because of its geometrical character, is felt to be
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particularly illuminating. The basic idea of this proof carl be found in [6].
Very similar argunmnts are presented in [8]. Antosiewiez [9] has also made
use of this geometric viewpoint in considering a closely related problem.
The proof given by Reid [711 is noteworthy in that it is distinct from any

of the others discussed above. It is partially based on Part C of Theorem 1,
specialized to the problem he considers. Some additional references to
earlier work on this problem are also given in this paper.
A large number of related references from the engineering literature can

be found in [8].
Proof of Theorem 1. Let y denote the n-tuple (y, yn). It 6*, we

shall, for ease of notation, denote the element (/(y), l(y)) of E. by
l(y).

Consider the linear operator T from 63* to E defined by T(1) l(y).
Define S {/: 65", Illll <- a} for every positive number a, and
let J.’S C. We denote S by S and C1 by C.
LEMMA. For every a > O, C is a convex compact set in E,, containing the

origin as aft interior point.
Proof. Since S is convex and T is linear, C is convex. It is clear that
C is symmetric with respect to the origin. Hence, to show that the origin
is an interior point of C, it is sufficient to show that C is not contained
in any subspace of dimension less than n. Suppose the contrary. Then there
is a nonzero vector E such that s. T(l) l(n.y) 0 for every S,
and indeed for every 63*. But by a well-known corollary to the Hahn-
Banach theorem (see, for example, [2, Corollary 14, p. 65]), this implies
that s.y 0, contradicting the linear independence of the y’:.

It follows at once from the definition of the weak* topology in Oa* [10,
p. 37], that T is continuous from (g* to E in terms of the weak* topology
in (g* and the ordinary Euclidean topology in En. Since S is compact in
the weak* topology [10, Theorem 2.10.2, p. 37], C is compact. This com-
pletes the proof of the lemma.
Now consider the following question. What is the smallest positive num-

ber a for which c C, or, equivalently (since C aC), what is the
smallest positive number a such that a-c C? Since c O, the existence
of such a number a follows from the lemma. Denote this nmnber by X, and
let , X-c. It is clear that , is on the boundary of C.

There is a plane of support to C at each of its boundary points. We shall
say that the nonzero vector v E is an outward normal to C at a boundary
point f if there is a plane P normal to which is a support plane to C at
and if v is directed away from C at f.

Let be any outward normal to C at ,. Then
(7) ., max .(.
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If r E. ( 0) is not an outward normal to C at V, then

(8) ’7 < max -.
But, again using Corollary 14 in [2, p. 65],

(9) Ii II.
Combining (7)-(9), nd using the definition of u, we finally obtain

(10) a mx .c

(It is interesting to note that the maximum in (10) is attained by those,
and only those, vectors n that re outward normals to C at y.)
Now, since y k-c

or, ifwesetl X, l]lI{ XandT(l) (l(y), ...,l(y)) (c,.., c) c. Onthe other hand, if * nd l(y) T(1) c, then
c ff C,z,. Then, by definition of
or IIz]l

Let be ny vector in H which chieves the maximum in (10), so that
{.c kndl]{.y[[ 1. Iflisamemberof*suchthatl(y) cnd
]/[[ k, thenl(.y) .c X J[[ .y Conversely, if l(y) c
andl(.y) Ill}Ill .y

Finally, suppose that l(y) c nd [[/ X. Then n.c 0 implies that
l(n.y) n.c 0. Conversely, suppose that there is an element ff * and
avectorffHsuchthtl(.y) Ill .c > 0, andsuchthatl(.y)

0 whenever n.c 0. Then, n.l(y) 0 whenever n.c 0, implying that
l(y) ec for some scalr . But then l(.y) e.c .c > 0, so that
e 1; i.e., l(y) c. By what was proved above, this implies that
But by (10), X .c , so that l X. This completes the proof
of Theorem 1.
The following theorem will be used to characterize certain solutions of

our basic problem.
THEOREM 2. Let y y be nonzero elements of a Banach space . Let

T be the map frown * to E defined by T(1) (/(yl), l(y=)). Suppose
that there is a set D in * with the following properties.
() D implies that 1.
(b) The convex hull of D is dense in the unit ball S of * with respect to

the wea* topology of *.
(c) U {/}, 1, 2, is any sequence of elements in D, there is a sub-

sequence {/i} of {1}, and an element l of D, such that T(lei) T(l,) as

Then, if is any element of *, there exist n elenents (depending on l)
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/1,’", 1, of D and n nonnegative nmnbers Xl, -", X such that T(l)
T(__,=1Xl) and ),l <- ]llll.
Proof. Let K denote the convex hull of D, and let C TS. Since the

map T is linear, TK is convex. It follows at once from hypothesis (b) that
TK is dense in C.

It is sufficient to prove the theorem for eleInents (R)* with [ll 1.
Thus, let (R)* where lllll 1, and let x’ T(1). If x’ 0, the theorem
follows immediately. Thus, assume that x’ 0. Let x x be on the
boundary of C, where => 1. Such a number exists by virtue of the lemma
used in proving Theorem 1.

Since TK is dense in C, there exist elements x TK (]c 1, 2,...)
such that x - x as ]c - . Since TK, the convex hull of TD, is in E, it
follows from a theorem of Carathodory [11, p. 35] that there are elements
1/ Dandnonnegativenumbers(]c 1,2,... ;i 1,...,n q- 1)
such that

n+l n+l

x Ex. 1,
il i-1

for each k 1, 2, .... Because of hypothesis (c) and the uniform bounded-
heSS of the numbers Xik, we shall assume, without loss of generality, that
(for each i 1, n q- 1) there is a nonnegative number Xi, and an
element l D, such that X X and T(/) T(l) as . Hence,

i=1 i=1

Let us first consider the case where the points T(ll), T(1.+,) do not
all lie on some hyperplane in E, of dimension less than n. Then, these points
constitute the vertices of a nondegenerate simplex M c C. Since x M
and x is on the boundary of C, x is on the boundary (i.e., a face) of M.
This means that one of the numbers Xsay X,+--vanishes. Thus

or

T(1) x a x }ili
i=1

where X a-l-X >- 0, and =1X a =< 1. Finally, 1 for each

If the points T(I) belong to a hyperplane of dimension less than n, we
can apply the Carath6odory theorem to the convex hull of these points,
and conclude that there are nonnegative numbers X (i 1, ..., n -t- 1),
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most n of which are positive, with z_,=l
, 1, such that

+= T(l). The remainder of the proof follows as above.

3. Description and characterization of some vector spaces. In order to
apply Theorems 1 and 2 to our original problem, we shall introduce some
linear vector spaces.

Let r be a fixed positive integer, and let p be a real number such that
1 __< p _<_ . Let q be the conjugate index of p" if 1 < p < ,
q P(P 1) -1 ;ifp 1, q ;ifp ,q 1.
Denote by ff the normed linear space of Lebesgue integrable functions

from [0, 1] to Er with the norm of an element u(. E given by

(11) [lu( ")lI Jo lu(t) dt,

where u [, is defined by (2).
Let Sq be the Banach space of continuous functions from [0, 1] to E,

with the norm of an element y(. Sq defined by

Y(’)lI.q sup ly(t)lq.
o<_t<_

If g(. is a function from [0, 1] to E, define the strong total p-variation
(STV) of g(. by

STVg(-) sup g(t) g(t_)l,
i1

where the supremum is taken over all finite partitions 0 to t
t 1 of [0, 1]. If STVg(. , we say that g(. is of strong bounded

p-variation (see [10, p. 59]).
Let , denote the Banach space which consists of all functions g(-) from

[0, 1] to E that are of strong bounded p-variation, satisfy the relation
g(0) 0, and are continuous from the right in (0, 1), with the norm in

given by g(" )]], STVg(. ).
If r 1, it is well-known that Sq* and are isometrically isomorphic.

Namely, to each function g(. q there corresponds a functional 8q*
defined by

(12) l(y(.)) f, y(t) dg(t),

with g(" )]l, conversely, if/is any functional in 8q*, then there
is a unique function g(. of equal norm such that is defined by (12).
If r > 1, the above statements are still valid, except that (12) must be re-
placed by
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(the scalar-valued functions g.(. and y(. represent the components in
Er of g(. and y(. )). The proof of this representation in the case r > 1 is
straightforward and based on the case of r 1, and is omitted here.
We note that there is an isometric isomorphism between ff and a linear

manifold in (or Sq*). Namely, to each u(. in ff, there corresponds a
function g(. in 9 defined by

(13) g(t) Jo u(s) ds, 0 <= <= 1,

and a functional Sq* defined by

(14) l(y(.)) f.o =1
y(t)u(t) dt y(t).u(t) dr.

It follows directly from (14) that ]llll u(.)ll. In addition, relation
(13) implies that for every y(. )

(15) Jo y(t).dg(t) Jo y(t).u(t) dt l(y(.)),

so that the isomorphism defined by (14) is the product of the isomorphism
between 9 and Sq*, and the isomorphism defined by (13). Relation (15)
implies that Ill]l li g(’)[[. u(.)ll, so that the isomorphisms de-
fined by (13) and (14) are indeed isometric.

4. Solution of the optimization problem. In this section we shall apply
Theorems 1 and 2 to the spaces described in 3, with the aim of obtaining
a solution to our given problem.

In this and the next section we denote by y(t) the ith row vec-
tor (yl(t), yr(t) of the matrix Y(t) in 1 ).
Our original problem may now be reformulated as follows.
Given n elements yl(.),-.., yn(.) in $q, and a nonzero vector

c (o, c) (the problem is trivial if c 0) in E,, find a function
u(. ff of least norm that satisfies the equations

(16) c f y(t)u(t) dt y(t).u(t) dt, i 1, ...,n.

In general, this problem will have no solution. It is necessary to embed

5: in (as described in 3) and rephrase the problem as follows.
Find a function g(. , of minimum norm which satisfies the equations

(17) c-- fo y(t), dg(t), i 1,...,n.

Because of the isomorphism between q and $q*, we may state the problem
in yet a different way.
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Find a functional 8* of minimum norm which satisfies the relations

(18) l(y’) ci i 1, n.

The last problem statement is precisely the one to which Theorem 1 ap-
plies. We shall show that Theorems 1 and 2 imply that there is a minimum-
norm functional l* which satisfies (18) whose corresponding function
g*(. p is a step function with at most n points of discontinuity. As we
shall see, a step function g*(. in (17) may loosely be thought of as corre-
sponding to a function u*(. in (16) which is a linear combination of delta
(or impulse) functions (with impulses at those values of where g*(. is
discontinuous), with u*(-)lip g*(" )llv. l* II.
We shall henceforth assume that the vector functions yi(. are linearly

independent. By virtue of Theorem 1 and the representation of Sq* dis-
cussed in 3, a minimum-norm solution g*(. of (17) does exist, and
can be obtained by first finding a vector that satisfies the relation

(19) .c sup v’c,

where

(20) H v" E, max v (t) 1
0.<_ t_<l il q

and then finding any solution g*(. that satisfies (17) as well s the
condition (corresponding to (5))

(21)
[o<_t<_.

where

(22) .(t)
i1

Define the sets F. (j 1, r) and F (which are closed subsets of [0, 1]),
for a fixed solution of (19) and the corresponding function #(. defined
by (22), as follows.

r It:
(23)

r {t:

l (t)I o <= <__
O.<r_<l

max max[9(r)l, 0 _-< =< 1}.
OE’rl

(Since H, max[$(r)]q= 1, and if p 1, max,l (r)l 1.)
Note that F [J F if 1j----1 P
We now make use of (21) to characterize the minimum-norm solutions

of (17). It is convenient to treat the cases p 1 and p > 1 separately.
We first consider the case p > 1.
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THEOREM 3. Let be any solution of (19), (20), and let (.) and F be
correspondingly defined through (22) and (23).

Then, if g*(. p (where p > 1 is the conjugate index of q in (20)) is
any minimum-norm solution of (17), g*(. is constant in each open sub-
interval of [0, 1] which does not meet F. Also, the points of discontinuity of
g*( are all contained in F. If is a point of discontinuity of g*(. ), there is
a positive number such that the "jumps" in the components g*(. of g*(.
are given by

(24) a > 0, gs*() gs*(-)

(t) - sgn s(),
if 1 <p< ;

asgngs.(), /f P
and 9i() 0;

any value in [-a a], if
p and .i() 0

(if 0, the left-hand side of (24) should be replaced by gj*(0+) gj*(0) ).
In particular, if F is made up of a finite number of points, then g*(. is a

step function (whose points of discontinuity belong to F and whose jumps are
given by (24)).

Conversely if g*(. is any step function in whose points of discontinuity
all belong to F, whose jumps are given by (24), and which satisfies (17), then
*(g is a minimum-norm solution of (17).
Proof. We first prove that if g*(. is minimum-norm solution of (17),

nd [t’, ’t] is closed subinterval of [0, 1] that does not meet F, then g*(.
is constant for t’ -< =< t". By Theorem 1 Prt B, g*(. stisfies (21). It
is esily seen that

(25)

Since [t’, t"] does not meet I’,

(2) x (t)l. < x (t)l..
.< <_ O_<t<:l

Also,

(27) STV g* (-)
0<tl

STV g*(. q- STV g*(.) q- STV g*(.).
O<_ <_ t’ t’ <_ t

Relations (21), (25), (26), nd (27) cn hold simultaneously only if

STV; g*(.) 0,
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i.e., only if g*(. is constant in [t’, t"]. This implies that g*(. is constant
in any open subinterval of [0, 1] which does not intersect l’. In particular,
if g*(. has a point of discontinuity in (0, 1), this point must belong to r.
An analogous argument shows that the jumps of g*(. at a point of dis-
continuity are given by (24), and that g*(-) is discontinuous at 0 or
at 1 only if these points belong to r.

If g*(. is a step function whose points of discontinuity belong to
r and whose jumps are given by (24), it follows by direct substitution that
*(.g satisfies (21). If, in addition, g*(.) satisfies (17), then according

to Theorem 1 Part B, g*(. is a minimum-norm solution of these equations.
We now employ Theorem 2 to show that there is always a minimum-

norm solution of (17) which is a step function with at most n points of dis-
continuity (all of which belong to r, with the jumps satisfying (24)).

Define the subset of G of p as follows" g(. G if and only if g(. is a
step function with a single point of discontinuity in [0, 1], and g(" )llv.p

1; i.e., G is made up of functions of the form

IO, 0 <- < [,
(2S)

(, __<t__<l,

where is some point in [0, 1] and Is 1. If 0, an obvious modifica-
tion must be made in (28). Let D denote the set of funetionals in 8q* that
correspond to elements of G.
THEORE 4. The set D defined above satisfies conditions (a), (b), and (e)

of Theorem 2, with 8 taken for (R).

Proof. Condition (a) follows from the fact that II/ll- STV, g (.
1( IT 1 when ff D corresponds to a function g(. of the form (28).

Condition (e) is an immediate consequence of the sequential compactness
of the interval [0, 1] and of the unit "sphere" {" E, I Is 1}
in Er.

Thus, it only remains to prove that the convex hull K of D is dense in
the unit ball S of * with respect to the weak* topology of $*.

Let [ S, and suppose that is represented by (y) f
where 0(" and STV 0(’) -<- 1. Fix a weak* neighborhood N
of defined by elements z ,..., z in 8 nd a positive number e, thus
N II" I[(z) l(z)[ < e,i 1,...,m}.

Choose a partition 0 to < tt < < t 1 of [0, 1] such that, for
each i 1, m,

(29) Z(z) _, z(t). [.O(t+) .O(t)]
’=0
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Note that, by definition of STV 0(" ),

Define elements li, j 0, , 1, in D by setting

(al)

(if the denominator in (31) vanishes, set 0), and let

v--1

(32) 7(/’+) tT(t)] l..

It follows from (29), (31) and (32) that (z) (z)[ < e for each i;
i.e., N. Since ech nonzero l D nd since the origin of $* belongs to
K, it follows from (30) and (32) that K. Because of the arbitrariness
in the choice of and N, this implies that K is dense in S, completing the
proof of Theorem 4.
COaOLLhnV. There is a minimum-norm solution g*(. , (p > 1) of

(17) which is a step function with at most n point.s of discontinuity, all of
which belon9 to F, the jumps at which satisfy (24).

Proof. According to Theorem 1, a minimum-norm solution of (18)
exists. By Theorem 2, there is an element l’ "--1 -l., with ech l. D,
in $* such that l’(y) (y) c for each i 1, n, and such that

IIl’ II--< II. Since is of minimum norm, l’II- I1; i.e., l’ is a
minimum-norm solution of (18).
Each corresponds to a function g(. G with a single point of dis-

continuity. Hence, l’ corresponds to g*(. jn=-I )kjg]( p, which
has at most n points of discontinuity and is a minimum-norm solution of
(17). The remainder of the corollary follows from Theorem 3.
We now turn to the ease of p 1 (q ). Corresponding to Theorem

3, we have the following proposition.
THEOREM 3’. Let be any solution of (19), (20) with q , and let
(.) and the sets F and ri be correspondingly defined through (22) and (23).
Then, if g*(. 1 is any minimum-norm solution of (17), the component

gj*(. of g*(. is constant in every open subinterval of [0, 1] which does not
meet r Also, the points of discontinuity of gi* (.) are all contained in F c r.
If is a point of discontinuity of gi*(. ), there is a positive number ozi, such
that the jump in gi*(. is given by

(33) g*() gi*(-) -.sgn .(), a’, > 0

(if O, the left-hand side in (33) should be replaced by g.*(0+) g*(0) ).
In particular, if Fi is made up of a finite number of points, then gi*(. is a
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step function (whose points of discontinuity belong to F and whose jumps are
given by (33)), and if Fj is empty, then gj* (t) O.

Conversely, if g*(. is any step function in 1 such that the points of dis-
continuity of gj*(. belong to Fj and the jumps are given by (33), and if g*(.
also satisfies (17), then g* (.) is a minimum-norm solution of (17).
The proof is very similar to that of Theorem 3, and is therefore omitted.
The fact that a minimum-norm solution g*(. is of the above form, when

F is made up of a finite number of points, has previously been pointed out
by Krasovskii [5], the author [6], and Kreindler [8].

In analogy with the set G in the case p > 1, we now define the set ( as
follows: g(. if an only if g(. is of the form (28) (or an obvious modi-
fication thereof in case 0) with a unit vector all but one of whose
components vanish; i.e., consists of the functions g(. whose components
are given by (for some index l 1, r, some number [0, 1], and
0 +1 or -1)

g(t)
O, <__ <= 1,

g(t) =--O, ifj k.

(An obvious modification must again be made if 0.) Let denote the
set of functionals in* that correspond to elements of
TEORn 4’. The set ) defined above satisfies conditions (a), (b), and (c)

of Theorem 2, with taken for .
The proof is almost identical with that of Theorem 4, and is omitted.

The following corollary to Theorem 4’ (which follows iust as the corollary
to Theorem 4) yields a representation of a minimum-norm solution of (17)
when p 1.
COROLLhRY. There is a minimum-norm solution g*(. of (17) which

is a step function such that g*(. has n points of discontinuity (all of which
belong to I’ with the jumps satisfying (33)), and =n <= n.

Because a minimum-norm solution of (17) is an element g(.
which is a step function, there naturally arises the following question.
Given a step function g(. v and the corresponding functional
(defined by (12)), do there exist functions u(. Yv such that the corre-
sponding funetionals gq* (defined by (14)) in some sense approximate
the functional Z? We shall below answer this question in the affirmative.
Indeed, for any > 0, there exist functions u’ (. e) and u" (. e) in fly such
that

and
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where l’ .and l" are the funetionals in 8* corresponding to u’(.; e) and
u"(- e). Thus, if g(. is a minimum-norm solution of (17), it is possible
to find a function u’(.) 5, whose norm in 5p equals
which satisfies relations (16) with an arbitrarily small error, as well as a
function u’(. Y that satisfies relations (16) exactly and has norm
arbitrarily near g("
To verify the above, let g(. be a step function with discontinuities at

the points h, t. Let A.g [g(t-) g(tff)] if t. 0; if t. 0, let
A.g [g(0+) g(0)]. If 0 < t. < 1, define I.,, for > 0 to be the closed
interval [t. e/2, 6 + e/2]; if t- 0, let I, be [0, el; if ti 1, let I,,

[1 e, 1]. We shall always assume that e is sufficiently small that
Ii, [0, 1] for each j, and that I, f’l L,, 0 if j lc. Denote by .(/;
the characteristic function of I.,,, and let

u’(t; e) 1 .(t; )A-g.

Then it is easily seen that

]0
"1 f0yy(t).u’(t; e) dt (t). dg(t), i 1, n,

->0

g(’)l]., u’(.; e) ll, for all e.

If the n N r matrix (Y(h),..., Y(t,)) has rank n, it readily
follows that there exist functions u’(t; e) ff of the form

u"(t; ) 1
i(t; e)u’,

e

where the ’ are constant r-vectors such tha ’ &g as 0 for
each j, with

(34) y’(t).u’(t;e) dt y’(t).dg(t), = 1,...

and such that

e--0

Thus, the functions u’ and u" have the desired properties. Loosely
speaking, one may say that a step function g(. in (17) corresponds to a
function u(. in (16) which is a linear combination of "delta-functions."

If the matrix Y has rank less than n, it is still possible to construct func-
tions u" (t’, e) satisfying (34) and vanishing outside U.= I... This follows
from the fact that if we define

S( j, e)= f Y(t)u(t)dt: u(.),[__< A.g 1,
)

j 1,...,tt;e > 0,
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then S(j, e) is a convex set in E containing the origin as a relative interior
point, and Y(tj)Ajg belongs to the closure of S(j, e). In fact, the stated
properties of S(j, e) imply that there exist functions uS(t; e) , vanish-
ing outside I-.,, such that for each j,

f f 1 Y(t)Ajg,y(t)u(t; ) 1 Y(t) dg(t)
1 +,, 1+ ..,

u(’; )11 =< Ig I.
If we define u" (; ) (1 + )=u (; ), then the functions u" (; )
stisfy (3), nd (" )1 (1 )11 g(’)lI,. prtiu]r, ir g(.)
is u minimum-norm solution of (17), so that the u( e) stisfy (16) then
u’(.; )l] g(.)ll,, d "(" )ll g()ll, 0.
The bove remarks hve significance for the following problem, which is
vrint of our original problem.
et F, where 0 , be the set of elements u(- stisfying the

condition u(t)], or M1 t, 0 1 then find function u(. F of
least norm that stisfies (16).
By wht ws si bove, there is t least one solution in F to (16) if is

sufficiently lrge. Then, ccording to results in [16], minimum-norm solu-
tion exists in F (so that it is unnecessary to embed in ).
et M denote the minimum of the norms of the solutions of (17) in, nd let M denote the minimum of the norms of the solutions of (16)

that belong to F It follows from the previous discussion htM Ms

Under certMn conditions (which will not be iscussed here), if mini-
mum-norm solution of (17) is step function, then the minimum-norm
solutions of (16) in F approuch the linear combination of delt functions
corresponding to the step function. To be precise, if the step function hs
discontinuities t the points t, t (we denote the vMue of the jump
t , s before, by Ag), nd if u( is minimum-norm solution of (16)
in F, then, for sufficiently ]rge ,

u() ,()
=1 ,i

where ,i() is he characteristic function of an interval I, contained in
[0, 1], containing he poin ti, and of length .i > 0. In addition, ,i 0 as

0; ’()1 i for all ,j, and I, ;and

. Computing the optimum solution. In his section we shall discuss a
possible computational mehod for obtaining a solution of (19), (20),
and, having found an and deermined he corresponding ses r, r and
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the function (. ), for finding a minimum-norm solution of (17) of the
type described in the corollary to Theorem 4 (or
We first consider the case p > 1.
The problem of finding the maximum in (19), (20) is clearly equivalent

to the following problem in nonlinear programming. Maximize the linear
function g(v) g(vl, vn) i%1 civ subject to the constraints
(defined for every t, 0 N <_- 1)"

(35) o(v;t)
’=1

y(t)vi <= 1.
i1

This programming problem, being given in terms of a linear objective func-
tion and a continuum of convex constraints, is in itself convex, and the
absence of false local maxima is thus guaranteed. Note that the dimension
of the programming problem is only n. A number of computational methods,
e.g., Rosen’s gradient projection method [12], exist for such problems. It
is clear, however, that the continuum of constraints (35) must be approxi-
mated by a suitably large, finite subcollection, if the problem is to be solved
on a digital computer.
In the nonsingular case, a solution of the above problem is given by a

vector which lies on the intersection of n (or fewer) surfaces p(v; t) 1
which are in general position at ; i.e., maximizes g(n) subject to the
constraints (35), p(; t) 1 for n (or fewer) values of in [0, 1J--which,
by definition, make up F--and p(; t) < 1 away from these values of t.
Once a solution to the programming problem has been obtained,

and the set r and the function (. defined accordingly (by (22) and
(23)), it is only necessary to find values t r and positive numbers
at a (i 1, u; u =< n) such that the corresponding step function
in (i.e., with discontinuities at the points ti and the jumps given by
(24)) is a (necessarily minimum-norm) solution of (17). If p , addi-
tional numbers must be determined if 9.(t) 0 for some i and j. We shall
suppose that this case does not arise in the argument that follows.

Let us first consider the nonsingular case where r consists of precisely
n points t,..-, t, and the n surfaces whose equations are p(v; t)

1 (j 1, n) are in general position at their point of intersection .
By Theorem 3, every minimum-norm solution g*(. eo, of (17) is a
step function whose points of discontinuity are included among the t., and
whose iumps are given by (24). If g*(. is of this form, then

(36) f y(t), dg*(t) i(t)a c i 1, n
Jo

where

i(t) -y, (t.) (t.)] sgn (t.).
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The quantities a. are the only unknowns in (36), but they are uniquely
determined by these equations if the matrix (i(t’))i,. is nonsingular. How-
ever, the nonsingularity of this matrix is precisely the condition that the
surfaces p(v; t) 1 be in general position at . In this case, therefore,
the minimum-norm solution of (17) is unique. In summary, it can be ob-
tained as follows.

1. Solve the nonlinear programming problem of maximizing g(v) . c
subject to the constraints (35).

2. Let be a solution of this problem, let tl, t be those values of
for which p(; t) 1, and let (t) be defined by (22).
3. Solve (36) for the constants a. (j 1, n).
4. The minimum-norm solution g*(. of (17) is a step function whose

points of discontinuity are tl, t, and whose jumps are given by (24)
with atj ai (if ak 0, g*(. is continuous at tk).

5. The optimum solution can be approximated by an element u(.
as discussed in 4.

If 1 consists of points tl, t,, where t < n, and the corresponding
surfaces given by p(; t) 1 (i 1, t) are in general position at ,
equations (36) take the form

(37) (t)a- c, i 1, n.

Although this system is overdetermined (n > t), our existence theorem
guarantees that it is consistent, i.e., does have a solution for numbers a-,
and the general position condition implies that this solution is unique, which
in turn means that the minimum-norm solution of (17) is unique in this
case also.
The numbers a. are analogous to the Lagrnge multipliers that arise in

an ordinary maximization problem in the presence of constraints. Indeed,
they are precisely the multipliers for the problem of maximizing g(v) sub-
ject to the constraints p(v; t) -<_ 1, i 1, n.

If the surfaces p(v; t) 1 for F are not in general position at , as
must occur when F consists of more than n points, it is necessary to pick
out some ( _-< n) values t- F such that the corresponding equations
(37) have a solution for numbers . with each a. > 0. Such values always
exist by irtue of the above-proved existence theorems.
We now turn to the case p 1. The problem of finding a maximum in

(19), (20) is equivalent to the problem of finding the maximum of the
linear function g(v) subject to the lineur constraints

-1 <= _. ,y(t) <- 1; j 1, .-., r; 0 <= __< 1.
i1

This is now a linear programming problem of dimension n. To obtain an
approximate solution on a digital computer, it is again necessary to replace
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the continuum of constraints by a suitably large finite number chosen from
them.
Once a solution of this linear programming problem has been found,

and the sets r. and the function (. defined accordingly, it is only neces-
sary to find values ti r., and positive numbers aj,t (j 1, r;
i 1, n. ;. n. -<- n) such that the corresponding step function
g(.) in 1 (i.e., with the discontinuities of g.(.) at the points t. and the
jumps given by (33)) is a (necessarily minimum-norm) solution of (17). The
method of finding these numbers differs only in detail from that for the
case p > 1, and will not be presented here. This case has been discussed
in some detail by Kreindler [8].

6. Applications to optimization. In this section we shall describe how
the results derived in the preceding sections may be applied to optimiza-
tion problems, and, in particular, to obtaining minimum-fuel space maneu-
vers.
We consider physical "systems" whose behavior can be described by a

system of ordinary differential equations of the form

(38) a?(t) A(t)x(t) zr- B(t)u(t) + f(t).
In (38), x is an m-vector whose coordinates describe the "state" of the sys-
tem at any instant of time t, A (t) is an rn X m matrix function, B(t) is
an rn X r matrix function, and f(t) is an m-vector function; A, B, and f
re assumed to be continuous known functions of t. The quantity u(t)
is the "control," a measurable function whose range is contained in E,
which is constrained to be a member of a given normed linear function
space ft.

Certain problems in the theory of optimal control can be stated as fol-
lows. Given two distinct values to and tl of t, an n X m matrix N, an m-
vector x, and an n-vector x (where n -< m); find a function u*(.)
of minimum norm such that the solution x(t) of (38) (by a solution we
mean an absolutely continuous vector function that satisfies the equation
almost everywhere) with x(t0) x and u(t) u* (t) satisfies the bound-
ary condition Nx(t) x1. Without loss of generality, we may assume
that to 0 and tl 1.
By virtue of the variation of parameters formula for solutions of (38),

the preceding problem can be restated as follows. Find a function u* (.)
of minimum norm such that

(39) f, Y(t)u*(t) dt c.

In (39), Y(t) NX(1)X-I(t)B(t) is a known continuous n X r matrix
function, X(t) being the m X m matrix solution of the equation

2 AX, X(O) I, the identity,
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x ]01and c -NX(1)[x+ X-l(t)f(t) dt] is a known n-vector. In

this form, this is precisely the problem described in the Introduction,
and if the norm in ff is given by (11), we have the problem discussed in

4 and 5. The theory developed therein can be applied if c 0 (the prob-
lem has the trivial solution u* (t) 0 if c 0), and provided that the
vector functions yl(. ), yn(. constituting the rows of Y are linearly
independent. A necessary condition for the linear independence of yl(.),

yn(. is that N have rank n; the latter together with the condition
that the given system is "proper" [13, p. 12] is sufficient for linear inde-
pendence of the yi(. ).

Let us now consider a specific type of physical system that is of particular
current interest.
The equations of motion of a space vehicle subject only to gravitational

and propulsive forces can be given in the form

T(40) (, t) +,
where r is the radius-vector to the vehicle’s center of gravity from the origin
of some inertial coordinate system, G is the vector representing the gravi-
rational acceleration, T represents the force vector due to the vehicle
engine thrust, and M is the vehicle mass. If the thrust is due to a single
rocket engine, the rate of change of mass due to thrusting is given by

(41) --3(t) IT(t)I

where g is the acceleration due to gravity at the earth’s surface (a known
constant) and I, is the so-cMled specific impulse, which we shall assume
to be a known function of time.
The following problem naturally arises in the control of such vehicles.

For given initial position r(to), velocity f(t0), and mass M(t0), find a thrust
program (T as a function of t) which will achieve prescribed terminal
values for (some, or possibly all of) the components of r and (or for given
functions of the components). The terminal time may be fixed or free.
The optimal problem consists in finding that thrust program that results
in a minimum loss of mass, or expenditure of fuel. This general optimization
problem is as yet unsolved, although numerous particular cases have
been treated in the engineering literature (see, for example, [14]).
For those cases where (40) can be put in the form (38), the methods and

results developed in this paper can be applied. This can be done when (40)
represents the motion of a vehicle near a "nominal" known free-fall trajec-
tory, the radius-vector along which satisfies the equations G(R, t).
Namely, set/r r R, in which case / G(R q- 5r, t) G(R, t)
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+ T/M. Assuming tht [G(R + r, t) G(R, t)] en be pproximted
by first-order terms in 8r, we obtain

OG T(42) -(R(t), t) 8r +
where OG(R(t), t)/Or is u known mtrix function of the time t. Finally,
let x be the 6-vector whose first three coordinates coincide with those of
5r nd whose lst three coincide with those of 8. Then (42) cn be put in
the form

(43) 2 A(t)x(t) + B(t)u,

where u T/(L, M). Suppose that initial "perturbations" from the
nominal r(t0) nd (t0), terminal time t, n initial mss M(to), nd
desired terminal wlues r(t), (tl) (or certain linear combinations, less
thn 6 in number of them) are given. Since minimization of the loss
of mss is equivMent to mximiztion of M(tl), or minimization of

because, by (41) nd the definition of u,

u(t) I dt dt g In [M(to)
M(t)I- LM(h)

our problem is now of the type described t the beginning of this section,
with p 2. The computationM method described in 5 cn be pplied to
determine n optimal thrusting program. Note that if it is only of interest to
determine the minimum fuel expenditure, it is sufficient to solve the non-
linear programming problem, since the number in (3) here corresponds

to the minimum of the vlues for ] u [ dt.

The corollary to Theorem 4 hs prticulrly interesting interpretation
in the present problem. Nmely, if the number of coordinates of 6r nd

(or linear combinations of them) whose end wlues re prescribed is
n (n 6), there is minimum-fuel thrust progrmn which consists of n,
or fewer, impulses. If rendezvous with nother vehicle is the desired
terminal state, 11 the coordinates of 6r nd 6 re specified t the terminal
time, and n 6. Note that if the entire motion of the spce vehicle tkes
place in plane, (43) cn be put in the form of a fourth-order system, nd
minimum-fuel rendezvous cn be ccomplished with four or fewer impulsive
corrections.

Acknowledgment. The author is indebted to Dr. J. S. Meditch for his
id in formulating the minimum-fuel spee vehicle problem. Some related
work in this problem hs previously been described in [15].
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TIME-OPTIMAL CONTROL OF SOLUTIONS OF OPERATIONAL
DIFFERENTIAL EQUATIONS*

H. O. FATTORINI

Introduction. We consider the following problem" given two points
u, v in the Hilbert space H, find f, If(t) <= 1, such that the solution of
the operational differential equation ut Au + f, with initial condition
u(0) u, reaches v in the smMlest possible time. We prove that such an

f exists, utilizes the maximum energy available (If(t) 1), and is
unique. The finite-dimensional problem was studied by Bellman, Glicks-
berg and Gross [3] and others (see [6]); results for the infinite-dimensional
case have been announced by Egoroff [7], who generalizes Pontryagin’s
maximum principle to a class of equations in Banach space.
The author wishes to acknowledge his indebtedness to Professor P. D.

Lax for assistance received during the preparation of this work.

1. Existence of optimal controls. We shall use the notations
(i) s, t, t’, for positive real numbers, c, d, e, for (Lebesgue meas-

urable) subsets of the real line, c I, d I,"" for their measure;
(ii) H {u, v, w,.-.} for

and norm
(iii) Lt {f, g,’. "1 for the space L((0, t); H) of all functions with

domain (0, t), range in H, strongly measurable and bounded, with norm

Ilfllt ess. sup/If(r) 0 =< r _<= t}.

Sometimes we shall write simply L, f I, omitting the subindex t. We
recall that Lt is a Banch space, dual of the space LI((0, t);H) of sum-
mble, H-valued functions in (0, t). For further details see [1, p. 88] and
[2].
Given a linear operator A in H with domain D(A) and a function f(t),
>= 0, with values in H, we will consider the initial-value problem

(1.) u’(t) Au(t) + f(t), >= 0,

(1.2) u(0) u.

A function u(t), >__ 0, with values in H will be called a strong or genuine
solution of (1.1), (1.2), if

(a) for each >= 0, u(t) D(A);
* Received by the editors November 11, 1963.
Courant Institute of Mathematical Sciences, New York University, 4 Washing-

ton Place, New York, New York.
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(b) the equality (1.1) is valid, where u’ is the strong derivative of u(t);
(c) for 0, u(t) assumes the required initial value.
We assume that the homogeneous problem (f 0) is well-posed in the

sense that
(d) it has a genuine solution for any u D(A);
(e) two solutions that agree for 0 agree for all values of t;
(f) the values of a solution at a time > 0 depend continuously on the

initial data, i.e., the operators T(t) defined by

(1.3) T(t)u(O) u(t)
are bounded.
By (f) we can extend T(t) (by closure) uniquely to the whole space H.

We will denote these extensions by the same symbols. From the definition
of T(t) it follows that

(g) T(0) [.

By uniqueness of genuine solutions,

(h) T(t)T(s) T(t + s),

i.e., T(. is a semigroup of bounded operators. It can be shown also [1,
pp. 304-305] that

(i) T(t)u is a strongly continuous function of (u being a fixed element
in H);

(j) re(t) sup{ T(r)[, 0 <-_ r <__ t} is finite for all >= 0;
(k) T*(t) is also a strongly continuous semigroup of bounded operators.
Under conditions (d), (e), (f), it is also true that
(1) if f(t) D(A) for all >= 0, f(t) and Af(t) are strongly continuous

functions of t, then

(1.4) u(t) T(t)u -- Jo T(t- r)f(r) dr

is a genuine solution of (1.1), (1.2), for every u D(A) (see [4]).
On this basis we define the expression (1.4) as a weak solution (or simply

a solution) of (1.1), (1.2), integration being performed in the sense of
Bochner [1, p. 76].
LEMMA 1.1. Let Its}, Inn} C H, lf} L be sequences such that

tn
T(t,- r)f(r) dr u.

Suppose further that t -- t, u ---> u (weakly), f -<_ 1. The there exists

f L, Ill II 1, such that

T(t- r)f(r) dr u.
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Proof. Choose some upper bound s for tn} and some element v in H.
Defineg(r) T*(t-- r)vif O <-_ r < t, g(r) 0 if t-<_ r -<_ s; define
similarly gn using t instead of t. It follows at once from the strong con-
tinuity of T*(. that g -- g in LI((0, s); H). Observe next that, by
Alaoglu’s theorem [1, p. 37], the unit sphere of L is weakly compact.
Then there exists a subsequence of {fn} (strictly speaking, a generalized
subsequence), weakly convergent to some element f, IIf II <-- 1; denote
again this subsequence by {fn}. Noting that

(u, v) T(t, r)f(r) dr, v (f(r), g(r) dr

and taking limits, the lemma follows.
Given two elements u, v in H, we will call f in L an admissible control

if the weak solution of (1.1), (1.2) reaches v at some time, i.e., if for some
t,

(1.5) T(t)u + Jo T(t- r)f(r) dr

andllfll -<- 1.
The corresponding solution will be called an admissible trajectory. The

smallest for which equality (1.5) is valid will be the transition time cor-
responding to the control (or to the trajectory). The admissible control f
will be called optimal if its transition time minimizes the transition times of
all admissible controls; we will call also the corresponding trajectory an
optimal trajectory.
To avoid confusion we shall often write (u, v)-admissible control,..-

etc., to specify which u, v we consider.
THEOREM 1.2. Suppose that for u, v in H there exists an admissible con-

trol. Then there exists an optimal control.
Proof. Let be the infimum of all transition times of all admissible con-

trols, t a sequence of transition times corresponding to admissible con-
trols f, tending to t. Write (1.5) for these controls and apply Lemma 1.1.

2. Uniqueness of optimal controls. We define the subspace K as the
set of all elements of H of the form

(2.1) fo T(t- r)f(r) dr, f L.

The equalities

T(s- r)f(r) dr

(2.2)
T(t- r)f(r- (t- s)) dr, 0<s<t,



OPERATIONAL DIFFERENTIAL EQUATIONS 57

T(t r)f(r) dr

fo’T(s--r)(T_!r.)fo’-" \
r r’T(t-- s-- )f( )dr’ dr

/

+ fo T(s-- r)f(r+ t-- s) dr, 0 < s < t,

T(r)U dr(2.4) T(t)u T(t- r)

imply that K, K K for all s, > 0 and that T(t)H K. If we now
introduce the family of norms

identities (2.1), (2.4) give immediately

(2.6) ]ui8 =< (1 + t-- 8

\ 8

(2.7) ul <= tm(t)i u It,

(2.s) T(t)u i, <=

T(t- r)f(r) dr u,f Lt}

m(s)m(t- s)) ]u it, 0 < s < t,

Given now any measurable set e in the positive real line we define Lt(e)
as the (closed) subspace of Lt consisting of all functions with support in
e(0, t) e f’l (0, t), and Kt(e) as the subspace of K consisting of all ele-
ments of the form (2.1), with f Lt(e). Our next result is concerned with
points e for which K(e) K.
LEMMA 2.1. Let e ) O. Then for almost all in e, Ks(e) K.
Proof. Applying (2.2) and (2.3) it is easy to see that any u in K can

be written in the form

fT(t- r)f(r) dr,

with f L, s arbitrarily close to t. Now take e and a sequence
t < tn+l < t, t, ---) t. If we write

ftn+T(t r)f(r) dr T(t t,+) T(t,,+ r)f(r) dr
n=l

T(t r) t:;t+)nl (tn+l,tn+2)
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we see that we can assert that Kt(e) K if we can construct a sequence

p>O,

(2.10) lira sup t t-i < .
tn+l- t

Now takeem e" e t- ,t >__ -,lc >= .By awell-known

result in measure theory, e has full measure in e; moreover the set d
of points on e which are density points of some e has the same property.
It is now easy to show that any in d has the required property. In fact,
let be a density point of e. Then we can select a sequence [t] in e
such that t tn+ t, and s + o(s), where s is any
sequence tending monotonically to zero. But this implies (2.10), having
chosen Sn adequately (for instance s exp (--n) ), and (2.9) follows from
the fact that [t] e.

Before beginning the proof of our main result, we recall that, if f is an
optimal control with transition time t, then f is optimal in any subinterval
of (0, t). In particular, the corresponding trajectory u will reach any of
its points only once. The proof is a straightforward consequence of the
definitions involved.
THEOnEM 2.2. Let f be a (u, v)-admissible control with transition time t,

and suppose that If(r) < 1 for r in a non-null set c (0, t). Then f is not
u, v) -optimal.
Proof. Suppose first that f lit 1. Then taking s suciently close to

and applying inequalities (2.5), (2.6), and (2.8), we can conclude that

ft T(t r)f(r) dr + T(t) u T(s)u 1,
o

which plainly implies that f is no (u, v)-optimal. Similarly, if for some
s, 0 < s < t, we have f I[ < 1, f will not be (u, u(s))-optimal, and a
fortiori will not be (u, v)-optimal.
We return now to the general case. For some > 0 there exists a non-

null set e c with f(r) N 1 e, r e. Take s in e like in Lemma 2.1,
and consider the operator M" L,(e) K, defined by

f T(s r)g(r) dr.Mg
(0,s)

It is not difficult to see, examining the proof of Lemma 2.1, that the equation

(2.11.) Mg T(s r)f(r) dr
o

t ( t+l ( such that lim t and

(2.9) e(t t,+) >= p(t+ t,),
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will have, for sutIieiently small, a solution g in Lt(e) with g -< e.

Consider now the control h(r) (1 )f(r) + g(r). By (2.11), h is
(u, v)-admissible. But h 118 < 1. This shows that f itself cannot be (u, v)-
optimal.
COOLLAmC 2.3. (UNIQUENESS THEOaEM). Let f and g be two (u, v)-

optimal controls. Then
a) both transition times coincide,
b f and g are equal for almost all points in (0, t).

Proof. (a) is trivial. Suppose (b) were false. Then -.} (f -t- g) would also
be an optimal control with norm less than 1 in a non-null set, which is
absurd.

3. Generalizations. The present methods can be applied, in some cases
with slight modifications, to the following more general situations.

(a) H is a reflexive Banach space.
(b) The elements u and v are replaced by closed convex sets, for instance

u(O) u [, [u(t) v <= p.

(c) The arrival time is specified (instead of the departure time).
(d) A A(t). In this case, the weak solutions of ut A(t)u + f,

u(s) u, are given by

u(t) U(t, s)u + J U(t, r)f(r) dr,

where U(t, s)u is the solution of Ut A(t)u, u(s) u (see [5]).
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MODES OF FINITE RESPONSE TIME CONTROL*

C. A. HARVEY
Summary. A linear autonomous system with a single control variable is con-

sidered. There are, in general, several modes of finite response time control for such
a system. The concepts of single component regulation and multiple component
regulation are defined. It is then shown that a multiple component regulation prob-
lem can be transformed into a single component regulation problem. Thus it is pos-
sible to express any of the modes of control considered as control of a single input,
single output system.

Introduction. The system considered is represented by the vector dif-
ferential equation

(1) 2( t) Ax( t) - bu( t)

where the dot denotes differentiation with respect to time t, x(t) is a col-
umn vector with elements xl(t), x2(t), x(t) which describe the state
of the system, u(t) is a scalar control variable, A is a constant n X n
matrix, and b is a constant column vector.

It is assumed that the system (1) is completely controllable. This means
that for any initial state of the system there exists
closed finite interval of time [0, T] such that the state of the system arrives
at the zero state (x 0) at the time T. It is known [3, pp. 483-484] that
necessary and sufficient condition for complete controllability of system
(1) is that the vectors b, Ab,..., A n-lb be linearly independent, i.e.,

det [b, Ab, A n-l]
Single component regulation is defined as control of the system such that

one component of the state vector is transferred to zero in a finite time and
held zero thereafter. Multiple component regulation is defined as control
of the system such that more than one component of the state vector is
transferred to zero in a finite time and held zero thereafter. As an eamplc
of a particular type of multiple component control a time optimal mul-
tiple component regulation problem could be defined when u(t) is con-
strained in amplitude as follows: for any initial condition find a control
satisfying the amplitude constraint on the interval (0, such that the
components to be controlled are transferred to zero in the minimum time
such that they may be held t zero thereafter. The time optimal single

* Received by the editors August 28, 1962, and in revised form December 4, 1963.
Prepared under contrtct NASw-563 for the National Aeronautics and Space

Administration.
Minneapolis-Honeywell Regulator Company, 2600 Ridgway Road, Minneapolis,

Minnesota.
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component regulation problem was first discussed by Schmidt [5, pp. 40-69]
and was later treated by Harvey and Lee [1], [2], [4].
The definitions of single component and multiple component regulation

given above are somewhat ambiguous and are not mutually exclusive. It is
possible in some cases to state the same control problem as a single com-
ponent or as a multiple component regulation problem.. For example, con-
sider the system

Uo

The single component regulation problem of controlling xl is the same
as the multiple component regulation problem of controlling xl and x2
since x2 21, and a necessary condition for holding xl at zero is that
be held at zero. Thus, whether this particular control problem is viewed
as a single or multiple component regulation problem depends on the
desire of the analyst.
The following section is devoted to a constructive proof of this paper’s

principal result.
Given a multiple component regulation problem, there exists a linear trans-

formation of the state space such that the given problem is a single component
regulation problem in the transformed state variables.

This result makes possible the application of the theory related to time-
optimal single component regulation [1], [2], [4], [5] to time optimal mul-
tiple component regulation. Also, the result allows the control engineer
faced with a nmltiple component regulation problem to reformulate the
problem as a single input., single output problem with which he may have
more familiarity.

Development of transformations. Consider the following multiple com-
ponent regulation problem for the system (1). Suppose that the compo-
nents Xl, x., x, 1 =< m -<_ n, are to be controlled; i.e., given an
arbitrary initial condition x(0) x, find a control u(t), 0 <= t, depending
on x, such that the corresponding solution of (1) satisfies x(t) x:(t)

x(t) 0 for _>_ for some real number r which may depend on x.
For convenience the following notation is introduced. The vector x will

be partitioned into two vectors 1 and 2 with (x, x.,-.., x)’
and : (X+l, x+:, x)’ where’ denotes transpose. Also the vector
b will be partitioned into two vectors (b, b,..., b)’ and .

(b+l, b+:, b,)’. The matrix A will be partitioned into four sub-
matrices, A1, A., A, and A4 with A1 [a], 1 <= i <_- m, 1 __< j <__ m;
A2 [ai], 1 <= i <= m, m 1 <= j <= n; A [ai], m 1 <= i <= n,
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1 --<_j_--< m; A4 [ai],
can be written as

(2)

m-i- 1 __< i -< n, mq- 1 __<j =< n. Then (1)

Al "4- A "4- lU,- A -4--A42 -4- 2U.

The following theorem, which is evident fro.m an examination of (2),
is readily established.
THEORE 1. If the system (1) is completely controllable, then A and fl

are not both zero.
Proof. Suppose that A and t are both zero. Then it is easy to show that

the vector Ab has zeros for its first m elements, with k a nonnegative in-
teger. Thus the matrix [b, Ab, A’-b] has m rows of zeros and hence
its determinant is zero.

It may occur, as in the example cited in the introduction, that the con-
trol of ( may imply the control of certain linear combinations of compo-
nents of (. To examine this possibility, consider the requirement that
l(t) 0 for all >= T for some time T. From the system (2) it is clear
that for -->- T,

0 A. +
(3)

2 A42 - :u.
If 1 0 then A 0 for >__- T. Hence control to the subspace de-

fined by 1 0 implies control to the subspace 1 0 defined by 1 0
and A(. 0. may be obtained by adjoining to the linearly inde-
pendent elements of A2. The problem may then be restated with
and (the projection of x onto gl. 0) replacing and (. The matrices
A, A., As, A and the vectors 1 and . would of course have to be re-

placed with corresponding matrices and vectors. In case h 0, it is
clear from (3) that u -IA2/II , and hence

0. As in the case when 1 0 the problem can be reformulated with x
partitioned into vectors and .. These procedures may be repeated until
it is found that control to the subspace 1 0 does not imply control to
any smaller subspace. The number of reformulations is finite and is in fact
less than or equal to n m.
Now let us assume that the problem stated at the beginning of this sec-

tion is the result of necessary reformulations so that control to the sub-
space 0 does not imply control to any smaller subspace. This hy-
pothesis guarantees that

(4) 0,

To show this suppose that /1 0. Then, since the system is assumed to
be completely controllable, A 0, and control to the subspace } 0 ira-
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plies control to the smaller subspace, 1 0 and A22 0, which contra-
dicts our hypothesis. Thus/1 0 and hence AN BII’A:/]I fl 2, because
if this were not the case, control to the subspace 1 0 would imply con-
trol to the smaller subspace, 1 0 and (A.- fl’A2/ll 112)2 0,
which contradicts our hypothesis.
With (4) established, the system (2) will be transformed into a par-

ticular form, in which it is evident that the problem is a single component
control problem. Let z Sx where S is an n X n matrix partitioned into
the submatrices S, $2, $3 and $4 in the same manner that was used in
partitioning A. The matrices S and $3 are zero matrices of appropriate
size and $4 is the (n- m)th order identity matrix. The matrix S is
defined indirectly by defining a matrix denoted by $1-1 and the nonsingu-
larity of $1-1 is established in the next theorem.

TttEOREM 2. If the system (1) is completely controllable and (4) is satis-
fied, then $1- is nonsingular, where S- is defined as

S- [Am-lch, Am-Ch, "’", AI,
The proof of this theorem will be given following the proof of Theorem

3. Partitioning the vector z into m and n m vectors 1 and 2, the trans-
formation may be written as 1 S, . . The transformed system is

(5)
A -The matrix S has the property that S-, is a unit vector with its first

rn 1 elements zero. From this result and (4) it is clear that the first
m 1 rows of SIA. are zero and the last row is ’A/I . The matrix
S.,AS-1 has ones on the superdiagonal, the first column is a vector c,
and all other elements are zero, where the elements c satisfy

A cA1
i=l

From the form of (5) it is easy to establish the next theorem.
THEOREM 3. Regulation of z (the first component of z) is equivalent to

the regulation of .
Proof. Clearly, regulation of implies regulation of z. From (5),

z+ cz, k 1, 2, m 1. Therefore

Zk+l Zl
(k) Ck--jzl(J)

where z() denotes the flh time derivative of z. Thus 1 Cn be expressed
in terms of z and its first m 1 derivtNes and hence regulation of z
implies regulation of .

Proof of Theorem 2. From (4) it is clear that Afl is a multiple of
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for any n m vector . Let ’1" and /j denote m and n m vectors,
respectively, such that

AJb---I’l, for eachj __> 0.

By induction it cn be shown that

where is a scalar for k 0, 1, .-., j; 0 1, and A:? k+.
Denoting the matrix [1, AI, "’’, Alm-li] by M and the matrix
[b, Ab, An-b] by N, the determinant of N may be written as

Using (6), ghe Cayley-Hamilon heorem and he elementary properties of
determinants, ghis deerminan may be written as

de
where 0 is ghe m X (n m) magrix of eros. Thus ghe degerminang of N
is he produe of he determinants of M and . The deerminan of N is
nonero since he system (1) is assumed o be completely eongrollable and
hence ghe deerminan of M is nonero. Bu he deerminang of M is he
deerminang of S1-, so hag S- is nonsingular.

Remarks. If ft is go be held ero after ghe response ime T, ig is clear
from (5) ha for T,

(7)

and

(s)

u(t) -$’A2r.(t)/]] ]12,

=2 (A4 2’A:/]I 1 [12)’2
If the control u(t) is required to satisfy the constraint u(t) =< 1 for

all t, it is necessary to consider u(t) given by (7) and (8) with f:(T) being
the initial condition for (8). Satisfying the constraint imposes constraints
on the initial condition f.(T). It may occur that some constraints are of
the form n’i’:(T) 0, where r is a constant n-m vector. In this case the
control of f implies the control to the subspace, t’1 0 and .’i’2 0,
and the problem may then be reformulated to be control to this subspace.
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Conclusions. It has been shown that multiple component regulation
problems can be transformed into single component regulation problems
for linear constant coefficient systems with a scalar control input. This
permits one to view such problems as single input, single output control
problems. The development presented is of a constructive nature so that
the single output of the single component formulation of the regulation
problem may be determined explicitly.
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OPTIMAL PROGRAMS FOR AN ASCENDING MISSILE*

G. M. EWING AND W. R. HASELTINE:

1. Introduction. In 1919, R. H. Goddard proposed [1, p. 10] the problem
of minimizing the mass of a given propellant required to transfer a rocket
along a vertical path from. rest on the earth to an assigned maximal height.
He identified this as an unsolved problem of the calculus of variations but
attempted neither a solution nor a precise formulation.
Although this problem, in one version or another, has interested many

writers, no adequate treatment of any version has been published insofar
as the present authors are aware. The object here is to give one.

Literature on the problem suffers from the vagueness that plagued early-
day calculus of variations. Typical approaches equate to zero a formally
derived first variation of the initial mass, often without identifying the class
of function-triples (v,y,m) for velocity, displacement, and mass, in which a
best one is sought, or stating any restrictions on the drag D. Without es-
sential restrictions, there need not even exist an optimal program; without
such restrictions, one cannot hope to prove that a particular program, sus-
pected of being the best, does indeed have this property. One hopes that
such an approach will at least yield necessary conditions on a best program.
That it may not is pointed out in 13.
Authors have often overestimated the content of their work and others

have referred to this or that paper as a solution when in fact only super-
ficial aspects of the problem have been treated. For example, a system of
Euler equations and transversality conditions with as many parameters as
there are boundary conditions may be mistaken for a solution of the
original problem.

For an introduction to a wide class of problems for which the Goddard
Problem is a prototype, see articles by D. F. Lawden, G. Leitmann, and A.
Miele in [2] and [3], with the included bibliographies. The problems are in-
teresting, difficult, and tricky; they usually involve features not covered
by existing books on variational theory.
We mention the work of Miele and Cavoti, [3], [4], [5], on a generalized

Goddard Problem with bounded rate of mass-flow. Their mathematical
model, in contrast with ours, is a classical program of Mayer [6, pp. 187-190].

* Received by the editors in revised form December 19, 1963.
Department of Mathematics and Astronomy, University of Oklahoma, Norman.,

Oklahoma. The contribution of the first-named author was supported by the Air
Force Office of Scientific Research under grant AF-AFOSR-211-63.
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They recognize the need for sufficient conditions, that the real objective
is a global and not a local extremum, and show special cases, termed linear,
for which sufficiency for the global extremum apparently follows from
Green’s theorem. They do not mention the class of programs in comparison
with which this method identifies the best, nor examine the validity, for
their procedure, of the changes in independent variables that are required,
nor find conditions on drag D under which an extremum necessarily exists,
nor deal with sufficiency in general nonlinear cases.
We also mention the work of Pontryagin [7] and others. His Maximum

Principle is a necessary and not a sufficient condition. Our formulation of
the Goddard Problem admits functions with many discontinuities as do
the control problems of the Russian school, but our functional to be mini-
mized does not fall under existence theorems based on weak compactness
such as Theorem 1 of Lee and Markus [8], and certainly not under existence
theorems requiring equicontinuity.

2. Formulation of the problem. We use the particle idealization, a flat
stationary earth, and a uniform gravitational field. Like Hamel [9], Tsien
and Evans [10], and Leitmann [11], we use a single stage rather than the
continuous staging of Goddard’s original description and of Leitmann [12].
Suppose we are given the positive numbers g, c, M, Y, the nonnegative

number V, and a real-valued function D of v and y with suitable properties
to be listed later.
That an ordered triple (v,y,m) of functions on an interval [0,T] to the

reals is an admissible program will mean that the following conditions hold.

v is Lebesgue summable over [0, T].

(2.2) y(t) fo v(s) ds.

For all tl t2_ [0, T],

)( tl) t_ gtl Y( t2) t_ gt2re(t1) exp m(t2) exp
C C

(2.3)

(2.4)

"t- lftt D[v(t) y(t)] exp
C

v(t) q- gt
dt.

re(t) is monotonic nonincreasing.

For the moment, extend v by setting v(t) 0 for < 0 and v(t) V
for > T. As a consequence of (2.4) and (2.3), there is a possible countable
set of t-values, all on the closed interval [0, T], at each of which m has a

(2.5) v(0)= 0, y(0)= 0, v(T)= V, y(T)= Y, m(T)= M.
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negative jump and v a positive jump. Left limits re(t--), v(t-) exist
everywhere, as do right limits m(td-), v(tZr). Functions m and v are con-
tinuous except for the possible countable set.
We now adopt the convention that

m(0) m(0-), v(0) (0-),
(2.6)

m(T) m(T+), -v(T) v(T-).

Values re(t), v(t) at a discontinuity are of no consequence; the one-sided
limits are all that are needed and re(t), v(t) need not even be defined. It
simplifies the exposition, however, to regard re(t), v(t) as defined every-
where. In order to satisfy (2.3) and (2.4), without exceptions, we require
that

(2.7) m(t--)e(t-)/ m(t)e(t)/ m(t+ )e(t+).

Clearly (2.6) is no real restriction.
Henceforth, we always consider the common domain of v, y, m to be a

closed interval [0, T] of the reals, as already stated above (2.1). When we
mention re(t) or v(t), (2.7) is understood to hold. We shall also make
statements involving one-sided limits.

Since the derivative # of a monotone function m exists and is finite a.e.
(almost everywhere), it follows from (2.3) that also exists and is finite
a.e. and that

(2.8) m + ch d- D(v, y) + ng O, a.e.

This familiar equation is not very useful unless m and v are both AC (ab-
solutely continuous). Our m and v need not even be continuous, hence the
formal integration by which one is tempted to go from (2.8) to (2.3) is
not valid. The integral formulation (2.3) is essential in order to admit the
largest possible class of programs (v, y, m).
By the Goddard Problem we mean the following questions"
A Does there exist an admissible program Vo yo too) such that, in com-

parison with all admissible programs (v, y, m), m0(0) is the least value of
m(O).

(B) If so, what is the program (Vo yo too) and is it unique?
We are asking for the existence and characterization of the absolute or

global minimum.

3. Existence of a minimizing program. We require of D that its domain
consist of all ordered pairs (v,y) of reals, that it be of class C’ in (v,y), that
it be increasing in v for each y and nonincreasing in y for each v, that
D(v,y) > 0 for v > 0, and that D(O,y) O.
Denote by K the class of admissible triples (v, y, m). Clearly K is not
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empty. It is shown in 15 that, if (v, y, m) is any admissible program, there
always exists an admissible program (u, x, t) with u(t) >- 0 on its interval
and such that (0) =< m(0), with the strict inequality holding unless the
original v(t) is nonnegative. Therefore, in the search for a least value of
m(0), we need consider only the subclass K1 of K consisting of those triples
in K such that v(t) >- 0, or equivalently, such that y(t) is nondecreasing.
We henceforth use these properties of v and y without explicit mention of
the restriction to triples in K1.
The set of values m(0) for triples in K has an infimum M0 > M. There

necessarily exists a sequence (Vn, Yn mn) with domain [0, Tn], n 1, 2,
of triples ia K such that ran(0) -- M0 as n - . The sequence of numbers
m(0) necessarily has a finite upper bound
From (2.3) with t and t2 0, it follows that

m(t) exp
v(t) -k gt < m(0);

hence that v,(t) has an upper bound 17,
(3.1) l c log 3r/M.
With t, t2 in (2.3) replaced by 0, T, observe that the numbers T have

a finite upper bound ; otherwise mn(0) cannot be bounded.
As a consequence of 14, under the conditions on D stated above, the

total variation of v on [0, Tn] is below a real number depending on
I?, and but independent of n. We wish to apply a theorem of Helly [13,
p. 29] on sets of uniformly bounded functions of uniformly bounded varia-
tion. To that end, extend v to the interval [0, /’] by setting v(t) v,(T,)

V for > T,,. By the Helly Theorem there exists a subsequence of Vn
converging pointwise to a limit function v0 on [0, /]. The bounded sequence
T,, n 1, 2, may not converge but some subsequence will converge
to a limit To. Let v,,(t), [0, Tn], n 1, 2, now denote a sequence
such that 77Zn(O) Mo, Vn(t) --+ Vo(t) Oil [0, ], and T,, -- To.

Lebesgue’s Bounded Convergence Theorem applies to (2.2) with v. (s)
as integrand and we define y0 by the relation.

yo(t) ] Vo(S) ds, 0 <-_ <= "1’o.

The same convergence theorem then applies to (2.3), written for
y,,mn), and we define moby (2.3) with t To, t t, v Vo, and
y yo.

Since v, y,,,, m satisfy boundary conditions (2.5) it follows that the
respective limits Vo, yo, mo satisfy (2.5). Since m(t) is nondecreasing in t,
so also must be the limit too(t). Therefore (Vo, yo, m0) is admissible. Con-
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vergence of ran(t) to too(t) applies in particular for O, hence mo(O) Mo
and (Vo, yo, too) is a triple such that, among all admissible triples, it fur-
nishes the least possible value for n(O).

4. Additional restrictions on D. The Existence Theorem used results from
14 and 15 depending only on the mild restrictions stated at the beginning
of 3. Our sufficiency and uniqueness arguments require additional proper-
ties of D, which we state for reference.

Let h be a nonnegative constant and require of D(v, y), for v >= 0"

(4.1)
(4.2)
(4.3)
(4.4)

D(v, y) Do(v)e-,
Do is of class C", that is, Do" is continuous,

Do’(O) O,

Do" (v) + (1/c) Do’ (v) > O.

We anticipate that suitable drag-functions D, not exponential in y, can
be used with no change in our principal conclusions but the details will be
more complex.

5. Thrust-free flight. One type of optimal program (v0, yo, too) will in-
clude a coast after burnout. In studying this type of motion it is convenient
to shift the time-origin so that 0 now corresponds to the assigned terminal
values Y,V of y(t), v(t). The differential equations for motion with no
thrust are

(5.1) i; -g D(v, y)/M,

and the terminal conditions are

(5.2) y(0) Y > 0, v(0) V => 0.

Various existence theorems ensure that there is a pair of functions v, y
satisfying (5.1) and (5.2) on some maximal interval (tl, 0]. It is clear from
the form of (5.1), that if tl , then v(t) -- q- o and y(t) -- as
--+ t, and that there is a unique negative time Ta such that y(Ta) O.
If t > --, a case which occurs, for example, if Do(v) v + v for

v _>_ 0, there is then a number y such that v(t) + and y(t) y as-- tl from above. If y < 0, we again define T by the relation y(T) 0;
if y __> 0, we define Ta as t.

Let y , v q denote the solution of (5.1), (5.2) on the closed inter-
val [Ta, 0] or the half-open interval (Ta, 0], according as y(Ta) 0 or
T, t. Let F denote the oriented path in the (t, y) plane defined by
y ,(T) with the positive sense determined by increasing t.

6. An Euler equation. Set

(6.1) f(t, y, v) (1/c)D(v, y) exp
v q- g____t.

C
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An important role will be played by solutions of the Euler equation

d(6.2) d-t fv(t, y, )) f.(t, y, )),

in which subscripts denote partial differentiation.
Heuristic reasons for suspecting the relevancy of (6.2) to our problem

are found in such papers as [9] and [10], to which we are indebted. If we were
to replace our class of admissible triples by all triples (v, y, m) such that
and m are possibly discontinuous at take-off but are continuously differ-

entible everywhere else and if we require (2.2), (2.3) and (2.5), but not
(2.4), then the procedure of [10] yields (6.2) as a necessary condition on

and y for 0 < < tb burnout time.
If we add restriction (2.4) on m to those stated above, the problem of

minimizing m(0) can be expressed as a classical problem of Bolza [6, p. 189],
and (6.2) again appears, this time by way of the Multiplier Rule.
These remarks are suggestive but no more. Neither of the problems de-

scribed above is our Goddard Problem.

7. Some coasequences of 2, 4, and 6. Withprimes denoting differentia-
tion, set

(7.1) F(v) Do’ (V) -- Do(v)/c,

(7.2) G(v) vF(v) Do(v),

(7.3) H(v) F’(v) + F(v)/c.

From (4.1) and (6.1), Euler equation (6.2) is seen to be equivalent to
the system,

(7.4) tt(v) hG(v) gF(v)/c, ) v.

Conditions on drag D in 2 and 4 ensure that

(7.) D0(0) F(0) G(0) 0, H(0) > 0,

and that

(7.6) D(v,y) > O, F(v) > O, G(v) > O, H(v) > 0, for v > 0.

Moreover,

(7.7)

(7.s)

and

(7.9)

G(v)+ as -+,
F(v)/H(v) < c, G()/H(v) < cv, for v >__ 0,

F(v)/H(v) O(v), G(v)/H(v) O(v’), for small positive v.

When h(t) and O(t) both exist and are finite, then (2.8) is meaningful
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nd correct. If system (7.4) holds and v(t) => 0, we then find, with form
(4.1) for D(v, y), that

(7.10) czh --Doe-h m[g(D0p’ q- Do’/c) -+- hG]/H.

The right member is not positive and therefore

(7.11) h(t)

It can be verified that Euler equations (7.4) and trajectory equation
(2.8), taken together, have, as a first integral, the relation

(7.12) [G(v)e-’ mg] exp
v q- gt constant.

C

8. Construction of a field in the large. We use the time-scale of 5, in
which the interval for a triple (v,y,m) is [T,0], T < 0. The following condi-
tions on such an interval are equivalent to the defining properties (2.1)
through (2.5) of an admissible program:

(8.1) v is Lebesgue summable,

(8.2) y(t) Y ] v(s) ds,

(8.3) condition (2.3) for t, t. in [’, 0],

(8.4) m(t) is monotonic nonincresing,

(8.5) v(T)= 0, y(T)= O, v(O)= V, y(O)= Y, re(O)= M.

With Ta defined as in 5, let

(s.) t= o,
Define, with reference to 5 for ,,

(8.7) Uo(a)

(t),(s.s) x0() \y,

Denote by

0<a=< V/g.

T < a _< 0,
0 < <= V/g,

O <o<= V/g.

(8.9) v u(t, ), y x(t, ), ’ < o <= V/g,

a solution of system (7.4), and hence of the Euler equation (6.2), satisfy-
ing the conditions

(S.lO) u(t, ) u0(), z(t, ) x0().
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A sketch showing graphs of y x(t, a) intersecting r tangentially from
the left, for Ta < a < 0, and issuing from (t, y) (0, Y) to the left with
slopes V ag at (0, Y), for 0 =< a =< V/g, will clarify the above choice of
notation.
These remarks apply to both of the cases, y(Ta) 0 and y(Ta) > 0, of

5. In the first of these, extend the family (8.9) by including a Ta.
Standard existence theorems in the small for differential eq.utions en-

sure that a solution (8.9) exists for each a and for on some interval to
which t, is interior. For present purposes, restrict each such solution to a
time-interval terminating at t, as is customary in envelope theorems of the
calculus of variations [14, p. 131, pp. 140-141].

It is clear from the form of (7.4) and the first inequality (7.8) that
du/dt > -g. There are moreover positive numbers a and v such that
du/dt < -au if 0 =< u =< v ;hence if for any a on the interval (Ta V/g],
solution (8.9) could not be extended to an arbitrarily long interval (t, %],
we could reach a contradiction. We may also conclude that for a < V/g
and =< t, u(t, a) is positive and bounded from zero, and therefore that
there is a such that x(t, a) 0. Moreover it is easy to see that this can
be made to be as close to Ta on the left as we please, simply by taking a

suificiently close to % on the right.
Observe in particular of the family (8.9) that u(t, V/g)=--0 and

x(t, V/g) -= Y, -<_= 0, and that, for each such t, u(t, a) ---0 and x(t, a) ---+ Y
as a -- V/g. According to existence theorems for differential equations, u

and x are of class C’ in t, t, u0(a), x0(a) for a in [T, V/g] or (Ta, V/g),
depending on which case of 5 we may have. Moreover, t,, u0(a), and
x0(a) are continuous and continuously ditlerentiable in a with the excep-
tion of a 0 when the assigned terminal velocity V is positive, in which
event they are continuous and right a.nd left differentiable at a 0.
Denote by R the subset of the (t, y) plane bounded by the halflines

y Y, <= 0 and y 0, < Ta, together with the path P and, in the
event that y of 5 is positive, by the vertical segment T, 0 <_- y <= y.
The definition of R is completed by assigning to it all of its boundary
points except those on the possible vertical segment.

It follows from the properties of u(t, a) already discussed and the prop-
erties (7.5), (7.6) of F, G, and H that R is simply covered by the family
y x(t, a), except for the point (0, Y), which is the commot right terminal
of y x(t, c), 0 -<_: a .<= V/g. With. this exception, there is a slope-function
p such that p(l, y) xt(t, ) if y x(t, ,) is the unique member of the

filmily through (t, y) i. 1. p(t, y) is cotimlous in (t, y) in R, and its first

partial derivatives are contimous i R except along P ad curve Co"
y x(t, 0) (for V > 0).
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9. Invariance of the Hilbert integral. Let R1 denote R with the point
(0,Y) deleted. Let S1 denote the class of all piecewise smooth oriented
paths C: y y(t), that are contained in R1 with the positive sense on C
determined by increasing t.
The usual considerations show that the Hilbert integral

I*(C) f If(t, y, p) --}- ({l p)fo(t, y, p)] dt

is independent of the choice of C in $1 joining given endpoints so long as C
does not include points on both sides of Co "y x(t, 0). At points of Co, p
is continuous but, if V > 0, p has distinct one-sided derivatives.

Given a path C in $1 joining points on opposite sides of Co, one verifies
that there is a path C in S having exactly one point in common with Co
and such that I* (C1) I* (C). It follows that I* (C) has the same value
for all C in $1 joining points on opposite sides of Co.

Consider next two piecewise smooth paths Cl’y y(t) and C"
y y2(t) in R with the common endpoints (to, y0) and (0, Y). If C1 and
C2 coincide on some subinterval [t, 0] of [to, 0], then clearly I*(C)

I*(C). If not, let tn, n 1, 2, be a sequence in (Ta, 0) converg-
ing to 0 and such that yl(tn) 7 y(tn). If YI (tn) < y(tn), a line segment
of slope 2(tn) from [tn, y(tn)] to a point (tn*, Y), joined to the part of
C1 that terminates at [t,, y(t,)] defines a path Cln in $1. Construct sini-
larly a path C:n in S. Now I*(C1,) I*(C2n) by preceding results and, if
we let n - , we are led to the conclusion that I*(Ct) I*(C).

Finally let C be a path in R defined by the second component y of any
admissible triple. Since y is an integral (2.2) of a summable function v, we
know that y is absolutely continuous on its interval. Let C be a sequence
of piecewise smooth paths in R, coterminal with C and defined by func-
tions y, n 1, 2, converging in length to C. The difference I*(yn)

I* (y) is the sum of integrals,

f If(t, y., pn) f(t, y, p)] dt,

f [pfv(t, y, p) p,fv(t, y,, p,)] dt,

f {/[f(t, y., p) fv(t, y, p)] dt,

f (in ])fv(t, Yn, Pn) dt,

in which p and pn denote p(t, y) and p(t, y,) and for which the suppressed
limits are endpoints of the common interval of y and
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The various terms in f and fv are bounded, hence the first two integrals
converge to zero as n becomes infinite. The third integral tends to zero
since the second factor of the integrand tends to zero and its first factor is
summable. We reach the same conclusion for the last integral as a conse-
quence of the boundedness of the second factor and of the fact [15, p. 247]

convergence in length of y to y implies that f 7), 71 dt convergesthat

to zero. Therefore I* (Yn) "-’-> I* (y) and, since I* (Yn) is independent of n,
I*(yn) I*(y).

Integral (9.1) thus has the same value for all AC functions y defining
paths C in R having the same endpoints.

10. Further necessary properties of an optimal program. We require
that D have all properties stated in 3 and 4.
By 3, there exists a minimizing triple (v0, y0, m0); as a consequence of

15, v0(t) is nowhere negative. The principal results of this section are that
v0 and m0 are both necessarily continuous on the interior of their common
interval, and that y y0(t), T =< =< 0 is a member of a certain family of
extremMs.

Let C be a path defined by the second component y of an admissible
triple. As a consequence of 15 and 16, we may restrict attention to the
case in which C is in the subset R of the (t, y) plane introduced in 8. In
the light of 15, we need consider only the case in which y(t) is nondecreas-
ing. Let [T, 0] be the domain of y as in 5 and 8. We have remarked in
9 that y is AC on [T, 0].
With C fixed, there exists a path E coterminal with C, where E is de-

fined by y x(t, a), introduced in (8.9), for <= a and, in the event that
a < 0, E coincides with F for a =< =< 0. Denote by M0(C), Mo(E) the
respective values of initial mass corresponding to C and E by I(C),

I(E) the respective values of ] f(t, y, )) dt, where f is given by (6.1);

and by I*(C), I*(E) the respective values of the Hilbert integral. We now
prove that

(10.1) [M0(C) Mo(E,)]e/ fr E{t, y(t), p[t, y(t)], (t)} dr,

in which the integrand is the Weierstrass E-function,

E(t, y, p, ) f(t, y, ) f(t, y, p) () p)f(t, y, p).

By (2.3),
(10.2) Mo(C)egr/c= Mev/c + I(C),
and

(10.3) Mo(E)egrlc= Mev/c + I(E).
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Along E,, except at 0 and possibly at t,, (t) pit, y(t)]; hence
I(E) I*(E), while I*(E) I*(C) by 9. It then follows from (10.2)
and (10.3) that [M0(C) Mo(E)]er/c I(C) I*(C), and this is
relation (10.1).
The E-function, interpreted relative to the indicatrix z f(t, y, v) in

the (v, z) plane for each fixed (t, y), [16, p. 77], is the difference between
the ordinate to the indicatrix and that to its tangent line for v p(t, y).
Since fv H(v) exp I-by -t- (v gt)/c] is positive for all nonnegative v,
the integrand in (10.1) is nonnegative on [T, 0] and indeed strictly positive
on a subset of positive measure of that interval unless C andE are identical.

It then follows that

(10.4) Mo(C) > Mo(E) if C

As a consequence, the first two components of the minimizing triple
must be in the on.e-parameter family (8.9); the third component is then
given by (2.3). According respectively as T < a ._<- 0 or 0 < a =< V/g,
v0 and m0 will have a single discontinuity at T or discontinuities at both T
and 0.

11. Characterization of the optimal program. It remains only to mini-
mize Mo(E) with respect to the parameter a.

Symbols u(t, a), x(t, ) are as defined by (8.9) if ___- 0; if a < 0, we
interpret u(t, a), x(t, a) as the extensions described preceding (10.1).
Thus y x(t, a), possibly extended, determines the path E and, if c < 0,

E coincides in part with r.
We have remarked in 8 that u(t, ) is, for a V/g, always positive,

hence the relation x x(t, a) determines t(x, a). Define w(x, o) as
u[t(x, ), a]. Then w(x, a) > 0 if x < Y. Moreover if the terminal velocity
V is positive, w(x, ) is bounded from zero, while if V O, w(x a) be-
haves like x/Y- x for x near Y. Also define (x, c) as m[t(x, c), o].
Thus t, w, and are functions of (x, ) for 0 -< x =< Yand Ta N c

< V/g, with

Y

(11.1) t(x, o) f dz/w(z, a),

(11.2)
(x, a) exp

v(x, .) + et(z, o)
C

Me’/zr (l/c) f" f(t, z, w) dz/w(z, a).
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Using the time scale of 8, denote by T the negative time such that
x(T, a) 0. Thus T t(0, a) and dT/da t(O, a). Subscript a on
t, w, or denotes partial differentiation.
From (11.1),

t(o, o) (z, o) dw/w(z, o).

Observe that (0, a) Mo(E). We find by differentiation of (11.2)
with reference to 7 that

Y

(11.3) tt(O, a) (1/c)e-"’r’/ fo [G(w)e-x tg](w’/w) cxp W q-c gt_ dy.

For Ta < a < V/g, we have Ta < t =< 0. Also w(z, a) 0if
,(t) < z < Y, while w(z, a) < 0 if 0 < z < 3’(t) hence the upper limit
of the integral (11.3) can be replaced by "Y(G). The statement about the
sign of w may be justified as follows" First, dw/dx (1/u[t(x, a), a])du/dt,
since u is nowhere zero for a < V/g. Secon.d, at x 3’(G) for T < a < 0,
dw/dx > O’f(t(x, a))/Ox, because rh < 0 alongy x(t, a); and d3,(G)/da
(t) >0forT<a <0;whilefor0 _<- a < V/g,w>Oatx y. Then
(7.4), (7.9), and (4.2), together with standard theorems, ensure that w
exists in the interior of R, except along Co where the right and left deriva-
tives exist, and furthermore that w < 0.
As.a consequence of (7.12),

11.4 [G(w) e--x tgl exp
w q- g_____t

C

is constant for 0 < x < -(t). As x -- 3,(t)-, t(x, a) -- Me+’ or M ac-
cording as 0 <- a < V/g or T, < a < 0 respectively; hence [(t)-, a] is
monotonic increasing in a.

Now from (7.2), (7.3), Gv vF’ q- F Do’ v(Do" q- Do’/C) q- Do/c.
Hence, by (4.4) and (7.6), Gv > 0 for v > 0. At t, d4//da < 0, and x is
positive for Ta < a < 0, and zero for 0 < a < V/g. Thus the value of
G(w) e-hx at x v (t) is a monotonic decreasing function of a, which
is zero at a V/g. For a sufficiently near V/g, the bracket in (11.4) is
negative for all x on the interval (0, v(t) ).

It may happen that for some a0 between T and V/g, the bracketed ex-

pression vanishes for x v(t). It is necessarily so if the yl of 5 is posi-
tive. Whenever there is such an a0, the integrand of (11.3) is positive or
negative for 0 < x < /(t) according as a > a0 or a < c0. If there is no
such a0, the integrand is positive for all a > Ta and Mo(E) assumes its
smallest value at a T.

In any event there is a unique a, corresponding to which Mo(E) is a
minimum.
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12. The zero-drag case. This essentially trivial and well-known case is
excluded by (4.4) from parts of our theory. If D(v,y) 0, the path F of
5 clearly exists and can be extended downward from the summit arbitrarily
far. From (2.3) with D(v, y) O,

(12.1) m(0) M exp
V+gT

For any admissible program (v, y, m) such that y is not identical with 7,

the time of flight will exceed the positive number --Ta It follows that
(12.1) is a minimum if and only if a Ta.

13. Description of the optimal program. If there is no drag or if the as-
signed height Y and the effect of drag are small enough, the optimal pro-
gram consists of an initial boost from v(0) 0 to v(0) > 0 followed by a
coast to height Y and velocity V.

If this case does not occur and if, for a given Y, V is small enough, the
minimizing program consists of an initial boost followed by a propulsive
phase in which the Euler equation (6.2) is obeyed and then a coast. For
V 0, this is the case exhibited by Tsien and Evans [10] without using a
monotonicity restriction on m or any restrictions on D or showing for any
class of programs including this m that it is the best.

If both Y and V are large enough the best program consists of an initial
boost, a variable thrust phase subject to (6.2) and a terminal boost at
height Y with no coast.
The three cases correspond respectively to o Ta Ta < oo <= O, and

0 < ao < V/g.
In variational problems without side-conditions that introduce bound-

aries in function-space or otherwise restrict the functions that are admitted,
stationarity is a necessary condition on whatever it is desired to minimize.

In the present problem, consider a particular case for which the minimiz-
ing program has a coasting phase covering the altitude range
0 < yb < y =< Y, where yb is the burnout altitude. By regarding t, v, m as
functions of y, and then allowing variations of v on y < y < Y, it is easy
to construct a family of varied admissible programs depending on a parame-
ter b, such that the minimizing program is that member of the family speci-
fied by b 0, changes in t, y, m are uniformly small of first order in b, and
dm(0, b)/db [=0 > 0. The solution program, in other words, is not even
weakly stationary.

14. Velocities of bounded variation. This section together with the next
two contain results already used at crucial points in the theory. In this sec-
tion drag D is required to have the properties stated at the beginning of
3. We show that if (v, y, m) is admissible, then v is a function of bounded
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variation. We use the time scale of 2, hence the domain of v, y, and m is
an interval [0,T].
Given a triple (v, y, m) satisfying (2.1), (2.2), and (2.3), together with

numbers tl, t2 on [0, T], then re(h) in (2.3) increases strictly with m(t2).
If (v*, y*, m*) also satisfies (2.1) through (2.3) with v*(t) =- v(t) on

[tl, t2] and y* (t2) y (t), then by (2.3),

m (tl)_ m(h)_ 1 1 1

14.1
--Iv(tl) + gh]

exp ft D (v, y) exp
v -Jr- g_t_ dt.

C C

If h < t and if m(tl) _>- m(t), m*(t.) <- m(t.), and v(t) >= 0 on the open
interval (h, t), it follows from (14.1) that

(14.2) m*(h) >= m*(t).
We also obtain this conclusion in the form

(14.3) m*(tl) >= m*(t--),
if t in the hypotheses above is replaced by t-, that is, if the hypotheses
are in terms of left limits at h.

Let (v, y, m) be admissible in the sense of 2. Suppose that h < t and
v v(h) > v(t.) v2.Then

(14.4) vl v < ce-V21C(elc e2Ic).

By (2.3) the difference in the parentheses on the right of (14.4) is the sum
of three terms At, A, Aa, where

m(t)1 v(t.) -I- g(h h)A 1
re(h)

exp
c

A2 e2/[eo(t-t)/- 1],
t21 -or lA. cm(h)

e D(v, y) exp
v -t-c gt dt.

A1 is negative. If v(t) is negative, v is also negative on some maximal open
interval to the left of t., say (t, t). With this choice of h and t, Aa is
negative. (For our conditions on D stated at the beginning of 3 require
that D(v, y) < 0 if v < 0.) Then

v- v < ce-’ A. < cer/.

Hence v is bounded below. It is even easier to see that v must be bounded
above for m to exist almost everywhere. Let 1) be an upper bound of v 1.
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Let lc sup D(v y) for Iv < , [y[ < T. Again taking q < tz,
v(t) > ,(t), we find by estimation of A and A tha

(14.5) v v < g + M]
exp

c
(tz tl).

In the event that v < v, one finds by similar rgument that

2V+ gT M.(14.6) v- v < {lc(t- t) + c[m(t) m(t)]} exp
c

It follows from (14.5) and (14.6) that the total vrition of v on [0, T] has
bound depending only on m(0), , nd T in addition to the constants

g, c, nd M.

15. limination of negative velocities. Conditions on D re those stated
in the opening pmgmph of 3.

Let (v, y, m) be dmissible in the sense of 2. Since y is continuous on
[0, T], there is least vlue of such that y() Y. Then v(-) 0
ndy(t) < Yift < .
Suppose that there is vMue ta in (0, ) such that V(ta) < 0. There is

then least vMue t of t, 0 t < ta such that y(t) hs its mximum wlue
on the interval [0, ta] at t. Then v(t+) O, but v(t-) 0, hence
v(t) 0. Clearly y(ta) < y(t) < Y nd y(t) y(t) if is in the closed
interval [t, t].

There must also exist lrgest vMue t of such that y(tz) y(q) and
y(t) y(t) for t t2. Then v(t-) O.

Consider the function v,

v(t), 0 t.,(15.1) v(t) v(t %- tz -), t < T-- (tz- t).

Then define y(t) by (2.2) nd m(t) by (2.3). It follows that y nd m
re related to y nd m respectively in the same way that v is related to
in (15.1).
The step from (v, y, m) to (v, y, m) consists of deletion of the half-

open interval (q, t], followed by drawing together the separated prts of
the xis nd replacement of the original interval [0, T] by shorter interval.
We wish to show that

(15.2) m(t) < ,z(t).

If v(t-) > 0, there is n open subintervM (t, t) of (q, t) such that
v(t-) 0 nd on which v(t) is positive. By (2.3),

(a5.3) m(t- > m(t+ exp
’(t+ ).

C
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If v(t2-) 0, then

(15.4) m(t-- m(t+ exp v(t.-t-___),
c

and there is an open subinterval (t, t) of (t, t) for which, again,
v(t-) -< 0 and on which v(t) is positive. By (2.3),

(15.5) m(t--) > m(t4--).

From monotonicity of re(t),

re(t4-) >= m(t- ),(15.6)

and, in either case,

(15.7)

Hence

But

m(t-- >= m(t.-- ).

v(t+)

(15.9) m(t) m(tz+ cxp
v(t:+

c

and (15.8) and (15.9) imply (15.2). We note that m(t) m(t + t t)
on tl <, _-< T (t tl), and m(t) < re(t) on 0 _-< =< t:. In particular,

(15.10) m(0) < m(0).

If all negative values of v(t) happened to occur on the deleted interval
(t, t], so that v (t) => 0 on its interval, we could then identify (v, yl, m)
with (v*, y*, m*) of 14, let the interval It1 t2] of that section be any sub-
interval of the present [0, t], and conclude with the aid of (14.2) that
(Vl, y, m) is admissible; hence, by (15.10), (v, y, ml) would be a better
program for our idealized missile than (v, y, m). More generally, if negative
values of v(t) could always be enclosed in a finite number of half-open sub-
intervals of [0, T], we could apply the above procedure to the leftmost,
then to the next one to the right, etc. After a finite number of steps--say
Nwe could have an admissible triple (v, y, m) such that Vv(t) is
never negative and mv(t-) m(t). In particular, and with convention
(2.6), m(0) < m(0). The remainder of this section is concerned with the
difficult cse in which there arc infinitely mny deleted intcrvMs.
One verifies that no two such intervals hve a common point, that in-

deed any two re separated by a positive distance. Since they are all sub-
intervals of [0, T], they are dcnumerable. Let J (tl, t2n] be a fixed
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sequentialization of these intervals, n 1, 2, .... There is in general no
leftmost J if J1 is deleted to obtain (vl, y, ml), then ml may not be
monotone.

Let E {t’0 <= <= , v(t) < 0}. Clearly E t.J Jn. Let A, Bn and
B respectively denote the characteristic functions of Jn, [.Jl Jm, and
U1 J Then B -+ B as n --+ . Let

r,(t) Jo [1 B(s)] ds, r(t) Jo [1 B(s)] ds.

Function r is nondeereasing and absolutely continuous on [0, T], hence,
with denoting r(T) and with r on the interval [0, ], the equation r(t) r

holds either for a unique or for all on an interval. Let t(r) be the single-
valued inverse of r(t) obtained by assigning t(r) the leftmost solution of
r(t) r. Thus t(r) increases with r, has a possible countable set of dis-
continuities, and is everywhere left-continuous on [0, ]. We observe that
r[t(r)] r, nd tit(t)] t, with equality holding in the latter if

[0, T] U J. If U J, then t(r) has no solution.
Define

(15.11) u(s) v(t(s)).

If t(s) is not the left endpoint t,. of some J, t(s) is continuous at s, und
u(s,-) v(t(s,)-) v(t(s)+) u(s,+). If t(s) is a left endpoint
t, of a J, t(s,+) t. Then, since t(s) is left-continuous, u(s-)

v(t(s)-) v(t), and v(tn) v(t:) v(t(s,+)) U(S,+).
In any case,

(15.2) u(s,- u(s+ ).

Since v is, by 14, of bounded variation, so is u, which is therefore sum-
able on [0, ].

Define

(5.a) () Jo u(s) ds.

Then by [17, }33.3, }35.3, 38.1],

x[(t)] J, u[t(s)][1 B(s)] ds

Jo v(s)[1 B(s)] ds.

If [0, T] U J, then x[r(t)] y(t).
Set

F(r) 1 u(s) : gsD[u(,) ,(s)] exp [1 B(s)]
C
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Then

l ftT I V(S) + gT(S)] [1-- B(s)] ds.Fir(t)] - D[v(s), y(s)] exp
c

Define a mass-function by (2.3), namely by the relation

(15.14) g(r) exp
u(r) -t- gr M exp

V -t- g + F(r).
C C

We can also define tn(T), an(8), Xn(T), Fn(T), and tn(r) relative to
rn(t) and Bn(t) in exactly the same way as t(r) through t() are related
above to r(t) and B(t). All statements above covering the latter hold for
the corresponding expressions with index n.

However, function u has the property, not shared by Un, that u(r) >= 0
for 0 =< r __< r(). Fort [.J J,, Tn(t) ----> T(t) and Un[rn(t)] u[r(t)]

(t).
Since v is bounded, the integrand of Fn is bounded uniformly in n and

converges to that of F. By the Bounded Convergence Theorem,- [(t)] as n -- .Now if [Jl J, tl(r(t)) <_- re(t), and in particular, tl(0) < m(0).
Similar statements may be made of the relation of each (tn, ), n 2, 3,

tO its predecessor. Hence, for [J J
(15.15) t(r(t)) <= re(t),
and

(15.16) g(0) < m(0).
Though the gn (S) may not be nonincreasing in s, we proceed to show that

(s) is.
If <_- _-< , then g(t) m(t -4- T -) and is nonincreasing on [,

as a result of that property of tn on the corresponding t-interval. If
0 =< r < e, rx < r2 =< and u(rl) 0, let min (, .). Then

#() g(ra)exp u(ra) -4- (ra- r)g A-[F(’l) F(ra)] exp--gr.
C C

Since u(t) >= O, it follows that F(r) >= F(r), hence that g(rl) _-> g(ra)
>_- g(2). With , 2 as last stated and u(r) > 0, let ta be the supremum
of thosetsuchthatt(rl) < =< Tandsuchthatift(r) =< t’ < t, then
v(t’) > 0. Set tl t(r), t2 t(r2). Now ta Torv(ta) 0orboth;
hence tl < ta, [t, ta] f’l [J Jn) is empty, and v(t) > 0 for all on the interval
tl =< < ta. If t2 =< taor ta >= orboth, then r(t) (6) t- 6for
t =< =< t2. M:oreover

#[r(ti)] exp
v(h) -f- gti g[T(t2)] exp

v(t2) + gt2 {F[r(t)]- F[r(t)]},
C C



8 G. M. :EWING AND W. R. HASELTINE

and

[r(t)] _-< m(t).
Moreover, if t <- t, v(t) > 0 on [tl, h), and, just as we deduced (14.2),
we find that u(r) [r(h)] >= u[r(t)] u(r). If, on the other hand,
t > ta, then v(h) 0. With r r(h), we have already proved that
u (ra) _-> u (r), while u(r) >- u (r) by the immediately preceding argu-
ment. We have thus shown in all cases that

(15.17) #(r) >__ (r), 0 _-< r -_< r =< .
If defined in the opening paragraph of this section is T, the discussion

is complete. It remains to consider the ease < T, in which ease either
u(r) 0 on (, ) or u(r) is positive for some r and negative for some.
The eases u(-) <__ V and u(-) > V are handled separately.

In the first case let r be the supremum of those r such that -< r =<
and u(r) -<_ u(- ). We have immediately that e =< r =< , that u(r-
=< u(e-), and that (r-) -< (-). If r < , u(r) is nonnegative on
(r, ), and therefore (r-) exp (u(r-)/c) > Me/. If, on the other
hand, r , there exist r, r, with =< r. < ra -< rl, such that
u(r.- =< 0, and u(r) is nonnegative on (r., -). Hence

(-) >-(r-) > (ra-) >= (r-) M exp

In any event, we have, for this case

(15.18) #(--) exp
u(-) > Me.

C

V

0_-<r<r2;

on r<= r-<-- r2+ S.

g( r) U( r), on

() (-(- )),

If we define (r) u(r), a(r) x(r) for 0 -<_ r < , and () V,
9() Y, () M, and if p(r) is then calculated from (2.3) for
0 -<_ r < , the triple (g, , ) is admissible and p(0) < (0).

In the second case V < u(-). Then we cannot without contradiction
have - _-< M. We attempt to replace all of the program for r > and
part of it for r < with a coasting phase at mass M. There is a least rl

such that u(r) > 0 for r on (rl, ), and on this interval we may use x as
independent variable instead of r, with x on (x(rl), Y]. Let w w(x),
x _-< Y, be the velocity for a coasting trajectory, at mass M, which ter-
minates at x Y with velocity V. We seek a pair x2, r2 with
x(ri) _-< x < Y, 0 -_< r. < r, such thatx2 x(r.)andu(r.-) <= w(x).
Such a pair always exists. Take x., r to be the pair of largest such values.
Set s(x) f: dz/w(z), and s(Y) S. Therefore on [0, S] the function s
can be inverted to give x s-(s). Let
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Then define

2(r) fo t(s) ds,

and p(r) by (2.3), as usual, taking p(r -}- S) M. By now familiar
methods it may be shown that (, 2, p) is admissible and that p(0) < (0).
We have now completed the proof that to any admissible program with

its velocity function v anywhere negative there corresponds at least one
other admissible program having nonnegative v and a smaller initial mass.
In seeking a minimizing program we may confine our attention to programs
with nonnegative v.

16. Admissible trajectories are on one side of F. In this section we again
impose the conditions on drag D stated at the beginning of 3. It is con-
venient to use axes in the (t, y) plane which are oppositely directed to those
used heretofore and with the origin at the point called (T, Y) in 2 or (0, Y)
in 5. The trajectory F of 5 now issues from the origin into the first quad-
rant and is convex. The region R of 8 now lies to the right of F and between
the lines y 0 and y Y. Properties (2.1) through (2.4) of admissible
programs now apply as stated with the one exception that g in (2.3) is
replaced by -g. For tl 0, t. t, we have from (2.3) that

v(t) tre(t) exp
C

(16.1)
MexpV nt 1 ft D(v, y) exp

v(s) gs ds.
C C C

The boundary conditions (2.5) are now

(16.2) v(O)= V, y(O)= O, m(O)= M, v(T)= O, y(T)= Y.

As a consequence of 15, we can restrict attention to admissible triples
(v, y, m) such that v(t) >= 0 on [0, T].
The thrust-free trajectory of 5 now satisfies the equations

(16.3) it g-t- D(u, x)/M, 2 u,

nd the initial conditions

(6.4) (0) 0, u(0) v -> 0.

System (16.3), (16.4) has a solution x, u on a maximal interval [0, tl),
and either this interval includes a value To such that x(T0) Y or there
is a value y <= Y such that x(t) -- yl and u(t) --+ as -- tl.

Given an admissible triple (v, y, m), suppose there is a value t2 in [0, T)
such that y(t) > x(t.). Clearly t. 0 and, since x and y are continuous,
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there is a < t2 with y(t) > x(t) on (t, t2) If t3 is the infimum of such t’,
then y (t3) x (t3) and v (t+ >__ u (t). Set

(16.5) 7(t) v(t+ u(t).

Case 1. v(t---) u(t.). Since y(t) x(t) > 0 for in (t, t) and arbi-
trarily near t, there exists t4 (t, t) and arbitrarily near t such that
Y(t4) u(t4). With t4 having these properties fixed, define t5 as the infimum
of those satisfying the relations t __< -< t4 and 7(t) >= 7(t4). Clearly
t < ts, while 7(t5) 7(t4) as a result of the fact that 7 can have only nega-
rive iumps; therefore t3 < t5 _<_ t4.

Observe that

I v(t+)_ exp u()17(t5) < c exp
c

and that, by (16.1), the right member can be expressed in the form

gt(16.6) exp -- F(t, t),

where

n(t) 1 u(t) tFl(t, ts) --c 1
m(t)

exp
c

F(t3 t)
Mm(t) Jr3

D (v, y) exp V gt
dt,

C

F3(ta, ts)

1 ft
t

F4(ta,t)

[D(v, y) D(v, x)] exp
v gt

dt,
C

[D(v, x)e D(u, x)e/]e-tu dt.

Each of the first two terms in (16.6) is at most zero. On [t, t], y(t) x(t)
< 7(t) (t t), hence the third term is below lc(t t.)27(t)/M, where
lc denotes the product of exp /c, in which l? is an upper bound for v(t),
times the supremum of [D(v, y) D(v, x)]/(y x) on the class of all real
values of x, y, v such that 0 <_- x y Y and 0 <= v <__ 17. Similarly the
fourth term is dominated by lc(t t)7(t)/M, where k is the supremum
of [D(v, x)e/ D(u, x)e/]/(v u) on the class of real triples x, u, v
satisfying the conditions 0 <_- x <-_ Y, u v, and 0 <_- u, v <= max [I?, u(t:)].

It follows that

(16.7) e-t7(t) < (Tk + k.) (t5- t)7(t)/M.

Now kl and k. do not involve t. Recall that t4 is arbitrarily near t and
ta < t __< t. We are therefore free to suppose that t4 has been so chosen
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that (Tkl - k2) (t5 t3)/M < e-gt/. Relation. (16.7) is then a contradiction
and we infer that there can exist no t2 in the half-open interval [0, T) satis-
fying the relation y (t.) > x (t2).

Case 2. v(t3+) > u(t3). A similar argument leads to a similar contradic-
tion.

17. Concluding comments. It may be of interest to record that the
authors, first singly and more recently in conjunction, have had troubles
with one corner or another of this problem over a period of years. It has not
been possible as yet to find the solution if restriction (4.4) is essentially
relaxed, or to solve the problem if v(0) is specified to be greater than that
of the minimizing solution of the present case. An encompassing theory of
global extrema for the class of problems mentioned in the introduction
would clearly be desirable but this appears to be well beyond reach.

If one wishes to place a bound on the rate of mass-flow and yet to admit
the largest class of programs (v, y, m) with this restriction, simply add a
Lipschitz condition on m to our (2.1) through (2.5). The limit function
m0 in our existence theorem then necessarily satisfies the Lipschitz condi-
tion and we have an existence theorem as a corollary to 3. Characterization
of the minimizing triples (v0, y0, m0) among all those now admitted will
of course involve considerable work. Triples (v, y, m) are now all AC but
not in general piecewise smooth. [4] and [5] suggest important parts but by
no means all of a solution of this characterization problem.
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OPTIMAL PURSUIT STRATEGY PROCESSES WITH RETARDED
CONTROL SYSTEMS*

M. NAMIK O(UZTORELI
Summary. Recently D. L. Kelendzheridze [4, 9] investigated an optimal pursuit

problem for systems described by ordinary differential equations. We present here
an extension of his results to systems described by linear differential-difference equa-
tions with retarded argument, the control functions and the initial conditions being
allowed to vary in given closed compact and convex sets. We also establish here
generalizations of some of the results of J. P. LaSalle [5], L. W. Neustadt [6] and the
author [7].

1. Introduction. We consider two control systems X and Z, given, in the
n-dimensional phase-space, by linear differential-difference equations
with retarded argument of the form

(1.1) x’(t - c,) - Ai(t)x(t - c) A(t)u(t),

(1.2) z’(t -- d) - B(t)z(t + d) B(t)v(t),
-----0

d
where is a real variable (time), c and d.(i 0, 1

dt
j 0, 1, ,/) are given constants such that

(1.3) 0 Co cl c and 0-- do dl d,

A(t) and B(t)(i 0, 1, m;j 0, 1, ,/) are given n X n con-
tinuous matrix functions, A (t) is a given continuous n X r matrix func-
tion, B(t) is a given continuous n X s matrix function, x(t) and z(t) are
n-dimensional vectors which describe the states of the control systems X
and Z, respectively, at time t, u(t) is an r-dimensional vector function.
controlling the motion of the system X and v(t) is an s-dimensional vector
function controlling the motion of system Z. The components of u and v
will be denoted by u, u and vl, v,, respectively.

Let U be a set of r-dimensional vector functions u(t) piecewise con-
tinuous on each finite interval [to, t] and V be a set of s-dimensional vector
functions v(t) piecewise continuous on each finite interval [to*, t]; U and
V are the "control regions" for the systems X and Z respectively. We shall

* Received by the editors October 1, 1963 and in revised form December 31, 1963.
Department of Mathematics, University of Queensland, St. Lucia, Brisbane,

Australia.

89



90 M. NAMfK O6UZT6RELI

suppose the U and V are closed, compact, bounded, convex and contain
the origin. Vector functions u(t), defined in U, and vector functions v(t),
defined in V, will be called admissible control functions for the systems X
and Z respectively.

Let be a closed, compact, bounded and convex subset of the set of all
real-valued n-dimensional vector functions (t), continuous in the initial
interval to <= <- to c, and having the property

(1.4) (t0) x0,

where x0 is given. The elements of the set will be called admissible initial
conditions for the system X.

Similarly, we shall denote by ,I, a compact, closed, bounded and convex
subset of all real-valued n-dimensional vector functions (t), continuous
in the initial interval to* <= <= to* + d and having the property

(1.5) k(t0) z0,

where z0 is given. Functions (t) which belong to the set will be called
admissible initial conditions for the system Z.
A solution x(t) of the system (1.1) which satisfies the initial condition

(1.6) x(t) (t), to <- <= to + c,, ,
obviously depends on the choice of functions u(t) and (t). To indicate
this relationship explicitly we shall denote by x(t, , u) the solution of 1.1
satisfying the initial condition (1.6) with the selected control function
u u(t). It is well known [1] that there is a unique continuous solution of
(1.1) for >_- to which satisfies the initial condition (1.6).
A continuous solution z(t) of the system (1.2), with the selected control

function v v(t), which satisfies the initial condition

(1.7) z(t) b(t), to* <-_ <- to* - dk, b 9,

will be denoted, as above, by z(t, , v).
The system X will be called the pursuing system and the system Z the

pursued system.
For an arbitrary admissible control v(t) and arbitrary admissible initial

condition k(t) let us assume that there exists an admissible pair u(t) and
O(t) such that the trajectories x(t, , u) and z(t, , v) of (1.1) and (1.2)
corresponding to the controls u, v and initial conditions , , respectively,
satisfy the equation

(1.8)

for some

(1.9)

x(T, , u) z(T, , v)

T > max [to--c, to* --d]
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(1.10) x(t, , u) z(t, , v), < T.

The quantity T depends on the chosen controls u(t) and v(t) and the
chosen initial conditions (t) and (t); therefore we may write
T T(u, ; v, b). This time T will be called the pursuit time.

If an admissible pair v (t) and b (t) for the pursued system Z is chosen,
the pursuing system X should be controlled in such a manner that the
corresponding pursuit time T(u, ; v, ) will assume its minimul vlue.
Denote it by

(1.11) T, min T(u, ; v, q).
uEU,E,

The system Z should choose an admissible pair v(t), (t) which maximizes
the quantity T,. This maximum will be denoted by

(1.12) T max min T(u, 4; v, ).
E,,’ E uEU,E

In the present paper, we wish to investigate the following optimization
problem.

Find the admissible controls u(t) U, v(t) V and the admissible initial
conditions , Tfor which the corresponding pursuit time T(u, ; v, )
satisfies
(1.13) T(u, ; v, ) T.
The above problem for systems X and Z involving no time delay has

recently been considered by Kelendzheridze [4]. His main objective is
Pontryagin’s maximum principle. We shall follow here a method which is
a synthesis of that used by Kelendzheridze and another developed by
LaSalle [5] and Neustadt [6]. This method has been used recently by the
author [7] for a time optimal control problem with time delay.
We shall generally assume, as mentioned above, that the sets U and V

are bounded, closed, compact, convex and contain the origin as an interior
point. Particularly, we shall consider the case in which U and V consist of
piecewise continuous vector functions such that

U: {]u(t)! <= 1, i- 1,2,...,

V: ll v(t)l 1, j 1, 2,... sl.
We shll generally suppose that the sets , and I, of continuous initiM

conditions are closed, compact, convex and contain the origin as an in-
terior point. Only in 5 shall we consider a special case in which the sets
and will consist of piecewise continuous functions such that

I," {l(t)l -< 1, to <_- <= to -t- c, i 1, 2,.--, n},
(1.15)

I," /l(t) <-- 1, to* <= <- to* -- d, i 1, 2,... n}.
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Note that, if the retardations ci and d in (1.1) and (1.2) all approach
zero, our optimization problem reduces to the problem which is considered
by Kelendzheridze.

2. The functionals 2*(t, , u) and O*(t, , v). Let V(s, t) and W(s, t)
be Bellman-Cooke kernel matrices [1] of the systems (1.1) and (1.2) re-
spectively, and H(s, t) and K(s, t) be the kernel matrices, introduced by
the author in [7], of the homogeneous systems

k

(2.2) z’(t + d) + B(t)z(t + d) O,
j=0

which correspond to (1.1) and (1.2) respectively.
Consider now the functionals

.
(2.3) o(t, 4,, u) Ja H(s, t) (s) ds + J V(s, t) A(s) u(s) ds

Ild

(.) o(t, , ) j K(, t) () d + J W(, t) B() (s) ds,

where

(2.5) a t0, b t0 + c, c t0*, d t0* + d.

As is shown in [7], we have the following representations of the solutions
x(t, , u) and z(t, , v).

(2.6) x(t, , u) *(t, , u), z(t, , v) O*(t, , v),
where

(2.7) *(t, , u) (t c, , u), O*(t) O(t d ., v).

From (1.8) and (2.6) we can write

(2.s) u*(T, , u) O*(T, , ,),

where T is the pursuit time, defined in 1. Obviously, T T(u, ; v, ).
By its definition, T is single-vMued.

Consider now the sets

(2.9) c(t) (u*(t, , u); , u v,
and

(2.10) E(t) {O*(t, , v); , v V}.

(2.1) x’ (t -t- c,) + _, A(t)x(t + ci) O,
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In the remainder of the discussion, we shall need the following properties
of the sets C (t) and E(t), proved in [7].

I C and E are compact and convex.
(II) If and are the sets of all bang-bang control functions, and if U

and V are defined by (1.14), then C(t) {gt*(t, 4, ), 4 (I), g },
E(t) {O*(t, , ), q,,

(III) If is an interior point of C(t), then there exists an > 0 such
that N() C(-) for all -in (t- , t], where N() is a neighborhood of

of radius .
3. Existence of optimal strategies. We shall prove now the following

existence theorem, which is an extension of that due to Kelendzheridze
[4, 9].
THEOREM 1. If for an arbitrary admissible pair v(t) and (t) there exists

an admissible pair u(t) and (t), such that x(t, , u) z(t, , v), then there
exist two pairs of functions u U, o and v V, o 9, which are
optimals, that is,

T T(u, 4); vo, b),
where T is defined by (1.2).

Proof. By hypothesis the set

(3.1)
r {7’, x(V, , u) z(T, , );

u U,
is not empty.

Let us choose arbitrarily an admissible pair v*(t) V, *(t) q,, and
consider the following subset of r.
(3.2) F* IT* T(u,; v*, *);
By hypothesis F* is not empty.

Let Tv,,, be the greatest lower bound of all T* 1*.
V* *(3.3) Tv,,, inf T u, 4); ).

uEU,E4,

By definition, we have 2" T*, , u) O*(T*, *, v*) E C(T*), T* E F*.
Let the sequence T* E F*, i 1, 2, be selected so that

Consider now the sequence/*(T* 4,, u)l /2*(T,... , u)/ i 1 2
where 4, 4,(t) and u u(t) are admissible. As shown in [7], for

T* T,., < i, we have 1[2*(T*, i, u) t*(Tv,., ,i, u)l[ < , where
is an arbitrarily small positive number and

5 rain 3mm 3cm m
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where

m IIV( , t)A(s)ll, m. sup [lu[[, ms sup !!4)11,

the norm being defined as follows.

max{[ ail}, i 1,.--, h, if a is a h-vector with

components ai,
3.4

/
X v matrix with elements

In the definitions of m and m we suppose that is sufficiently large.
Since the set C(T...) is closed and compact, we can extract subse-

quences

i(t)}, {u’(t) }, , ,
from the sequences {O(t)} and {u(t)} so that they converge to the func-
tions O(t) and u(t) U respectively. Therefore

(3.5) O*(T.,., *, v*) f* (T.,., 0, uo) C(T.,.),

where T... is defined by (3.3), v* V, * xI, being selected arbitrarily

* r* v*so that T* T(u 4,; v*, Obviously T... T(u, o; ).
Consider now the set

(3.6) F T, v V, ’Il.
Let T be the least upper bound of all T, F.
(3.7) T sup T(u,;v,b) sup Tv,,

vE Y, EZ vEV, E"

which is equal to T defined by (1.12). This optimal time T may be finite
or infinite according as the set F is bounded or unbounded.

Consider first the case in which T is finite. Let the sequence T F,
j 1, 2, be selected so that

lim T T.
Consider the sequence {(9*(T, , v)}, {(9*(T, , v)}, j 1, 2,
where v= v(t) and = s(t) are admissible. If

m max IIW(s, t)B(s)l], m sup Ilvll, m sup
c<s<_t vEv,t>_e

sufficiently large, we may easily show that, for

m ad m
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we have IIO*(T, ’, v) O*(Tj, , v)ll < e, where e is an arbitrarily
small positive number. Since the set E(T) is compact and closed, we can
extract subsequences {bk(t)}, {vk(t)}, k, 1, 2,... from the sequences
l$’(t)} and [v(t)} so that they converge to the functions b(t) I, and
v(t) V respectively. Therefore,
(3.8) T T(uo, ,o; vo, o),
and

(3.9) It* T, o, uo) O* T, o, vo) E(T).
Consider now the case T . Let the sequence Tk F, lc 1, 2,

be so chosen that

Tk -- monotonically.

Since T F, we have

(3.10) O*(T,o, v, ) [if(Tk, o, uO), k 1, 2,

for some v V, I,, for each/c. Let us select an admissible pair vk(t),
k(t) which satisfies (3.10). Therefore

bk(3.11) TO T(uo,o; v, ), k 1, 2, ....
Consider the sequences [(t) and {v (t) },/ 1, 2, .... Since v (t) V,

(t) I, and since the sets V and I, are compact and closed, we can extract
subsequences r(t) and vr (t) }, r 1, 2, from the sets (t) and
v (t) so that they converge to the functions o(t) I,, v (t) V, respec-
tively. Therefore T(u, o; vo, bo) + .

Remark,. Let P be the topological space of points p (u, ;v, ), where
u U, , v V, with the metric defined by

ta a<_t

P(P’ P)
|sup I]v vll, sup
,tc

Consider now the function f(t, p) I1* (t, , u) O* (t, , v)II, >- e,
where e max [b, d]. It is shown in [7] that

(i) ---, f(t, p) is continuous for >= e and for fixed p P;
(ii) p -- f(t, p) is continuous for p P and for fixed >- e.
Let po P and consider the equation f(t, po) 0. Let To be the greatest

lower bound of all the solutions of this equation.
Therefore, f(To, po) 0, and f(t, po) 0 for < To, T >_- e. Suppose

that
(iii) f’(t,p) >= c(>0) for’it Tol < 0,p No, where,0 > 0and

No is some neighborhood of p0;

(iv) lira sup f(t, p) f(t, po)[ O.
P PO >__
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Suppose now that p is close to p0 and consider the solution of f(t, p) 0.
For small h we have f To + h, p) f To p) + hf’ To - Oh, p),
(0 <_- 0 <- 1). By (ii) we can choose a neighborhood N1 N of p0 such
that 0 <= f(T0, p) < 1/2tile for p Ni. If p N and 0-<_ h < t!, then
from (iii)we can get f(To + h, p) ->- ch > 0. Similarly, if-ti < h -<_ 0,
then f(To - h, p) <= 1/2 1c + ch, which is negative if h --ti. It follows
from (i) that there exists a solution of f(t, p) 0 satisfying It To
<__ til. In fact, the argument shows that a solution exists satisfying

To -< const, f(T0, p),

which tends to zero as p - po, by (ii).
If 7’v is the lower bound of such solutions we have therefore 7’v _<_ T0

+ v(P), where v(P) -- 0 as p -- p0. On the other hand, by (i), given any
> 0, there exists an A() > 0 such that f(t, po) >= A() for0 <_-

-<_ 7’0 . So, by (iv), we have for some neighborhood N No of p0,

f(t,p) >_- 1/2A() > 0 for 0 -< T0- ,p N.
It follows that T > To if p N. So, finally, Tv 7’01 - 0 as
p -- p0. (Note that the case f’(t, p) _<_ c < 0) for To < ti0, p No,
can be treated in a similar way.)
We see that under the hypotheses (iii) and (iv) the functional

7’(u, 6; v, ) is continuous in all its arguments. We shall assume the hy-
potheses (iii) and (iv) in the following sections.

4. Properties of optimal strategies. In all the theorems which we shall
prove in this and the next section we shall assume (without specifying it
each time) that the pursuit time 7’o is finite and that the convex and com-
pact set C( T) has interior points. The latter can be proved under suitable
hypotheses. (Kelendzheridze [9] made use of slightly different assumptions
to prove this fact.) Let A be the capture point at which the system X (with
the admissible pair{u(t), 6(t)} encounters the system Z (with the admis-
sible pair {v(t), (t)} at time T(u, ; v, ). The point A depends upon
the choice of the functions u, , v, and . Let A be the optimal capture point
which corresponds to the optimal strategy u u(t), O0(t), v v0(t),
and Co(t) and to the timer T.Hence

A *(T, , u) (R)*(T, , v) and
(4.1)

A 2" 2’, 0, uo) (9* 2’, b, v).
If v(t) and (l), selected arbitrarily from the sets V atd ,I respectively,
arc kept fixed, the corresponding optimal policy of the system X will be
described by u u(t) and 4 4(t) and the capture will occur at 7’.
Therefore,

(4.2) f*(T, 40, u0) O*(Tv, , v),
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and

(4.3)

where

(.)

*(t, 4,u) - (9*(t,,v), for <

Tv rain T(u,+;v,) T(u,$;v,).
uEU.ECI

As shown in [7], the point Av [2*( 7’v, 4) u), which is the point A
for u u(t), 0(t), v v(t) and (t), is a boundary point of
the set C(7’) and there exists a unit vector n (h, "’", vn) of the
n-dimensional Euclidean space R such that

(4.5) .*(T.o, , u) =< .a*(T, 0, uo)
for all f*(T, , u) (:: C(T). Clearly, the vector ; depends upon the
choice of the vector functions v(t) 6_ V and (t) I,.

By the remark at the end of 3, the functional T varies continuously
when the functions v() and () vary continuously in V and I, respec-
tively. Since 9*(t, 0, u0) is continuous in (see [7]), if the admissible pair
{v(t), (t)} varies continuously, the point A4, f*(Tv, 0, uo) will vary
continuously, in such a manner that it will always be a boundary point of
the set C(T). Let S(t) denote the boundary of the set C(). Hence
h - S(T) for every admissible pair.

Let {v(), ()}, j 1, 2, be a sequence of admissible pairs such
that v() -- v (t) and (t) -- 0() uniformly, where v (), 0() is the
optimal pair for the system Z. Consider the sequence of times

(4.g) T Tv@i T(uO, o; yi, /,)}1o,
which corresponds to the sequence {v(t), ’(t)}. Since

(4.7) 7,o max T T(u, o; v0, bo),

taking a subsequence if necessary, we may assume that

(4.8) T- < T-+ and lim T. 7’.

Consider now the point A defined by (4.1) and the sequence of points

(4.9) {A. ft*(Ti, o, uo) O*(Ti, , v’)}t.
Since the functionals ft*(t, , u), 0*(t, , v) and T(u, o; v, b) are con-
tinuous in all their arguments, we have

(4.10) lira A A.
We shall now prove the following.
THEOREM 2. The point A is a boundary point of the set C( T).
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Proof. Suppose, on the contrary, that A is n interior point of the set
C(T). Then, by property (III) in 2, there exists m e > 0 such that
N,(A) C(7) for all 7 in the interval T e < r < T where N(A)
is an e-neighborhood of A. The continuity of O*(t, o, vo) at T implies
that there exists a > 0 such that O*(t, o, vo) N(Ao) for all in
T < < T Let 2/ rain (5, e). Then O*(T , o, vo) N()

C T T T,). But this is impossible, since T %, < and is the
minimum value of such that O*(t, o, vo) C(t).
Making use of Theorem 2 and property (I) in 2, the first part of the

following theorem, which is an extension of Kelendzheridze’s main theorem
[4, 9] can be easily proved.
THEOREM 3. There exists a unit vector v Vl

, V,) of the n-dimen-
sional Euclidean space R such that

(I) o To, u <- o To, ,o, u ),

for all admissible pairs {u(t), (t)}, f*(T, , u) # ft*(T, o, uO);

(II) (R), o (R),. (T ,,v) < (T ,o, vo),

for all admissible pairs {v(t), b(t)} which are sulciently near to the optimal
pair {v(t), (t)} and O*( T, b, v) C( T)

v T vo u T TO(III) , .G(A, (T) < .F(A, ),

where

(4.11)
F(x(t),u(t),t)-- A(t- c.)x(t c. + c) + A(t c.)u(t c.),

i=1

and

(4.12)
G(z(t), ,(t), t)

--_ B(t- d)z(t- d + d) + B(t- d)v(t- d).

Proof. Consider, following the general lines of the method of proof due
to Kelendzheridze, the union 2; of all the sets C(t) for >__ a. X is an open
set and A C(T) c Y,. Therefore, we can find a number t* < T such
that O*(t, o, vo) 2; for t* -<_ <- T. For every in this interval let 7

7(t) be the number which is defined by the relation O*(t, 6o, vo) f S(7),
where S(7) is the boundary of the set C(7). Since the elements of the
closure of C(t) are continuous in all the rguments, S(t) varies continu-
ously with t. From the continuity of the function O*(t, #o, vO), we see that
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r r(t) is continuous in the interval t* =< -<_ T. We can easily show,
as in the case considered by Kelendzheridze, that

(4.13) (t) > for < T and (T T

Since O*(t, b, v) is on the boundary S(r) of the convex body C(r),
there exists a support hyperplane II to C(r) at O*(t, b, v). Let w be the
unit vector orthogonM to this support hyperplane which is directed from
O*(t, /o, vo) into the halfspace which does not contain the convex body
C(r). For every point gt*(t, , u) C(r), the vector 2*(t, , u)

O*(t, b, v) is directed into the halfspace which contains C(r). Hence

(4.14) (gt*(t, , u) O*(t, 0, v0), nr) =< 0,

for 2*(t, , u) C().
Consider now the sequence of times {T.}I defined by (4.6) which has

the property (4.8). If j is sufficiently large, t* < T. < T. It follows, from
(4.8), (4.13) and from the continuity of (t), that

(4.15) lira r(T.) T.
Since in n-dimensional Euclidean space the unit sphere is compact, there

exists a convergent subsequence of the sequence of unit vectors
which converges to the unit vector vr0 which is orthogonal to the support
hyperplane IITo tO the set C(T) at the boundary point A, directed into
the halfspace which does not contain the convex body C(T).

If 2*(t, , u) is an interior point of the set C(T), *(t, oh, u) C(T)
for sufficiently large j, by property (III) in 2. From (4.14) we see that

(gt*(t, , u) O*(T-, 0, v0), Vr(r.)) _<_ 0.

Taking the relations (4.1) and (4.15) and the continuity of r(t) into
account, for j - we obtain

(4.16) (2*(t, , u) t*(T, 0, u0), r0) __< 0.

Let {v(t), (t)} be an admissible pair for the pursued system Z. O*(t, , v)
can be captured by the pursuing system X with optimal policy at
< T. Suppose that the pair {v(t), (t)} is suificiently near to the optimal
pair {v(t), b(t)} and is such that O*(T, b, v) is an interior point of the
set C(T). Then, by property (III) in 2 and by (4.8), O*(T , v) is
an interior point of the sets C(T) for all large j. Therefore O*(T , v)

C(T.).
Consider now the points A., j 1, 2, defined by (4.9). Since. S(T.), it follows that O*(T-, , v) S(T-).
Since O*(T., , v) is an interior point of C(T), and since O*(Tj, , v)
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is on the boundary of C(T.), the vector O*(T-, 6, v) O*(T., ’, v),
which passes through A., is directed into the halfspace which contains the
convex body C(T). Consequently

(4.17) (O*(T., 6, v) O*(T., , v’), r) -<_ 0,

for sufficiently large j. Passing to the limit as j --+ in (4.17), we obtain

(4.18) (O*(T, , v) O*(T, o, re), o) _<_ 0.

Using the lincrity of the functional O*(t, , v), we my write AO*
O*(T ,,v) O*(T ,,vo) O*(T ,-- co, v_ O).Thenthein_

equality (4.18) cn be written in the form

(4.19) (AO*, .o) =< 0.

The formul (4.19) is true for every dmissible pir {v(t), (t)} which is
sufficiently near to the optimal pir {v(t), (t)} nd is such that O*(t,

C(T).
Consider now the function

(4.20) L(t) ([t*(t, o, uo) O*(t, o, re),
Since t*(t, o, uo) C(t) for every t, it follows from (4.14) that .(T.) _<_ 0.
Since t*(T, o, uo) 0,(7,0, o, re), we hve ’.(T) 0. Since u(t) nd
v (t) re piecewise continuous nd since the kernel functions H(s, t)
K(s, t) re continuously differentible in T. =< _-< T if j is sufSciently
lrge, the function i’(t) hs continuous derivative in the interval T <=
_<_ T. Hence ’(.) _>_ 0 for some such that T. < < T. Therefore

(4.21) lira ’.’ (.) >= 0.

Consequently

(4.22)

where

(w, n,o) -<_ O,

w (; he, v To ), T I,’ , u ,o), To ),
U and G being defined by (4.11) and (4.12).
Let C*( 7’) be the convex hull of C( T) and w, and let K* be the convex

cone, with vertex A, of the vectors AO* which emanate from A. Since,
by the above argument, the convex set C(T) nd the vectors AO* and w
all lie on one side of the support hyperplane II0 to the convex body C* T)
at A, the set C*(T) and the vector -A(R)* lie in two opposite closed
halfspaces defined by IIr0. Hence, the vector --AO*, which emanates
from A, does not pass through interior points of the convex body C*(T).
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The vectors AO* form a convex cone K which is symmetric to K* with
respect to A. Therefore, K does not intersect the interior of the convex
body C* (T). Since C* T) has interior points (because C T) has), C* T)
aud K are separated by a hyperplane II. Therefore the convex hull C*( T)
and the convex cone K* lie in one closed halfspace defined by II and the
cone K is contained in the other. Let v be the unit vector which emanates
from A, is orthogonal to II, and is directed into the halfspace which con-
rains K. Thus, for this vector v the relations (4.16), (4.19) and (4.22)
,re satisfied, namely

(I) (ft*(t, , u) a*(T ,4,u),) <0, for ft*(t,,u) C(T );
(II) (AO*,n) < 0 for AO* - K*;

(III) (o, n) < 0.
This completes the proof of Theorem 3.

5. Optimal strategies in a particular case. If the control regions U and
V are defined by (1.14), and if the systems (1.1) and (1.2) are such that
no component of .H(t, T c) or v0.K(t, T d) is identically zero
on an interval of positive length for v0 0, we can easily show that (see [5])
optimal control functions u(t) and v(t) are of the form

(5.1) u(t) sgn [nV(t, T c,)A(t)],

fora_-< t_<_ T- cm,and

(5.2) v(t) sgn [vW(t, T dk)B(t)],

forc_<_ -<- To- dk.
In 1, the sets and ,I, of initial functions were defined as closed compact

subsets of the sets of all real-valued n-dimensional vector functions (t)
and (t) continuous in the initial intervals a -<_ <= b and c -<_ -<-- d re-
spectively. If (t) and (t) are measurable functions in their intervals of
definition, the analysis in the previous sections is still valid. If, in addition
to this,

(5.3) " {1 i(t) -<_ 1, a _<_ -<_ b,

and

(5.4) " {1 ,(t)l _-< 1, c -< _<_ d,

we can show without any difficulty that

(5.5) (t) sgn [n.tI(t, TO- cm)],

and

(5.6) (t) sgn[.K(t, TO- dk)],

i= 1,...,n},

i= 1,... ,n},

a<=t<=b,

c<__t<=d,



102 M. NAMK OUZTSRELI

provided no component of n.H (t, T cm) or n.K(t, T dk) is identi-
cally zero on an interval of positive length for n 0.
Thus, if the vector n is known, the optimal strategy {u(t), o(

is completely determined. We shall now develop a method for finding
Let the functions u,(t), ,(t), v,(t), and ,(t) be defined by (5.1), (5.2),

(5.5), and (5.6), respectively, with n replacing n, namely,

(5.7)
%(t) sgn {nV(t- c., TO- c)A(t)}, b<=t<_ T,
4,(t) sgn{nH(t, TO- c)}, a<=t<=b,

v,(t) sgnlnW(t- d, TO- dk)B(t)}, c <= -<- T

,(t) sgn InK(t, TO- d)}, c _-< =< d.

Clearly, more than one n may determine the same strategy

{u,(t), ,(t)} and u,o(t) u(t), bno(t) b(t).
Note that the functions u,(t),..., ,(t) depend continuously upon

disregarding sets of measure zero. Consequently, the functionals
a*(t, , u,), O*(t, b, v,) and T(u, 4, v, ,) are continuous in n as well
as in t. Let us also note that, if T(u,, , v,, b,) T for some vector
the vector n and n determine the same optimal strategy u(t), 0(t) }.
THEOREM 4. There exist two positive numbers . and such that f* t, , u,)

and O*(t, b,, v,) are boundary points of the set C(T) for all in T
n t* T< < T and for all niP lip < ,provided (t, 4,,u,) C(

and O*(t, ,, v,) C(T).
Proof. Suppose that O*(t, ,, v,) is an interior point of the set C(T)

for some and for some n. Hence, by property (III) in 2, there exists an
e > 0 such that N(O*(t, ,, v,)) C(r) for all r in T e < r -<_ T
where N(O*) is an e-neighborhood of O*(t, ,, v,). Consequently,

(5.9) IlO*(t, ,, v,) tll _>_ ,
since t lies on the boundary of C(T). From the continuity of O*(t,
at T and n nandsince A O*(T ,o,v,o),wecanfindtwo
positive numbers , and ti such that

(5.10) IlO*(t, ,, v,) AII < e

for all in T T/ < <= and for all n in lip- 11 < e. Therefore,
O*(t, ,, v,) cannot be an interior point of C(T) for T -7 < t<= T
and lip n[I < ti, because, in the contrary case, the inequality (5.9) must
be satisfied, which contradicts the inequality (5.10). Since O*(t,

C(T), O*(t, ,, v,) is a boundary point of C(T).
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It can similarly be shown that t*(t, ,, u,) lies on the boundary of the
set C(TO).

Consider now the time T, T(u,, ,, v,, ,) at which 2*(t, cb,, u,) en-
counters O*(t, ,, v,). As we mentioned above, T, is continuous lmost

7everywhere in v. Accordingly, for almost all v in IIv < , we have
T --, < T, <= T
Suppose now that , and ti satisfy the conditions of Theorem 4. Then,

*(t, 4),, u,) and (R)*(t, ,, v,) lie on the boundary S(T) of the set C(T)
and coincide for T,. Let S be the portion of S(T) described by the
points gt* t, 4),, u,) and O* t, , v,) for T T---/ < t<_ and

Consider the convex set H of all vectors v, orthogonl to the support
hyperplanes II to S and directed into the halfspaces (defined by these
hyperplanes II), which do not contain the convex body C(T). Clearly
7 H. Thus,

(5.11) vt*(t, , u) < v2*(T,, ,, u,),

and

O*(5 12) v (t, , v) < vO*(T,, ,, v,)

for all t*(t, , u) C(T), O*(t, , v) C(T), T . < T, <= T
v H.

Define the function w,(t) by
(5.13) w,(t) G(O*(t, ,, v,), v,(t), t) F(gt*(t, 4),, u,), u,(t), t),
where F and G are given by (4.11) and (4.12). As in the proof of Theo-
rem 3, we can easily show that

(5.4) (vo,(t), ,) <_ o
for all7 H.

Consider now the function V(t, v) defined by

v(t, ,) mx {Vl(t, ), v(t, ), V(t,(5.15)

where

(5.16)

) (u*(t, ,, u,) o, ),

v(t, ) O* (t, ,, v,) o, ),

V(t, v) (w,(t), ).

From the continuity of the functions V(t,7), i 1, 2, 3, for all
_>_ e max (b, d) and for almost all v, we can easily see that the func-

tion V(t, 7) is continuous in t( >__ e) and in 7, disregarding a set of measure
zero. We have also

(5.17) V(T,7) 0, for 7 H.
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Let H be the set of all vectors 7 for which

(5.18) Y(e, 7) < O,

and denote by H the subset of H whose elements 7 verify the inequality

(5.9) V(T, ) _<_ 0.

By the inequalities (5.11)-(5.14), H c H. Clearly,

(5.20) V(T ,7) > 0 for 7 H-- H1.
Suppose now that V(t, 7) is strictly increasing at T for every 7 C H1.

From (5.17), (5.18) and (5.20), we see that there exists a unique
such that

(5.21) v(T(), ) 0,

for in a neighborhood of T and in a neighborhood of 7 H1. Clearly,
if7 H,T(7) T and if7 H-H1,T(7) < T according to (5.20).
Thus, we have the following theorem, which is an extension of a theorem
due to Neustadt [6] as well as of a theorem due to the author [7].
THEOREM 5. Suppose that the control regions U and V and the sets of initial

functions and of the systems X and Z consist of measurable functions satis-
fying the conditions (1.14), (5.3) and (5.4). Let T be pursuit time for the
systems X and Z. Then the unique optimal strategy is given by (5.7) and (5.8)
with some vector 7 in some set H. If for every 7 H the .-/’unction V(t,
defined by (5.15) is strictly increasing with at T, then .-for 7 in a neigh-
borhood of H and in a neighborhood of T the vectors 7 H maximize the
time for which V(t, 7) O.

This theorem is very close to Kelendzheridze’ min result in [4, 9],
when the retardations in X and Z all vanish.
Note that Theorem 5 only gives a necessary condition for an optial

strategy.

6. Remark. If , as in l, consists only of contimous functions, and if
we know the optimal functions u(t), v(t), and (t), the optimal initial
function (t) can be obtained by solving the integral equation

(6.1) f H(s, T c)k(s) ds P,

where
riTO--cm T U(6.2) P O,(To, o, o) V(s, c,)A (s) (s) ds.

With obvious modifications, we can state a similar result for (t) when
u(t), (t), and v(t) are known.
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY
CONDITIONAL PROBABILITY DENSITIES OF MARKOV

PROCESSES, WITH APPLICATIONS*

HAROLD J. KUSHNEP

1. Introduction and summary. Consider the vector stochastic differential
cquution,

(1) dxi fi(x)dt - Fk(x)dzk(t), i 1, n,

where each z(t) is an independent Brownian motion process with unit
variance parameter. Let x, f and z be vectors with components x, f and
z, respectively; let F(x) be the matrix with components F(x), and
V(x) the matrix with components v(x), where V FF’. Let/(a, t) be
the probability density of x(t) given only the density of x(to), >= to.
Under suitable conditions on f and F, it is well-known that (for almost all
z(-) functions) there exists a unique solution to (1) which is a Markov
process. If _P is suitably differentiable, then Kolmogorov’s forward equation,

1 (v(a)P(a, t)),(2) OP(a,ot t) = (fi(a)D(a, t) ) - - ,=is satisfied, where the subscript a denotes the partial derivative.
A problem of great practical importance arises when noise corrupted

observations on x are taken; i.e., the vectorS: dy g(x)dt -t- dw is vuiluble,
where w is a vector Brownian motion process. For example, x muy represent
a signal stochastic process and dy/dt the (nonlinear function of the) signal
plus noise, or x may represent the evolution of dynamical system driven
by a noise process and the interest my be i.n the estimution of vurious
properties of x or, perhaps, the control of x. In these cases it would be very
desirable to have an expression for the probability density of x conditioned
upon the observations, as well as upon the initial data. The existence of such
an equation is suggested by theoremsll in [3, pp. 287-291]. Here, we derive
a partial differential equation satisfied by this conditional density. The
equation is of the form (2) with n udditional term which contains the ob-

* Received by the editors January 24, 1964. This research was supported by the
United States Air Force, under Contracts No. AF 33(657)-8559, und No. AF 49(638)-
1206.

f Research Institute for Advanced Studies (I:tIAS), 7212 Belloaa Avenue, Blti-
more, Maryland.

: This could be written without differentials as b g(x) ’, where is the white
Gaussian noise dw/dt.

The relation between our results and these theorems is further discussed in the
Appendix.
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servation in a linear manner, and in many eases, is amenable to convenient
analog or digital simulation; hence, the actual conditional density may be
obtained as it evolves in time. The equation promises to be of great useful-
ness in communications and control problems.
The principal result is the following. For any function of time s(), define

s(t) s(t + A) s(t) and ds(t) s(t -t- dt) s(t). Let Eitww’ ZA
and Ezw’ CA and assume 2: is nonsingular. Let P (a, t) be the con-
ditional density of x(t) given all observations up to t, and let

d](a, t) f(a, t)dt -- FCY,-(dy g(a)dt),
(3)

f7 V- FCY,-I(FC) ’,
(4) dQ(a, t) P(a, t). (dy Eg(a)dt)’y,-l(g(a) Eg(a) ),

where the expectation E is the conditional expectation using P(a, tit).
Then P(a, t) satisfies

P(a, -t- dt -t- dt) P(a, t)

(5) dP(a, t) dQ(a, t) (d]i(a, t).P(a, t))a

+ 1/2- (Oi(a).P(a, t))aiaidt.
i,j-l

In certain cases (discussed in 3j) which are reducible to the case where
a takes on only values x1, x, (5) becomes

(5’) dR(i t) P(i t). (dy Eg(i, t) )’2:-l(g(i, t) Eg(i, t) ).
Equation (5’) is generally rigorously verifiable.
Although (5) can be rigorously verified in a number of cases, it is, of

course, still formal in general (see Appendix), being derived under the
assumption that P exists and is suitably differentiable:I. If there is no cor-
relation between the observation noise dw and the noise dz, then C 0
and d] fdt and . v.. In this case the last two terms on the right of
(5) are the same as in (2), and (5) differs from (2) only in that the former
contains the observation term dQ, where dQ is linear in the differential
observation dy.
The same problem was considered in [1], where x was scalar and g(x) x.

A more general problem was discussed in [2] but, as discussed in [1], the
results in [2] are incorrect through the omission of certain significant terms.
Since the writing of [1], substantial and surprising simplifications (which
were initially inapparent) in the form of the scalar equation have been

21 and C are assumed to be independent of x; if 21 depended on x, the problem ap-
pears to degenerate to one where x can be determined exactly at every t.

:l: When f F O, dP dQ and is simple to verify.
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obtained. In this paper, taking advantage of these simplifications, the
results for the general vector case with nonlinear observations are derived.
These results include, as special cases, many important situations (as will
be illustrated) that cannot be represented by the scalar case format.
The derivation is performed in 2. Section 3 discusses several special

cases and extensions. The results include as special cases known results [4]
for the filtering problem where the signal and noise are Gaussian and finite
order Markovian.

Usually, when one has a stochastic differential equation, one seeks proper-
ties of the random functions which they define. In this paper, the inverse
problem occurs initially" given a random function, what stochastic differ-
ential equation does it satisfy? The Appendix contains a discussion of this
problem and of the sense in which such an equation is meaningful--as well
as of other points which are important in the derivation.

2. The main result. The derivation proceeds by assuming the finite
difference model (6) and taking formal limits subsequently.

x f(x) A -t- F(x)z,
(6)

y g(x)A nu tw.

Let Y denote the y(r), T <-- t, the entire set of observations up to t; iy
y (t nu A) y (t) is the observation at given by (6).
The following notation will be used. Let a and a be the generic value of

x, and let M and N be any random quantities. Let P(a, t; M) denote the
joint density of x(t) and M; P(a, M) denotes the density of x(t) condi-
tioned upon M; P(a, lY will also be written as P(a, tit or as P;
P(a, -t- A) denotes P(a, Y, iy), the density of x(t) conditioned upon
the set of past observations Y and also upon the present vector observation
iy; P(M a, t; N) denotes the conditional density of M, given x(t) a
and N.
The derivation takes place in two parts. First, let P(a, tit) be given,

take the observation y, and compute P(a, tit at- A) P(a, tit) the
change in the conditional density due to the last observation. This change
is given by (14). The second part of the derivation assumes the change x
in x, and the Chapman-Kolmogorov equation is applied to include the ef-
fects of x on the conditional density. Formal limits are then taken and
the derivation is complete.

Derivation" Part 1. According to the notational convention

P(a, tit -t- A) P(a, t; Y, y)/P(Y, y)
(7) P(y a, t; Y)P(a, Y)P( Y)

P(Y) P(y a, t; Y)P(a, Y) da"
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Since the distribution of/ty is completely specified when a is given, (7) may
be written as

P(a, t)P(ity a, t)(8)
f P(y a, t)P(a, t) da"

In fact, as discussed in [1], P(a, t) is a Markov process in function space.
Now, from (5),

(9) P(y a, t)

where N[gA, 2A] denotes normal density with mean gA and covariance
matrix

Substituting (9) into (8) yields

I 1 (y_ g(a)A),y_,_l(y_ g(a)A)lP(a, t) exp ---(10)

f exp [1___P(a, t) (y g(a)A)’Y_,-l(y g(a)A) da

where da II[ dai. Equation (10) may be further simplified by deleting
1

the common term exp [-5- y,y,-ly] from both numerator and denomi-

nator. Thus,

(11)

R(A, iy)
k P a, tit -{-- /

P(a, t)

exp [y’Y,-Ig( a 1/2g’ (a) Y,-Ig( a A]

f P(a, t) exp Iy’Y,-lg(a) lg,- (a)Y,-*g(a)A da

Assuming that the appropriate moments of P(a, t) exist, (11) may be
differentiated any number of times with respect to the infinitesimals A and
tiyi. We wish to obtain an expansion of (11) which contains all terms of
order A or less. Since Eyy’ 2;5, the expansion must be carried to the
second degree in the components of iy, and to the first degree in A. It is
easily shown that the remainder in the expansion has a mean value of
smaller order than A and a mean square value of smaller order than. A2.
The differentiation of (11) is straightforward. Recalling that E refers

to the expectation using P(a, tit), we have

R/(O, O) --1/2[g’(a)y,-ig(a) E(g’(a)Y,-g(a))],
R(O, O) ,

(12) Ry(O, O) Y,-g(a) Y,-Eg(a),
If 2: depended upon x, this could not be done.
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R.(0, 0) (Y,-g(a) )(Z-g(a) )’ 2Z-g(a)(Y,-Eg(a) )’

+ 2(F,-1Eg(a))(Y,-Eg(a))’ E(Z-g(a)(Z-g(a) )’),
where Ry and Ry. are the gradient and Jacobian, respectively, of R with
respect to 5y. Thus,

P(a, tit -- A)
(3)

(0, 0)ty] d- r,P(a, t[ t)[1 d- R(0, 0)A -4- R y(0, 0)Sy + Sy

where Er o A ), Er o A).
Although there is frequent occurrence of terms such as EySyi in prob-

ability theory, (13) is unusual in that these random terms are included
without expectations. It would appear that these terms substantially com-
plicate the result. It is quite remarkable that the term 5ySy may be re-
placed everywhere by its expectation without altering the result at all. The
arguments for this are given in the Appendix: the replacement will be used
hereafter in the text. The simplification was not apparent in the erlier
work. We have Eyy’ E[g(a)A + w][g(a)A + w]’ 2;A + o(A).
Various terms in (12) may now be rewritten; e.g., replace y’Y,-g(a)
(Y,-g(a))’y g(a)’Y,-yy’y,-lg(a) by g’(a)y,-lg(a)A zc o(A).
Now, dding and subtracting the terms P(a, tit) (Eg)’Y,-gA nd

P(a, t) (Eg)’Y_,-(Eg), using the expectation substitutions for the second
order terms, and rearranging terms yields

(14)
P(a, tit -- A) P(a, t) =A Q(a, t)

P(a, t).(y EgA)’Y,-(g Eg) -t- r,

where, again, Er. o( AZ).
Completion of derivation. We are now prepared to use a modification of

the Chapman-Kolmogorov [3] equation to complete our derivation by in-
cluding the effects of x(t) on the conditional distribution. The method is a
modification of the usual forraal approach to the derivation of (2).

In general, by the definition of conditional probability,

P(a, + A It - A) f P(a, tit -t- A)P(a, + A]a, t; Y, iy) da.

If no observations are taken, it reduces to

d- A) f (, t)P(a, d- t) da.

t Although the second order rsndom terms cnnot be neglected since their expecta-
tion is of the order of A, their contribution is essentially deterministic. See Appendix
for more details.
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In our ease, since dw is allowed to depend on dz but not on x, the distribu-
tion of x(t -+- A) is completely determined when y and x(t) are given.
Thus

(15) P(a, -- A lt -t- A) f P(a, tit / A)P(a, + A la t; y) da.

To complete the procedure, multiply (15) by an arbitrary triply differ-
entiable function h (a), such that (19) holds and the integrals (16) exist.
Thus from (15),

(16)

f h(a)P(a, -t- A It -{- A) da

/ (a tit -t- A)P(a, -t- A a, t; y) da da

1
a ))-+-- (a- a)ha.a(O)(a- a)+ o((a- a)(

>( IP(a, tit + A)P(a, -t- 1o, t; y) da da}.

Now, the density P(a, -- A la t; tiy) is normal. Since it is conditioned
upon tiy and x(t), it is also conditioned upon tiw. From standard theorems
on conditional normal variables [10],

E[a a Iy, x(t) ] E[f(a)A + F(a)zly g(a)A - w]

_-A / f(a)A -+- (FC)Y,-I(y g(a)A),

E[(a a lay, x(t) ] E[(f(a)A + F()az)el g(,x)zX + aw]

A ?A VA FCF,-I(FC)’A + o(A).

Substituting these results into the last line of (16) yields

f [ 1 (a)(o)A]p(o,tlt+A)do(17) h(o) - ha (c)(?((x)) -- ha,al

where is the (i, j)th entry of the mtrix . Recall that P(a, t]t + A)
P(a, t) + Q(a, t).

Given two normal vectors s, t, with Es , Et t, Est , Ess’ ,
Ett’ :, wehuveE[s ]t] + Z:Z%(t t) und Cov[s It] Z ZlZiZ.
(See [10].)
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Consider the term

(a)[P(a, t) -b- Q(a, t)]

[f()A -t- FCZ-I(y g(c)A)]

[1 + (y Eg(o) A)’2-l(g(c) Eg())]P(a, t).

Upon replacing yy’ by its expectation ZA o(A) as discussed earlier,

and rearranging, the term becomes* ]P [fA + FCZ-I(y EgA)
o(A)]P. Upon replacing this in (17) and assuming (19), (17) may be

purtilly integrated to yield (18).

(18) h(a) 1)+ Q- (]iP)a + (OijP)aia + o()

0 =-. (,P)a h a=-.

In (19), when a. , the ay, j i, are arbitrary. Equating (18) to
the left hand side of (16) and recalling the arbitrariness of h yields, in the
limit,$

dP P(a, + dt + gt) P(a, t)

(20) dQ i(d]P)a + i.y (ijP)aiadt,

gQ P(dy Egdt)’ z-l(g- Eg).

The equation (20) is the culmination of all our efforts. Observe that, as
all the components of Z tend to (as the value of the observations de-
creases), (20) tends to Kolmogorov’s forward dusion equation (in dif-
ferential form). From a formal point of view, (20) may be divided through
by dt and viewed as a differential equation with the observation dy/dt as a
driving term or input.

It is easy to obtain a set of ordinary differential equations for the condi-
tional moments of P. The method is given below.

3. Discussion of special cases and extensions.

3a. o dynamics. The simplest cse is where f dz O. Here x is an
unknown vector. If some initial distribution P(a,to) is assigned to x, then

(21) dP P(dy Egdt)’Z-(g Eg)

represents the conditional distribution.

* For brevity, P P(a, t), Q Q(a, t), g(a) g and f(a) f are used when no
confusion will arise.

$ As A 0, the expectation of the o(A) in (17) is o(A) and its mean square value
is o(A). Thus, we have (20) vulid in the mean square sense, as discussed in the Ap-
pendix.
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A special case of importance is where x may take on only finitely many
values, x1, x". Since (21) must hold for each x, it reduces to a set of
s ordinary differential equations with a simple analog computer representa-
tion, even for fairly general observation forms g.

Eg _, gi(a)P(a, t).

3b. Linear dynamics. The case where f(x) Ax, F constant, g(x)
Gx, and P(a, 0) is Gaussian, where A and G are matrices, has been discussed
in [4], where the ordinary differential equation for the conditional expecta-
tion of x was obtained. With our form, it is possible to compute all the
moments of P in any case; in the linear case, with linear observations, it
may be verified that our results specialize to those in [4]. This is, of course,
the optimum filter for finite order Gaussian Markov processes.

3c. Filtering. The general problem here may be viewed as an optimum
filtering problem, where dx fdt -t- Fdz represents the process, and dy is
the nonlinear noisy observation. Then (20), or the equations for the mo-
ments, represent the form of the optimum filter, i.e., the simulation of (20)
yields a running estimate of the conditional probability.

3d. Dependent observation noise. Up to now, the observation noise
dw/dt has been white Gaussian. Assume dw/dt is a correlated process
and let it be represented as d ]()dt de, where is a vector Browniau
motion process with E/te 0 nd covariance (/te) 2;5. The observation

A
is b dy/dt g(x) + . If the observution is considered to be

(22) dy dg + d (( -t- k() )dr + de,

the previous theory may be applied: put ]c(e) whenever g appeared.
Now, the distribution of must also be estimated, and the x included the
components of . It appears to be typical of the estimation or filtering
problem that, whenever observation noise is correlated, the noise as well
as the quantity of interest must be estimated. The differentiation is not
easy to simulate. If the observation is assumed to be x + dT/dt, where

is the Brownian motion, then by expanding the state vector x by adjoin-
ing , the theory of the last section may be applied.

3e. Unknown system parameters or system order. Let be a constant
parameter which either simply prametrizes f or determines the order of
the system dx fdt -k Fdz; f f(x, 3’). Let 5’ be given some initial distri-
bution P(5’, 0). Then, our results apply to the augmented system

dx f(x, "),) dt -t- Fdz,

d’yO
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and we merely replace x by the vector Ix, ,] in the results. P(a, , O)
P(a, 0)P(,, 0). This is a general solution to what has been called

partial observability by some authors [5].

3f. Determination of the conditional moments. The moments

(23) m(j,

m f aiP(a, It) da,

ft., t) f m)’P(a, It) da,
i=1

c(j j, t) aP(a, t) da,

satisfy ordinary differential equations, on the right hand side of which the
observations appear linearly. The procedure is simple and we merely indi-
cate it here.
We have

i=1

Let h (a) I ai. Equating the left hand side of (16) and (17) yields

(25)
f h(a)[P(a, -- dt]t -- dt) P(a, t[ t)] da

f h(a)dQ da + f [ha’(a)d](a)zr dt
tit) da.

Upon performing the integration in (25), dc is obtained. This question is
also discussed in [1].

3g. Applications to optimal stochastic control theory. The function
P(0, t) is a Markov process, and appears to be the most natural quantity
which one may consider as the state variable of the differential system (1).
To extend the form (1) to the optimal control formulation, write dx
f(x, u)dt F(x, u)dz, where u is a control function which is to be deter-
mined so as to minimize some error criterion, say

T

(e6) E f
T

lc(x, u, t) dt Eft f t)lc(a, u, t) da dt,

where E is the expectation over all random vribles. (See [1], [6], [7],
[8].) Here the optimal control u will be a functional of P.

It is possible to write a second order partial differential equation whose
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dependent variable is the minimum of (26) and whose independent vari-
ables are P(a, to to) and to, and which yields many properties of u. This
will not be done here. The equation is analogous to those appearing in [6],
[7], [8]. The method of derivation is exactly that used in [1] for the scalar
x and linear g ease.

3h. Poisson z. The results may be extended to all dz for which the
Chapman-Kolmogorov equation is valid; in particular, an equation for P
may also be obtained when z is a Poisson process.

3i. The results have numerous applications to special problems in sta-
tistical communication theory; these will be considered elsewhere.

3j. Previous cases extended to case where P(a,to) is concentrated at
only finitely many points, and x(t) is not necessarily generated by a dif-
ferential equation. For the most general case, P(a,to) is a sufficient statistic
for control purposes; that is, the minimum of (26) can be written as a
functional of P(a, to lto) for any to. When F 0 and P(a, to) is concen-
trated at only finitely many points, it is not usually convenient to take the
point of view of 3g. Here, P is not differentiable with respect to a and
(15) is a sum; P(a, + A a, t) is either zero or is concentrated at only one
point for any given a.

Although the formerly derived results are not valid for this case, an ex-
tremely simple extension is available--in fact, the extension is rigorously
verifiable (it is essentially the case discussed in Appendix 2).
To view the results in a fairly general form, let us have a choice of n

possible curves xi(t), i 1, n; the ith having conditional probability
p(ilt at t. Each x could be the solution to the equation 2 f(x) with
a different initial condition, or with a different value of some parameter;
or it could be an arbitrary signal function. The observation is dy g(a)dt

dw, where a takes one of the values x(t), i 1, n. We will write
g(i, t) g(x(t) ).
The method is the following. Instead of keeping track of the arguments

at which P is concentrated, as part of the procedure of generating P, we
keep track of these arguments separatelyand assume that the values of
each x(t) are available; thus, P is applied to the state i, i 1, n,
which is not subject to dynamical changes. Carrying previous arguments
over, we obtain

(27) dP(i t) P(i t).(dy Eg)’-(g Eg).

For this problem, (26) is rewritten as

(28) E p(i t)lc(z, u, t) dt.

Due to the presence of P, the equation contains functional derivatives as well as
ordinary derivatives.
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Equation (28) yields that the sufficient state variables for control pur-
poses are all the p(i] t) and their (effective) arguments x(t) (occasionally
some of the x can be derived from the others--and may be eliminated as
state variables).

APPENDIX

The appendices contain several interesting facts and demonstrations
relevant to our method of deriving the differential equations satisfied by
certain stochastic processes, such as conditional probabilities. Appendix 1.
contains some general remarks and in Appendix 2, the results are verified
for some simple cases.

Appendix 1. We first discuss the meaning of the obtained stochastic equa-
tions by means of an example. Consider the scalar function x e" where
z(t) is Brownian motion; z(t) N(0,z2t). We are interested in a differen-
tial equation which represents x: since z(t) is nowhere differentiable [3], the
equation cannot be obtained in the usual, formal manner. Consider

(A.1) z e+- e= z(e- 1) z z+ +
runeae he power series expansion and noe

(A.2) E x- x z+ o(A),

(A.3) E x x (z + )]= o(A).

Thus, in the mean square sense, we have the differential equation

(A.4) dx x (dz + ).
Note that, g the dz=/2 term were omitted, (A.2) would be 0(k) and (A.3)
would be 0(A=); the errors would be of the order of dr, and the resulting
solution would be meaningless.
Now, divide the time interval into n equal sections and let k tin.

Let 8z z( (i + 1) A) z(iA). Thus a discrete approximation to (A.4) is

or

Now it is easily shown that

(A.5) E[:c e"] --, O, [z e] --, O, as zX --, O, n --, .
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Thus, again in the mean square sense, (A.4) represents x e". If the dz/2
terms were omitted, (A.5) would tend to some nonzero quantity. This
holds in the general case also, since the truncation errors add linearly. Thus,
the presence of the second order term dz or dydyi is justified.

There are some theorems in [3, pp. 286-291] which prove that, given a
suitably regular continuous Markov process such as x e, x has a repre-
sentation of the form

dz E[x(t + dt) z(t) x(t)]dt
(A.6) -- E1/2[(x(t "- dt) x(t) )21x(t)]du’
where u is a Brownian motion process. The major problem appears to be
the identification of the process u. Let Edz zdt. It may be shown here
that zdu dz, or

(A.7) dx xzdt/2 + xdz.

In finite difference form x x0 (1 + z + zA/2). It is verifiuble, by
direct computation, that

(A.8) E 1 + z + (1 + z + /2) 0,

as A 0, thus proving the validity of the replacement.
Now, we briefly discuss the nature and interpretation of (dz) i > 2

According to the derivation,

(A.9) x(t) xi xz + x + x +
=i =i k 3

is an exact expression for x(t). This suggests the integral

f (dz)(h.lO)

which may be interpreted as the limit of Riemann sums. With this inter-
pretation,

(dz) 

In the limit as A 0, nA t, (z) tends to a constant, at, with proba-
bility one and in mean square. With this definition of (A.10), the integral
over any measurable set may be defined and stochastic integrals of the
form f x(dz) f x(dt ) considered. Similarly, for the higher terms (dz),
i > 2, whose integrals degenerate to zero with probability one and in mean
square. Thus, the replacement of dz by zdt is again justified.

Appendix 2. Now, using the limit of the Riemann sum definition of the
integrals we prove, in an indirect ulthough instructive way, that the re-
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placement of dy by dt 2 is justified. We limit ourselves, only for simplicity,
to a scalar case with no dynamics where x takes the values 0 or 1.:

Let P(1,t) P1. No generality is lost in letting g(a) a. Here, dP
dQ nd, by rearranging (13), we obtain

(A.11)

where Er o(d), Er o(dl). Also r() Er() is n orthogonl process
nd orthogonl to ny function of P (a, ). Upon replacing dy by its verge
vlue nd neglecting r, we hve

P(A.12) gP p [(dy- dt)(a- )].

Also

(A.13) m Ea P, m E(a- Ea)= (1 -P)P.
Thus, letting P(1 P.) k (Pl) ,

adPi k[(dy Pdt) + (dy/z dr)(1 2P1)/2] + r,
(A.14)

aedPi (dy- Pdt) [(dy Pidt) + (P- P)dt],
where Er o(dt), Er o(dt).
Now, P and P are always in the interval [0, 1]. Letting e P(r)
P(r), we have the error

(A.15)

+ lc(dy/a- dr)(1 2P1)/2.

Note that (dy Pdt) and (dy/a dr) are orthogonal processes, and
are orthogonal to any function of P(r) or (r), r t. Using these facts,

e ( ) + o()

+ e (c )( P) + c(e/- )(1 P)/

Again, he reference quoted above implies some sor of replacement, bu he
Brownian moion in ghe differential equation is no identified. he eehnique here
idenifies all erms in erms of he observations and properties of he conditional
densities.

Generally, he replaeemen of second order erms by heir average values is he
easies par o verify; i is more dieul o prove hat our oher limiting operaions
are valid.
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Now, observing that lc satisfies a Lipschitz condition for P in [0, 1] and
using Schwartz’s inequality on the last product of integrals yields

(A.16) Eet <= K1 Eer dr + K Eer d + o( dr

for some positive and finite K1 and K.. Thus Eet O, since P1(0) =/51 (0),
and the validity of (A.12) is proved.

In all cases checked, Doob’s representation theorems (referred to in the
text) yield equations of our form, where the observation noise process w
is identified with the Brownian motion. For the problem of this Appendix,
there are two families of stochastic processes. The first are the family of
actual sample functions P1, when a 1 (dy =dt + dw); the second when
a 0 (dy dw). Applying Doob’s theorems to each of these yields the
representation (A.12).
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SOME TYPES OF OPTIMAL CONTROL OF STOCHASTIC SYSTEMS*

STUART E. DREYFUSf

1. Introduction. A stochastic system (i.e., a dynamic system involving
random variables) which evolves according to a rule which also involves
variables or parameters under external control is called a stochastic con-
trol system. If these variables or parameters are determined so that the
system behaves as well as possible as measured by some well-defined
criterion, one has achieved optimal control of the stochastic system.
Under varying assumptions concerning the information available to the

controller, different optimal control policies result. In this paper we shall
develop and illustrate several different control schemes and compare their
behavior. n this way we intend to demonstrate that certain control
philosophies that may appear superficially to be equivalent are really quite
different. In the final section we derive asymptotic expressions for the cost
of optimal control using several different schemes. This yields a quantita-
tive measure of the vast superiority of feedback over open-loop control
for a particular stochastic system.

2. A deterministic problem. Let us begin by considering a trivial three-
stage discrete deterministic control problem. Given the directed network
shown in Fig. 1, we wish to determine that path from point A to line B
which has the minimal sum of the numbers written along the three arcs of
the path.

Let us denote a decision to follow the diagonally-up arc from an inter-
section by U and the diagonally-down arc by D. By examining all eight
possible paths from A to B, we discover that the path D-U-D (diagonally
down, then up, then down) has sum-of-arc-numbers zero and is the unique
optimal solution. We shall call such a designation of the solution, giving the
sequence of control decisions to be followed from specific initial point to
termination, the optimal open-loop control.
A second way of presenting the solution to this problem is to associate

with each node of the figure a decision, either U or D, such that that de-
cision is the initial one of the optimal path from the node to the terminal
line. This set of decisions assigned to nodes is most efficiently determined
recursively backwards from the terminal line [1]. We init,ially record the
optimal decisions and minimal sum to termination (encircled) at the nodes

Received by the editors July 22, 1963, and in final revised form April 21, 1964.
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B

FI. 1

along the line C in Fig. 2, and then use the circled numbers to determine
the optimal decisions and sum along D and, finally, from A. The results
are shown in Fig. 3. We shall call such a designation of the solution, giving
the optimal decision associated with starting at each possible state of the
system (i.e., at each node), the feedbaclc optimal control.
The interpretation of Fig. 3 is that the optimal path starting at point A

has sum zero and starts diagonally down. The node reached after making
the downward move has a U written by it, indicating a decision to go
diagonally up. This leads to a node with a down decision. Hence, D-U-D
is the optimal path from A. Note that the feedback representation of the
solution also yields the best path starting from other nodes not along the
D-U-D path.
The important point is that for a specified initial point such as A, the

open-loop and feedback solutions are equivalent for a deterministic process.

3. A stochastic problem. Let us now modify the above problem by in-
troducing a stochastic aspect. We shall assume that the decision designated
by U results in a probability of 3/ of moving diagonally up and / of moving
down. The alternative decision, D, has 3/ chance of a diagonally downward
move and a / chance of an upward transition. We now have stochastic
control problem. We can still exert a controlling influence, but randomness
determines the actual transformation of state.
As a criterion for comparing possible control schemes, let us attempt to

minimize the expected sum along the path from A to line B.
To determine the best open-loop control policy, we consider 11 eight

possible sequences of decisions and choose the one with minimal expected
sum. For example, the decision sequence U-U-U has probability v7 of
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D C B

UorD

FIG. 2

actually yielding the path U-U-U with sum 10, probability of yielding
the path D-U-U with sum 1200, etc. Multiplying the probabilities by the
sums and adding, we get an expected sum Evvv given by

7"10 -t- (1200 -F 1210 -F 10)Euuu -g--

-F . 12 --- 360.
-F (10 -F 0 -F 12)

It turns out that the sequence U-U-D has the minimal expected sum of
approximately 120.
The best feedback control is computed recursively backwards just as in

the deterministic example. Suppose that, for a given node, the expected
sums starting at each of the two possible nodes to which one might go have
been determined. Then the expected sum from the given node to the
termination under decision U is obtained by multiplying the upward arc
number plus the remaining expected sum associated with the node at the
end of the up-arc by - and adding times the corresponding downward
numbers. Decision D is similarly evaluated reversing the and 1/4, and the
minimal expected sum is chosen. The minimizing decision and expected sum
(encircled) are recorded at the node. This computation leads to Fig. 4. The
expected sum using feedback control is 84/ and the control policy is the set
of letters associated with the nodes in Fig. 4.
At this point we would like to introduce a third control scheme. Let us

use the optimal open-loop solution to yield our initial decision. Then, after
a transition has occurred, let us observe the result and determine the best
open-loop solution for the new two-stage problem. After implementing the
initial control decision of this optimal open-loop solution, we again observe
the state and use the optimal control decision for the remaining one-stage
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Fie. 3

problem. This scheme uses the optimal open-loop initial decision at each
stage, but incorporates feedback in the observation of the actual state
attained. We call this scheme open-loop-optimal feedback control.

This control scheme differs from either of the previous two. The initial
optimal open-loop decision agrees with the feedback decision except for
starting at node A. There, as has been shown, the optimal open-loop control
dictates an upward decision. Therefore, the expected cost of the above
scheme is -. 84 + 1/4.85 843/.
We can conclude from this example that
1 the pure open-loop scheme incorporating no use of subsequent informa-

tion about actual transitions yields a large expected sum;
2) the pure feedback scheme where the state is assumed known when

the decision is made yields the smallest possible expected sum for a sto-
chastic problem;

3) the open-loop-optimal feedback scheme yields an intermediate ex-

pected sum. Although feedback is used, the fact that feedback is to be used
is withheld from the computation determining the control decisions, which
results in an inferior control scheme.

4. A continuous deterministic problem. Let us now consider briefly a
standard continuous non-stochastic control problem. Given an initial time
to and final time T, we wish to use control u(t), to <= <= T, so as to guide
a particle, initially in state x0, toward the origin x 0. We attach a cost
to using control and attempt to minimize the criterion function,

(4.1) u2(t) dt "4- x2(T),
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F. 4

where the first term represents the cost of control and the second term
measures the deviation from the origin at the terminal time. Motion of the
particle is given by the linear differential equation

(4.2) 2(t) ax(t) + bu(t).

This is a linear control problem with quadratic criterion and has been much
analyzed. We consider it briefly here in order to acquaint the reader with
the type of problem we shall consider subsequently and with the dynamic
programming technique of solution.
The classical necessary conditions for an extremum of the above problem

are given in terms of an adjoint variable or Lagrange multiplier k which
satisfies the equation

(4.3) k --aX

and terminal condition

(4.4) X(T) 2x(T).

The optimal control is given by the condition

(4.5) 2u + kb 0.

Solution of (4.3) with boundary condition (4.4) yields

(4.6) k(t) 2x(T)e,a(T-t),

and therefore

(4.7) u(t) -x( T)bea(T-t),
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so u(t) varies exponentially with time. The unknown terminal value of x,
x(T), can be expressed in terms of x(t) by substituting the control rule
(4.7) in (4.2) and solving. The resulting expression for x(t) in terms of
x(T) can be inverted, and the control at time is then given in terms of
the state at time by (4.7). Performing these steps we get

(4.8) x(t) X(to)ea(t-t) -}-
x(T)b
2a 2a

e2a(T-t) e-a(T-t)x( T(4.9) x to 1 -a -l- a
ea(T--t)x(t)

(4.10) x(T)
b2 b2

e,2a(T-t)+a
be2a(T-t)x(t)

(4.11) u(t)
52 52

e,2a(T-t)- a+
This is the feedback solution for control as function of state. The optimal
control is exponentiM in time, or, for a given time, it is a linear function of
the state.
The dynamic programming solution of this problem proceeds as follows.

Define an auxiliary function f(x, t) as the minimal obtainable value of the
criterion function (4.1) if we start the problem in state x t time t, to
_-< T. By the principle of optimality linking the initial decision with the
remaining optimal decisions, we hve

(4.12) f(x, t) rain [u(t)dt - f(x -- (ax -- bu)dt, Zr- dt)].
u(t)

Expnding (4.12) in Taylor series, dividing by dt and letting dt approach 0,
we get

(4.1a) 0 min -t- - (z -t- b) -t-

Differentiating with respect to to minimize gives

(4.14) 2u + b Of O,

and substituting u determined by (4.14) in (4.13), we obtain the nonlinear
partial differential equation

b2 (Of
(4.15) 0 \Ox] Of Of------4-----t- ax -ff -t-- -t
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Assuming f(x, t) has the separable form g(t)x and substituting in (4.15),
we find that g(t) satisfies the Riccati ordinary differential equation

-b2g2(t) + 2ag(t) + g’(t) O,

with

(4.17)

Solution of this equation yields

(4.18) g(t)- +

g(T) 1.

2a(T--t)e

b b e2a(T-t)+a
whence

e2a(T--t x2
(4.19) f(x, t)

b b
1 a + e2a(T--t)

Substitution in (4.14) yields the control scheme

be2a(T-t

(4.20) u(t)
b b

x(t),

which agrees with (4.11). Again., as in 2, we see that for a deterministic
problem the open-loop and feedback solutions are equivalent.

5. A continuous stochastic problem [2-5]. To construct a stochastic
control problem, we attach a random variable to the equation defining the
evolution of x. We write the discrete rule

(5.1) x(t - At) x(t) -- [ax(t) -t- bu(t)]dt -- (At),

where (At) is a stochastic process with, for all t,

(5.2) (1) E((At)) 0;

(5.3) (2) E(2(At)) At;
(5.4) (3) E(n(At)) 0(At), n > 2;

(5.5) (4) (Atl),..., (At) are mutually independent for non-over-
lapping intervals At1, At,
where E is the expected value operator, is a constant, and x o(dt)

means the limit as At -- 0 of
x

is zero. In the conventional notation [6],
At

(At) is written as the increment Azt z(t + At)- z(t), where z(t) is
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called a Brownian motion process. The limiting process as At -- 0 is the
continuous control problem we shall consider. Our criterion function to be
minimized is

(5.6) E u2(t) dt + x2(T)

the expected cost of control plus terminal deviation.
The optimal open-loop control is deduced by considering all possible

functions u(t), to <= <= T, and choosing the one that minimizes the cri-
terion (5.6). The cost of control integral is deterministic. Furthermore, if
x(T) is viewed, at the initial time to, as a random variable dependent upon
u(t), one notes that the variance x(r) of this random variable is independent
of u(t). Since the expected value of the square of a random variable is its
mean squared plus its variance, we have

(.7) E(x(T)) [E(x(T))] +
so we wish to choose that u(t) which minimizes

(5.8) u dt + [E(x(T))]2.

Due to the linearity of the equation of evolution (5.1), the expected value
of x(T) is the value of x(T) that results from integrating (5.1) with forcing
function u(t) and with the stochastic process ((At) replaced by its mean
value at each time, zero. Hence, our problem reduces, for the special as-
sumptions of linear equations and quadratic criterion, to precisely the
deterministic problem that we solved in the previous section.

This observation leads to a fourth control scheme, called certainty
equivalent control [7]. This scheme replaces the random variables in the
stochastic problem by their expected values and solves the resulting de-
terministic control problem. Certainty equivalent control is seen to be
equivalent to optimal open-loop control in the above example.
To obtain the open-loop-optimal feedback control for the above problem,

we express the control as a function of state, as was done in (4.11), and
use that control having observed the state transition. The actual realization
of the control function then depends upon the realization of the stochastic
process; one expects this scheme to perform better than the pure open-loop
solution.
The pure feedback control law can be derived by dynamic programming.

One defines f(x, t) as the minimal value of (5.6), nd writes

(5.9) f(x, t) min E[uAt + f(x + (ax + bu)ht + , + nt)].

Hence, expanding in series and taking expectations using (5.2) through
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(5.10) 0 rain

Therefore,

(5.11)

Of (ax -t- bu) + 1 r 02f Of]u + - -0- +

and we must solve the equation

(5.a2) o \ox_____/_
4

Letting

Of 1 Of Of+ a+- + -t

f(x, t) g(t)x + h(t),

g( T) 1,

h(T) 0,

we find that g(t) satisfies the same equation, (4.16), as in the deterministic
case. Since the optimal control only involves g(t), we have the same con-
trol rule as in 4, but not the same expected cost, due to the h(t) term re-
flecting the cost of the randomness. Hence, the optimal feedback control
duplicates the open-loop-optimal feedback scheme.
These equivalences of various control schemes are unusual and are the

result of out’ many assumptions of linearity and quadraticity. In the next
section we shall modify the problem slightly and demonstrate the dis-
similarity of the four different control philosophies we have distinguished.

6. Another continuous stochastic problem. We now modify the above
problem slightly. We assume that the variance of (At) in (5.1) depends
upon the control decision, with no randomness in the evolution of x if no
control is exerted. This assumption reflects reality in many applications.
We replace (5.3) by the equation

(6.1) E(2(At))

where z is a constant. We neglect the cost of control integral in the ob]ec-
rive function (5.6), since the cost of control is now reflected in the uncer-
tainty attendant upon the use of control. Our criterion function is now
merely

(6.2) E[xZ T) ].
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For simplicity, we take a 0 in the equation of evolution (5.1), and use
the continuous limit of

(6.3) x(t + At) x(t) + [bu(t)]At -t- (At).

We first consider optimal open-loop control. The vrince of the random
vrible x(T) s viewed at time to is

T

(6.) f u(t)J dr,

and the criterion function equals

(6.5) [E(x(T))] + u20- dt.

By the same reasoning as above, the expected value of x(T) is the value
yielded by replacing the stochastic process (At) at each time by its mean,
zero. We therefore have the same problem as in 4 and 5, except for
factor 0-2 in the criterion function and no ax term in the equation of motion.
The adjoint variable X(t) is, in this case, a constant with terminal value
2E(x(T)). The optimal control is given by

(6.6) u(t) _E(x(T))b
0.2

and is a constant function of time. Expressed in terms of state, we have

(6.7) u(t) x(t)

b T-+p
which, as before, is linear in the state at a given time. Using open-loop
control, the expeeted terminal value of x, if we sart at time 0 in stae
x(t0), is

(6.8) E[x(T)] x(to)

b T-to+
and the variance of the random variable x(T) is given by

zx(to)(T to)
(6.9) 0-:(r)

( 0-2..b T- to

Hence, the value of the criterion function is given by

O.2X (to)
(6.10) E[x(T)] [E(x(T))] + () 0.2
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We next analyze the open-loop-optimal feedback control scheme. This
involves using the rule (6.7) for control as a function of state. The equation
of motion becomes

(6.11) x(t-]- At) x(t)- x(t) At-- (At)
0.T- t-J-

If we define f(x, t) as the expected value of x(T) using the above rule, we
have

(.) f(z, ) z + , + zx
,0.

T-t-[-
which, after series expansion, letting At -- O, and taking the expectation,
gives

Letting f(x, t) have the form,

(6.14)
f(x, t) g(t)x2,
g( T) 1,

we obtain the linear homogeneous equation for g(t),

(6.15)
g’ -t- 1 0.

0.2 0.2’
2 g O,

T- t-t-- i b T-t-l-

so that

(6.16) f(x, t) x exp
T 1 0.

0.2 0.2T-- r + i b T r-t- i

(6.17) x exp 1--
b

(6.18)
f(x, t) g(t)x,

g( T) 1,

To evaluate the expected terminal x value, given that we start in state
x(to) at time to, we can solve equation (6.13) with solution of the form
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obtaining

0.2 x(t0)
(.) [z(T)]

b - 0+ P
This resulg is ghe same as ghe pure open-loop resulg (6.8), which is ex-
plained by he lineariy of he process.

Analysis of ghe feedback scheme begins wigh ghe definigion of f(x, ) as
the value of the criterion if we start in state x at time t, t0 N T, and
use an optimal policy. By the principle of optimality, we have

which yields

f(x, t) rain E[f(x d- (bu) At d- , -4- At) ],

(6.21) O= minlbuOf U20.2 02f
Yz -t

2 ox gi

Hence, setting the derivative with respect to u equal to zero to minimize,

b Of
Ox(6.22) u
Of

o"
OX

and, substituting (6.22) in (6.21),

b Ox] Of(.ea) o e
j

Setting

(6.24)

we get

(6.25)

f(x, t) g(t)x,
g( T) 1,

5
0 g(t) d- g’(t).

Solving for g(t),

(6.26)

(6.27)

f(x, t) e-(b=/a)(T-t)x2,
bx

U
0"

If we now define h(x, t) to be the expected terminal x value starting in
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state x at time and using control (6.27), we can characterize h(x, t) by

(6.28) h(x,t) E h x- ArT,,t-l--At

where the boundary condition is now

(6.29) h(x, T) x.

Letting

h(x, t) g(t)x,
(6.30)

g(T) 1,

we find

(6.31) h(x, t)

The final control philosophy we have mentioned above is certainty
equivalent control, the optimal control for the deterministic system that
results from replacing all random variables in the stochastic problem by
their expected values. This yields the problem: choose u(t) so that x(T)
given by

"2( t) bu( t)
(6.32)

x(t0) x0,

minimizes the expression

(6.33) x2(T).
A little reflection shows that x(T) can be made zero by any of an infinite
class of controls, and the problem is therefore not meaningful.
We are now in a position to recapitulate our results. Foremost is the

conclusion that the four different control schemes give four different opti-
mal control rules. For open-loop control we have a rule given as a function
of time and, naturally, dependent upon to, x(to), and T. This rule, which
never depends upon the realization of the stochastic process and which,
in our particular example, is a constant function of time, is (by (6.6) and
(6.8))

(6.34) u(t) x(to)

The open-loop-optimM feedback control law is expressed as a function of
current state and time and depends upon the realization of the stochastic
process. It does not depend explicitly on the initial state or time. This law
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(6.7) is

(6.35) u(t) x(t)

Note that this law is the same as (6.34) initially (for state x(to) at time
to) and that it duplicates (6.34) if and only if the stochastic process takes
on its mean value, zero. The feedback control law depends on the current
time and state, just as does the above scheme. However, due to the fact,
stressed earlier, that the optimization mathematics is aware of the feed-
back nature of the control, we get a law different from (6.35), namely,
(6.27),

(6.36) u(t) bx(t)
0.2

which, in this particular case, does not happen to depend explicitly on
the current time. The certainty equivalence concept, as noted earlier, is
inappropriate here and yields no unique control law.

If we examine the asymptotic behavior of the criterion function for a
long process (T - starting at time zero in state x0, we see that the
expected value of x2(T) approaches zero in all cases. This is because for
long process very little control is exerted at any particular time, hence
there is little randomness and we can steer assuredly toward the origin.
The nature of the approach to zero as a function of the length of the
process, T, is significant. For open-loop control the approach is inverse-
linear, with, by (6.10),

(6.37) E [x2(T)] O.x T-1.
b

For open-loop-optimal feedback control we have inverse-square con-
vergence, with, by (6.17),

4

(6.38) E[x2 T 0. exo
b

Finally, the feedback control scheme yields negative-exponential con-
vergence by (6.26)

6.39 E[x T e-(bI)rXo.
Both the open-loop and open-loop-optimal feedback schemes can be ex-

pected to reach the same terminal x value (see (6.8) and (6.19)), but due
to its feedback nature, the latter scheme has less variance associated with
it. The pure feedback control has an expected terminal value much closer
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to the origin (see (6.31)) since one can aim closer with the assurance that
deviations resulting from the randomness caused by the greater control
will be corrected later. Examining the control rules themselves for a fixed
initial point, one finds that the pure feedback scheme calls for greater
control. This can be explained by the fact that the feedback scheme can
afford to aim closer to the origin in the assurance that overshooting due to
randomness can be caught and corrected. While the open-loop-optimal
feedback scheme will also catch and correct overshoot, the computation
of the control rule is not cognizant of this fact and is, therefore, more con-
servative. Pure open-loop control, of course, will not compensate.

7. Conclusion. We see then that for any but the simplest stochastic
problems, the various control philosophies that are equivalent for de-
terministic problems are quite dissimilar. Further, we have obtained some
quantitative idea of the relative behavior and performance of several
different optimal control schemes.
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ERRATA" A SOLUTION OF THE GODDARD PROBLEM*

BORIS GARFINKEL

Page 366. In (86), replace > mx by <om.
Page 366. In lines 5 and 6, replace the sentence beginning with the word

"From" by the following. From (86) and Lemma 3, 0 -< v(x) < u(x), so
that, by (83), gv < 0 for all values of v between 0 and v(x).
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ON THE EXISTENCE OF OPTIMAL FEEDBACK CONTROLS. II.*

T. F. BRIDGLAND, JR.
1. Introduction. As has been noted recently [1], [2], two of the major

problems of optimal control theory remain unsolved except in special cases.
These problems are the ones of existence and of synthesis. Generally speak-
ing, the problem of existence, given a control system and a performance
criterion, involves the determination of conditions sufficient to ensure the
existence of a control function which is optimal relative to the criterion..
The synthesis problem requires the expression of the optimal control--
granting its existence--as a function of the state of the control system. This
function is called an optimal (feedback) control law.

In [3], a combined approach to the existence and synthesis problems is
developed by means of a generalization of a technique originated by
Carath6odory [4] and recently expounded in connection with optimal con-
trol by Kalman [5]. In order that we may develop the central purpose of
the present paper, let us outline here those results of [3] which pertain to
existence and synthesis.
Given a control system, represented mathematically by a vector differ-

ential equation

"2 f(t, x, u(t) ),

together with a specified set of control functions, u(t), it is shown in [3]
that if L(t, x, u) is a functional possessing the property of determinacy,
i.e., if there is a unique function, 0(t, x), for which both

L(t, x, ,o(t, x) 0

and

L(t, x, u) > O, u o(t, x),

arc satisfied, then ,o(t, x) is the unique optimal feedback control law for
the control system in the sense that, along the trajectory, 2(t; to, x0),
of the feedback system

we have
t#

"2 f(t, x, ,o(t, x)),

L(r, (r; to, x0), 0(r, (r; to, x0))) dr O,

* Received by the editors March 20, 1964.
Department of Mathematics, University of South Carolina, Columbia, South

Carolina.
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whereas, along any other trajectory, x(t; to, Xo, u), of the control system,
we have

f L(r, x(r; to, x0, u), u(r)) > 0.
to

In these expressions to represents the initial time, Xo the initial state of the
control system, and an appropriate final time depending on to, x0,

and u.
Now in any given problem, the likelihood that L(t, x, u)--the choice of

which usually is determined by extramathematical factors--will satisfy
the determinacy conditions is slight. However, as pointed out in the final
remarks of [3], if a gauge function, V(t, x), can be determined in such a
way that L*(t, x, u) =-- V+(t, x; u) A- L(t, x, u) has the determinacy
property, where V+ is a certain generalized total derivative of V, then the
0(t, x) so determined is the unique optimal feedback control law relative
to the criterion

t#

f. L(r, (r; to, x0, u),u(r)) dr.
to

Under the highly restrictive assumption that V(t, x) is continuously dif-
ferentiable with respect to both independent variables, Kalman [5] showed
that V(t, x) can be found as a solution to a Hamilton-Jacobi differential
equation. It turns out that V(t, x) is then given by

t#
Y(t, x) Jt L(r, 4(r; t, x), co(r, 4(r; t, x) dr.

However, Pontryagin and his collaborators [1] have given several examples
of basic problems of optimal control in which V(t, x), as determined by
the above, does not possess the strong differentiability properties required
by Kalman’s approach. Nonetheless, this representation of V(t, x) has
considerable appeal not only from the standpoint of the insight it conveys
but also by virtue of the fact that the application of dynamic programming
to optimal control problems rests upon the existence of such a representa-
tion for V.
Once the assumption of continuous differentiability for V is abandoned,

it is still possible to consider a generalized Hamilton-Jacobi equation (the
first of the determinacy conditions),

V+(t, x; o(t, x) A- L(t, x, o(t, x) O,

and it is with the construction of a solution, of the desired form, of such a
generalized equation that this paper is concerned. Our construction requires
the introduction of a vector p(t, x) which corresponds to the Lagrange
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multiplier of classical methods. We shall show that if p(t, x) satisfies a
certain total differential equatiot---closely related to the orditary differential
equation of Pontryagin’s maximum pritciple--as well as an appropriate
transversality condition, then a unique optimal feedback control law,
0(t, x), exists and V(t, x) has the desired form. In addition, we discuss a
method of finding p(t, x). Our notation and terminology coincide with that
of [3] and a reasonable familiarity with that paper is assumed.

2. Problem formulation. Let U comprise the totality of measurable
functions on I which take values in a given subset q) c Rm. Consider thc
differential equation

(1) i f(t, x, u(t)),

where x, f are vectors in R. We assume the following properties for
f(t,x,):

(i) for each bounded subset D of R, f(t, x, ) is bounded on I X D X q)

and, for each u U, f(t, x, u(t) is measurable in for each x and continu-
ous in x for each t;

(ii) the Jacobian matrix f(t, x, ) exists and is bounded on I X D X q’

for each bounded D Rn.
The local existence and uniqueness of solutions of (1) is assured by (i),
(ii); we assume further

(iii) each solution of (1) can be continued to all of I.
These three conditions ensure that (1) is of class A [3].
We assume the existence of a function t#(t, x, u)--the final time--on

I X R X U to ](t), satisfying
(iv) t#(t, x(t; to, Xo, u), u) t#(to Xo, u), to <= < t#(to, Xo, u), and

we define the set B, as in [3], by

(2) B {(t,x) I X Rnit#(t,x,u) > for some u U}.

The set of all u U for which the defining property of B is satisfied will be
denoted by U(t, x).

Let L(t, x, ) be a function on I R to R for which
(v) L(t, x, ) is bounded on I X D X q) for each bounded D R and,

for each u U, L(t, x, u(t)) is measurable in for each x and continuous
in x for each t;

(vi) the gradient vector L(t, x, ,) exists and is bounded on I X D X
for each bounded D Rn.
We shall call a function on I X R to R" a gauge vector if each of its com-

ponents is a gauge function [3]. Now let us suppose there is a gauge vector
p(t, x) on I X R to R for which

(vii) there exists a function 0(t, x) on I X R to such that 0(t, x(t)
is measurable for every continuous x(t);
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(viii.) in I X R, the condition o(t, x) implies

L(t, x, ,) + p(t, x).f(t, x, ,;) > L(t, x, ,o(t, x) -+- p(t, x).f(t, x, ,,t,t, x) ).

Defining oC (t, x), (t, x) by

2(t, x) =-- L(t, x, ,o(t, x)),

(t, x) =-- f(t, x, o(t, x) ),

we assume that 2, : are measurable in for each x, continuous in x for each
t, and thut for (t, x) D, i 1, 2,

(ix) oC(t, x) (t, x)l =< A(D) x Xl ]l,

(x) if(t, x.) if(t, x)[! -< A(D)II x. x

for each bounded D R. It is a consequence of (x) and our previous as-
sumptions on f that

(3) 2 if(t, x)

is of class A.
Now define the set B, as in [3], by

(4) / {(to,xo) Blo(t,y(t;t0,xo)) U(to,xo)},

where 2(t; to, Xo) is the solution of (3). For/ we assume
(xi) / is an (n -+- 1)-cell’/ {(t, x) 0 _<_ < T; a < x < b}.
We may define a functional V (t, x) on I X R by

(,x)

v(t, x) (, (; t, x)) d, (t, x) ,
(n)

0, elsewhere,

where (t, x) is defined by

(to, xo) t(o, xo, uo(; to, Xo) ).

We ssume
(xii) (t, x) is a gauge function on/ having a nonnegative Y-derivate.
It is a consequence of (iii), (iv) that, if (to, Xo) /, then (t, (t; to, Xo))
/ for all [to, (to, Xo)). Hence, from (5) there is obtained

(to,xo)

(6) V(t, 2(t;to,xo))= Jt (-, (-; to, Xo)) dr, 0 < [(to, Xo).

Now suppose that for fixed (to, Xo) /, u(t) is n rbitmry control in
U(to, Xo);then by virtue of (iii), (xi) nd the continuity of x(t; to, :Co, u),

The notation p(t, x).f(t, x, ) denotes the sclr product of p nd f.
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(t, x(t; to, Xo, u)) for all [to, T’) for some T’ such that to < T’ =< T.
Hence, again there is obtained from (5)

(7)
V(t, x(t; to, Xo u) ft

(t’x(t;t’x’u))

(r, 2(r; t, x(t; to, Xo u) dr,

to <-_ . T’.
Note. In future arguments we shall frequently use the abbreviated nota-

tion Xu(t) in place of x(t; to, Xo u).
In the sequel, we shall show that, under appropriate conditions, V(t, x)

as defined in (5) is a gauge function on B. We then utilize the results of [3]
to show that 0(t, x) is the unique optimal feedback control law relative to
the criterion

t#(to ,xo ,u)

ft L(r, xu(’), u(-)) dr.

These results are contained in Theorem 1 below. Before stating this theo-
rem, however, it will be convenient to establish a few lemmas.

3. Fundamental lemmas.
LEMMA 0. Let J [a, b] be a closed interval in I and let f(-, t) be a real-

valued function defined on J X J which is integrable in - for each t, contin-
uous in for each r and which satifies

If(v, tz) --f(r, t) <- M(-) It2- t I,
where M(r) is an integrable function of r; then for the function F(-, t) de-
fined on J X J by

F(-, t) f(h, t) dh,

it follows that the partial derivative, Fr(’, t), satisfies Fr(t, t) f(t, t) al-
most everywhere on J.

Proof. For each J, there is a set Nt for which #o(Nt) 0 Stlch that

F,(,. t) f(-. t), TJ-Nt.
Let p be the set of rationals in J; for the set P UtpNt we have t0(P) 0.
Now let be an arbitrary but fixed point in J P and let {tn} be a sequence
of points in p having as a limit. From the Lipschitz condition and the
estimate

+h t-t-h

h- ft f(h, t) dh f(t, t) <- h-1 If(h, t) f(h, t,)] dh

t+h-- h-1 f(X, t,) dX f(t, t,) d- If(t, t,) f(t, t) I,
at
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we obtain

h-1 f(,, t) dX f(t, t) <= t h-1 M(h) d
t .t

+ h-1 ft f(h, t) dh f(t, t,) + If(t, t,) f(t, t) I,

from which the conclusion of the lemma follows readily.
Our next result, which plays a fundamental role in the remainder of our

arguments, is a generalization of the classical rule of Leibnitz for differ-
entiation of an integral with respect to a parameter.
LEMMA 1. Let Jo and J be closed intervals in I and let f(r, t) be a real-

valued function defined on Jo X J1 which is measurable in r for each t, con-
tinuous in for each r, and bounded by an integrable function of r on Jo X J
let a( 3( be absolutely continuous, nondecreasing functions on J to Jo for
which a < . If, for almost every J1, ft(T, t) exists for almost all r Jo and
is bounded On Jo X J1, then the function v(t), defined by

t)

v(t)
.(t)

f(r’ t) dr,

is absolutely continuous and, for almost all J
,.(t)

(t) f((t), t)(t) f((t), t)&(t) + ]- ft(r, t) dr.
(t)

Proof. The absolute continuity of v(t) is readily verified; we omit the
verification and show that the derivative on the right v’ has the form indi-
cared for . For h > 0 we find

h-[v(t -- h) v(t)] h-1 [f(r, -- h) f(r, t)] dr
J(t)-- h-1 f(t+h) If( r, - h) f(r, t)] dr

J fl(t)

faa (t-h)

h- [f(r, + h) f(r, t)] dr
(t)

+ h- f(r,t) dr- f(r,t) dT
[3( t) t)

(t)

The first term on ghe righg of (’r) tends to f(r, ) dr as h -- 0 (el.
.a(t)

[6, p. 217]). The secod and third terms on the right of (,) tend to zero

A sufficient condition for this is ttmt the upper right-hand derivtes of a, /
be nonnegative lmost everywhere [6, p. 207].
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with h by virtue of the continuity of a, and the boundedness of ft(T, t).
By [6, p. 211], the final terms in (,) may be replaced by

t+h

() h-lit g(-, t) dr,

where the function g(r, t), defined by

g(r, t) =-- f((r),t)(r) f(a(r),t)a(r),

satisfies the hypotheses of Lemma 0 on J J. Hence, the consequent of
that Lemma implies that the expression in (5) tends to g(t,t) as h 0 for
almost all J.
LEMMA 2. For fixed r > O, the solution, (r; t, x), of dx/dr (r, x) is a

gauge vector on the set S t, x 0 < r, x D }, where D is any closed
sphere in R.

Proof. We have

2(; t, x) x + if(X, (X; t, x))

hence, we my obtain the estimate

+ t t sup (X, 2(X; t, x))
tl,t2]

+ A(D) (X; t, x) (h; q, x) dh

From this estimate, there follow by virtue of the Bellman-Gronwall lemma
the inequalites

(;t + , x + ) (; t,

(s) {][ + I[ sup (x, (x;t + , x + ))]}
t, t+h]

xp (D) I;

(; t. + ., x.) (; t., x.)]
(10) . s.p v(x, (x; t. + n, Xn))il xp (D)] t. .

tn,

By virtue of (i), sup ff may be replaced in these inequalities by
sup,, f(t, x, ), and ]r by a bound of appropriate magnitude.
The assertion of the lemma then follows by virtue of the definition of gauge
function [3], continuity being given by (8), the local Lipschitz property by
(9) and uniform absolute continuity (acu) by (10).
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LEMMA 3. For fixed r > O, (r, 2(r; t, x)) is a gauge vector and
(r, 2(r; t, x) a gauge funclion on the se S of Lemma 2.

Proof. The ssertion is direct consequence of (ix), (x), nd n rgument
similar to that of Lemm 2.
LEMMA 4. The function V(, x) defined in (5) is a gauge function on .
Proof. For (t, x), .(t, x) , the following estimate is readily ob-

tiaed from (5)

V(t, xz) V(t, x) {[[ x x + [t t sup (, (; t, x)) [}
[t,t]

(t ,x)

A(D) exp (A(D)[ r- t I)

+ t t sup (, (x; t, x))
[t,tz]

+ (t, x) (t,, x,) sup I((, (; t, x)) I.
[(tx,xx),(t,x)]

By an rgument similar to that for Lemm 2, the conclusion follows from
this estimate in conjunction with (v) and (xii).
Now let us define function q(z, t) by

0
(.) q(, t) t (; t, x(t));

of course, q also depends on (t0, x0), but this will be fixed in any particular
argument. The existence of q(r, t) for almost all t [to, T’) and each
r [t0, T) is guaranteed by Lemma 2 and [3, Lemma 4]. Since, for each
C [to, T’) and each r [to, T),

(2) (r; t, x.(t)) Xu(t) q- (, a(,; t, Xu(t))) d,

an estimate, similar to (8), based on (12) shows that q(r, t) is bounded
uniformly on [to, T) X [to, T’). As a consequence of this boundedness and

0
(r, 2(r; t, x(t))) is bounded(x), we conclude by a similar estimate that

uniformly on [to, T) X [to, T’); that this latter derivative exists is a conse-
quence of Lemma 3 and [3, Lernma 4]. An application of Lemma i permits
us to write

(13)
q(r, t) f(t, Xu(t), u(t)

(,, (,; t, x(t)))(t, Xu(t)) + gt dh
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for almost all [to, T’) and each r [t, T). A partial differentiation of
(13) with respect to r then permits the statement of the next lemma.
LEMMA 5. For almost every [to, T’), q(r, t) satisfies

o o (, (; t, Xu(t)))o- (’’ t) b

q(t, t) f(t, xu(t), u(t) ) (t, xu(t) ),

almost everywhere on [t, T).
LEMMA 6. (a) For each (to, Xo ,

d_ V(t, 4(t; to Xo) (t, 4(t; to Xo)
dt

almost everywhere on [to, (t0, x0) );
b For each (to, x0) /,

d V(t,x(t)) --2(t, xu(t)) -t- 2((t, xu(t)) 2((t, Xu(,t)); t,x(t)))dt

(t,x(t)) 0d (t, Xu(t)) + 2(-, (r; t, xu(t))) dr
dt Ot

almost everywhere on [to, T’).
The proof of (a) consists merely of differentiating (6), whereas (b) is a

consequence of application to (7) of Lemma 1, together with (xii) and
Lemma 3. In the latter case, the proof is similar to that for Lemma 5 and
for this reason we omit it.

Consider the functional k(t, x, ) defined by

k(t, x, ) =-- L(t, x, ) + p(t, x).f(t, x, )
()

(t, x) p(t, x).ff(t, x);

then for all (t, x) I Rn,/c(t, x, ) has a minimum on at o(t, x). Let
(to, xo) / and, for arbitrary fixed u U(to, xo), let a satisfy to < < T’.
Define x(z) and *(t, a, ) o(t, (t; , ()). Then for fixed
r (, T), the function k (r, 2(r; t, Xu (t)), *(, a, ) has a minimum
at a; hence,

(15) o_ (,, (; t, z(t) ) ,*(, , ) ) I--- o
Ot

for each for which this derivative exists. Thus we obtain
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LEMMA 7. For each (to, Xo and each r t, T

0- 2(’’ (r; t, x(t))) L(r, (r; t, x(t)), ,(r, t)).q(r, t)

(16) -[- p(r, (r; t, x(t) ).[f(r, (’; t, x(t) ), ,u(r, t) )q(r, t)

(,(;,Xu(t)))]

for almost all [to, T’), where ,u(’r, t) o(r, :(r; t, xu(t) ).
LEMMA 8. If p (t, X) satisfies

(17) p+(t,x;o(t,x)) - fxr(t,x,o(t,x))p(t,x) - Lx(t,x,o(t,x)) O,

then the right hand side of (16) has the value

[p(r, (r; t, Xu(t) ).q(r, t)]

for almost all - [t, T).
Proof. For (to, Xo) /, (17) implies

0- p(’’ (’; t, zu(t)) 4 f,r(’, (’; t, x(t) ), u(r, t))p(-, (-; t, x(t)- L(r, (r; t, x(t) ), ,(r, t) ) 0

for almost all [t, T). If the scalar product (on the right) of this equa-
tion with the vector q(r, t) be formed, the identity (fp).q p.(fq)
noted and Lemma 5 invoked, the conclusion follows readily.

4. Sufficient conditions for optimal feedback control. From Lemma 6(a),
it follows by virtue of [3, Lemma 3] that

(18) V+(t,(t;to,xo);,po(t, 2(t;to,xo))) + 2(t,(t;to,xo)) 0

ulmost everywhere on [to, (to, Xo) for ech (to, Xo) /. In a similar way,
replacing (O/Ot)2(r, (r; t, Xu(t))) in Lemm 6(b) by

--(0/0-)[p(-, (-; t, x(t))).q(r, t)]

---as is justified by Lemmas 7, 8 provided p(t, x) satisfies (1.7)--we may
write, by virtue of (viii) and [3, Lemma 3],

v+(t, x(t); u(t) + L(, x(t), u(t) )
(19) { d }> (, (’; t, Xu(t))) t p(’ :(’; t, x(t))).q(, t)

The superscript "T" denotes the transposed mtrix.



OPTIMAL FEEDBACK CONTROLS 147

almost everywhere on [to, T’) for each (to, x0) /. In (19), we have
written simply for l(t, x,(t)).
Applying [3, Lemma 2] to (18), (19) leads to the conclusion that, for

almost all (t, x) /, the following statements hold"

(20) v+(t, ; 0(t, x)) + (t, ) o;
v+(t, x; u(t) + L(t, x, u(t)

(9) > {((, x), ((t, x); t, x))+(t, x; u(t))

p((t,x),((t,x);t,x)).q((t,x),t)}

when u(t) 0(t, x). If the transversality condition

(xiii) ((t, x), 2((t, x); t, x))+(t, x; u(t))

-p((t, x), ((t, x); t, x)).[+(; t, x; u(t))]-_(,) >= o
for almost all (t, x) / when u(t) 0(t, x),

be assumed, then (19a) becomes

(21) V+(t, x; u(t)) + L(t, x, u(t)) > 0 when u(t) o(t, x).

Under this condition then, (20) and (21) together are equivalent to the
statement that L*(t, x, u(t) =- V+(t, x; u(t) + L(t, x, u(t) is determi-
nate on B.
Now let us define the generators H, R by

() II(., o, zo, ) =- v(, z()) + c(-, z(), ()) d;

Inasmuch as the generator II and the function L* satisfy the eonditions of
[a, Theorem ], it follows from that theorem that R(; 0, :co, ) satisfies
the hypotheses of [a, Theorem 1]. Thus we may conclude from the latter
theorem"

[(to,xo) 2(r, (r; to, Xo) dr + V((to Xo) 2((to x0); to, Xo))
(2) 0

V(to, Xo);
t#(t ,x ,u)

f. L(-, x() u() d + Xo u) Xo u)))V(t#(to Xu( t#(O
(25) o

> V(to,xo)

for each to and almost all Xo such that (to, Xo) 1. Of course, from (24)
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and (5) we find that

(26) v((to, xo), ((to, x0); t0, x0)) o;
however, (26) can be deduced directly from (5) by continuity, so that (24)
contains nothing new.

If the (apparently artificial) assumption

(xiv) u(t) uo(t; to, Xo) implies (t#(to, Xo, u), Xu(t#(to, Xo, u))) if_

is made, then it is a consequence of (25) and (5) that
t//(to ,xo ,u)

(27) f L(-, x(-), u(-)) dr > V(to, Xo)
.t0

and this is all that is needed [3, (4)] to justify the assertion that, for
(to, x0) /, 0(t, x) is the unique optimal feedback control law relative
to the criterion Q(t0, x0, u) defined by

ti/ to ,zo ,u)

(28) Q(to xo u) J, L(-, x,(r), u(-)) dr.
to

Remark. The assumption (xiv) may be justified in the following way.
Certainly if the consequent of the assumption holds, then (27)ensues.
Suppose, however, that for some (to, Xo) / and some u U(to, Xo),
u Uo, that (t (to, Xo, u), xu (t (to, Xo, u) )) /. Then for the "extended,
control" u (t) defined by

u(t),
u*(t)

ul(t),

to <= < t( to xo u),

t#(to, Xo, u) <- t,

where ul is optimal from (t#(to, Xo, u), x=(t#(to, Xo, u)), it is a readily
verifiable consequence of (25) and (7) that

t//(to ,xO ,u*)

f C(, Xu.(’), u*(-)) d > V(to, Xo).
to

Thus ,o(t, x) is still optimal relative to such "extended controls". How-
ever, rather than become involved in the obviously messy complications
associated with the concept of extended controls, assumption (xiv) is
made. This discussion shows that (xiv) is thus a convenience rather than an
essential.

Let us now summarize the foregoing results.
THEOnEM 1. If (i),..., (xiv) hold, if p(t, x) satisfies the differential

equation (17), then for each to and almost all Xo such that (to, Xo) B, the
control

uo(t; to, xo) =- o(t, (t; to, xo))
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is the unique optimal control in U( to Xo) relative to the criterion Q( to x0, u)
defined by (28), and the minimum value of this criterion is V(to, Xo).
The assumptions (viii), (xiii), (17) are the "key" hypotheses of Theorem

1 and, as such, may be said to constitute a "minimum principle" for feed-
back controls. The similarity of this "minimum principle" to the "maxi-
mum principle" of Pontryagin is obvious.

5. Determination of p(t, x). Our discussion of the determination of the
vector p(t, x) will be formal, since it involves the solution of a generalized
nonlinear total differential equation. The existence of solutions to such
equations is moot although in some applications it may be obvious.

Let us suppose, for each t, x) I X R and each fixed p C Rn, that the
functional

(29) L(t, x, ) -- p.f(t, x, )

has a unique absolute minimum over at 0(t, x, p). Now suppose that a
gauge vector p(t, x) can be found as a solution of the differential equation

p+(t, X; (o(t, x, p) + fr(t, x, o(t, x, p) )p
(30) - L(t, x, o(t, x, p) O.

If this can be done, then it is clear that by taking

there follows

o(t, x) =-- o(t, x, p(t, x) ),

2(t, x) L(t, x, (o(t, x, p(t, x) ),

(t, x) f(t, x, o(t, x, p(t, x) ),

and (30) reduces to (17). There remains only to verify that p (t, x) satisfies
the transversality condition (xiii); actually, the latter condition serves as a
boundary condition for (30).

6. Discussion. While it might seem at first blush that the requirement
(characteristic of the Carathodory technique) that 0(t, x) be single-
valued is too severe, a little thought convinces one that uniqueness of an
optimal control is essential to the solution of the synthesis problem. In-
deed, one wonders if the requirement of such uniqueness should not ex-
tend even to the "open-loop" situation, i.e., the case of programmed con-
trols. For if, from a given "phase" (to, x0), there is more than one optimal
control relative to a given criterion, one is facedin practicewith a choice
of only one of these optimal controls and in such a choice there is implicitly
involved another criterion by means of which the aptness of the choice
may be judged. One cannot avoid the conclusion that if the original criterion
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had been sufficiently "strong", the necessity for such choice would be
obviated.
Theorem 1 having been established under the assumption (xi), it is an

immediate corollary that the theorem remains true with/ assumed to be
of the form

/ /(t, x) 10 _-< < T, a __< x < b},

a half-open (n - 1)-cell. But by virtue of a well-known representation of
an arbitrary aonvoid open set [6, p. 18], the validity of the theorem may
now be asserted for any nonvoid bounded open/. Actually, we could as
well have used, in place of (xi), the assumption that/ is an appropriately
formed set of positive measure. Then, in place of the continuity argument
used to establish (7), we could have used [3, Lemma 2].
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THE BANG-BANG PRINCIPLE FOR LINEAR CONTROL SYSTEMS*

L. M. SONNEBORN AND F. S. VAN VLECK
1. Introduction and statement of results. The bang-bang principle has

been treated mathematically by many people starting with Bushaw [1] and
continuing to Neustadt [2]. A rather complete bibliography of these and
other results may be found in [2]. For linear systems the most general results
are those given in [2]. The purpose of this paper is to extend these results
as far as is possible in one direction. For some particular systems, it may
be possible to use a smaller restraint set, but unless additional hypotheses
are imposed on the system our results are the best possible.
We consider the real linear differential system

(1.1) A(t)x 27 B(t)u - f(t),

where A (t) is an n X n matrix, B (t) is an n X m matrix, and f(t) is an
n-vector, each measurable on E and integrable (absolutely) on each
compact interval. For euch measurable (und integrable) function u, called
a control function, on a compact interval to _-< _-< t, the solution of (1.1)
initiating at x0 is

(1.2) X(g) X(t)Xo "- X(t) f x-i(8)[B(8)u(8) -- f(s)] ds,

where X(t) is the fundamental solution of the homogeneous system
2 A(t)x for which X(to) I. We consider control functions u(t) on
to <_- =< tl which lie in a nonempty, bounded restraint set U c Era; that
is, u(t) U for each t, to =< -< tl.
With these fixed dat {(1.1), x0, to, U}, the set of M1 endpoints X(ti)

defines the set of attainability Kv(ti) c E. For any compact V E’,
V0 will denote the set of extremal points of H(V), the convex hull of V,
and will be called the set of extreme points of V.

In this terminology our main results are the following theorem and its
corollaries"
THEOaE 1. If U E is compact and convex, then Ko (tl) and Kv(t)

are compact and convex. Further,

(1.3) Ko(h) K(t).

ConoLbhnY 1. If V E is a compact set with convex hull H(V) and
extremal point set Vo and W is any set such that Vo W H V), then

(1.4) K(t.) K,()(t) =K0(tl).
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To see that Corollary 1 follows from Theorem 1, note that A c B implies
that K(tl) Ks(tl) and hence

Ko(t) c Kw(t) c

But on the other hand, Kv0 (ti) K.(,)(t) by Theorem 1, so that all three
sets are equal.
COnOLLAnY 2. If Vo is the set of vertices of a compact polytope V, then

K0(ti K,(t).

It is well known that K(tl) is compact nd convex whenever U is;
the new feature of Theorem 1 is the ssertion that K0(t) is compact nd
convex nd that K0 (t) ctully equals K(t). Theorem 1 sserts that
nything that cn be done by control hving vMues in U cn be done by

control ranging over only the set of extreme points of U. Corollary 2
includes the results of LSlle [3] nd Pontrygin [4]; LSMle’s bng-bng
principle for the system (1.1) restricted U to be pmllelepiped while
Pontrygin’s results were for polytope. Theorem 1 Mso extends the result
of Neustadt [2] ia so fr s linear systems re concerned. Neustadt’s result
as pplied to linear systems cn be stated s follows.
THEOnEM 2. If V E is compact, then K,(t) is compact and convex.

Further, if H(V) is the convex hull of V, then

K,(tl) KH(,)(tl).

To see that Theorem 1 implies Theorem 2, suppose we have a compact
set V Em. Then V0 V H(V) and V0 [H( V)]0 Hence by Corollary
1, Theorem 2 follows. On the other hand, Theorem 2 does not necessarily
imply Theorem 1 if m > 2. This is evident if one recalls that, for m > 2,
the set of extreme points of a compact convex set need not be compact.

2. Proofs. If f is a function with domain E and A E, f will denote
the restriction of f to A. U is a fixed compact convex subset of Em, and
H= {x E+l’+l.= x= 1;xi=> 0, i= 1,2,...,m+ 1} the standard
m-simplex of E’+1.
DEFINITION. A subset A of a Euclidean space is an analytic set if, and only

if, there exists a closed set A (n n2 nk) for each finite sequence (n n2
n) of positive integers such that

A [J A(n,n, ...,nk),
kl

where S is the set of all infinite sequences of positive integers.
LEMMA 1. If E i8 a bounded (Lebesgue) measurable subset of E and

u E ----> E is measurable and A E is an analytic set, then u- A is measur-
able.
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Proof. If > 0, there is a compact subset C c E such that E C has
measure less than e and uc is continuous. Since uc(C) is compact, uc(C)- -(A which is analyticf3 A is analytic. Hence uc (uc(C) f’l A) uc
and therefore (Lusin [5, p. 152]) measurable. Since was arbitrary, u-l(A)
is measurable.
LEMMA 2. If A is a G (countable intersection of open sets) in a complete

metric space (X, d), then there is a metric d* for A such that (A, d*) is a
complete metric space with the same topology as (A, d) and d*(x, y) >__ d(x, y)
for all x, y A.

See Hausdorff [6, p. 244].
Lemma 3, which follows, is an extension of a lemma due to Filippov [7].

It and its proof are due to N. Aronszajn (private communication) whose
generous help is deeply appreciated by the authors.
LEMMA 3. If V E i8 a G and O’V X [0, 1] ---> E is continuous and

y" [0, 1] -- E i8 measurable and satisfies

y(t) (V, t) for all [0, 1],

then there is a measurable function v’[0, 1] -- V such that

y(t) (v(t), t) for all [0, 1].

Proof. Define "V X [0, 1] -- E" X [0, 1] by ’(u, t) ((u, t), t).
Clearly ’ is continuous. If e > 0 and u V, then, due to the compactness
of [0, 1], there is a neighborhood N(u) of u such that d(’(N(u), t)) < e

for all [0, 1]. (d(A) is the diameter of the bounded set A.) We also can
require that d*(N(u) ), the diameter of N(u) in the complete metric
topology for V given by Lemma 2, also be < e. Thus, since V is separable, we
inductively (on /c) define for each finite sequence (n, n, ..., n) of
positive integers closed sets V(nl, n) such that

(i) V()- V,
(ii) d*(V(nl, ...,n)) < 2-forlc > 0,
(iii) V(nl, ..., n_) Un V(n, ..., nk-i, n]) for k > 0, and
(iv) d(b’(V(nl, ..., n), t)) < 2-.
Next we let y"[O, 1] -- E [0, 1] be given by y’(t) (y(t), t), and

let I() [0, 1]. We now prove that there are measurable sets I(nl, n)
corresponding to the above sets V(n, n) such that

(v) I(Z;) [0, 1],
(vi) y’(t) 4)’(V(nl, ’’’, n), t) for each I(n, ..., n), and
(vii) I(nl n_l) Unk I(n n_l n]) for all/c > 0,

where, clearly, if such [(ni, n.) exist the last union may be made into
a disjoint union by the usual process.
By hypothesis, I() satisfies (iv). We assume, then, that I(nt, n_)
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exist satisfying all the above. Then

y (t) ’(V(n, n_), t) for I(n, n_),

and, therefore,

’(V(nl, ..., n_l), I(n, ..., n_)
[.J ch’(V(n ,..., n), I(n ,..., n_l)) [,J 4’(V(n ,..., n), I()),
nk

where each of these last sets is analytic as a continuous image of a G
(cf. Sierpinski [8, p. 219] ). Let

I(n, ..., n) y’-l(dp’(V(n, ..., n), I()) ["] I(n, .-., n_l).

By Lemma 1, the sets I(nl, nk) are measurable. They clearly have
property (vii). Now if I(nl, ..., n), y’ (y(t), t) ((V, t), t)

’(V, t) and y’(t) ’(V(nl, ..-, nk), I(Z;)). Thus y’(t) ’(V(nl,
n), t), and the constructed sets satisfy (vi) also.

Note that for each lc _>_ 0, I() [0, 1] [J I(nl, n). We con-
struct a sequence of "step functions" v’[0, 1] -- V by choosing a point
v(nl ..., n) V(n ..., n) for each (n, ..., n,) and setting v(t)

v(nl, ..., n) for each I(nl, ..., nk). The measurability of
I(nl, ..., nk) guarantees the measurability of v. Because of condition
(ii), the sequence v (t) is a Cauchy sequence in the d* metric and hence
also in the Euclidean metric. Since d* is complete, lim-. v(t) v(t) V
in d* and hence in the Euclidean metric. Hence v" [0, 1] -- V is measurable.
From the continuity of ’, we get

lira ,’(v(t), t) ’(v(t), t).

On the other hand, y’(t) ff ’(V(n, ..., n), t) for I(nl ,
and d(’(V(nl, ..., n,), t)) < 2- so that

d(y’ (t), 4)’ (vz;(t), t) < 2-,
whence

(4)(v(t), t), t) lira 4)’(v(t), t) y’(t) (y(t), t)

so that, finally, y(t) (v(t), t). This concludes the proof of Lemma 3.
The next lemma is well known but for the sake of completeness we in-

clude a brief proof.
LEMMA 4. Let Vo be the set of extreme points of a compact convex subset V

of a normed linear space. Vo is a G.

Proof. LetAn= {x V there exist y, z VandX [n1-,1 lsuch
thatx Xy + (1 X)z}. Since V and the interval I , 1 are
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compact, the set An is closed. Therefore A U:___l An is an F which con-
tains all points of V except the extreme points. Thus V0 V A is a G.
The following lemma is used to represent a control function; it was sug-

gested by a similar construction due to H. Hermes [9].
LEMMA 5. Let f" [0, 1] ---> U be measurable. Then f admits a representation

of lhe form

(2.1) f(t) a(t)u(t)
i=l

where the real-valued functions o are measurable, o(t) (a(t),
m+la (t)) H for each t [0, 1] and u’[0, 1] --+ Uo is measurable, i

1, 2, ..., m + 1.
Proof. For each [0, 1] there exist a point a(t) (a(t),

m+la (t)) H and points u(t) U0 such that

m+l

f(t) ai(t)u(t).
i-----1

It remains to show that the functions on the right-hand side can be selected
to be measurable. In order to do that, note that since U0 is a G the set

G H X U0 X >( U0

m+l

is a G and define a function F’G [0, 1] -+ E by
m+l

O O Ul 2 Um+l O Ui
i-1

Then F is continuous on G X [0, 1] and for each [0, 1], f(t) F(G, t).
Thus by the principal lemma, Lemma 3, there exist mesumble functions
a(t) H and u(t) U0 such that for all t,

f(t) F((t), u(t), ..., u,+(t), t) (t)u(t).
i=1

This completes the proof of Lemma 5.
The next theorem is due to Dvoretzky, Wald and Wolfowitz [10, p. 68]

and is an extension of Liapounov’s Theorem [11, 12]. This together with
the preceding lemma enables us to obtain a bang-bang control which ac-
complishes the same end as a given control.
THEOREM 3. Let the classes of functions and be defined as follows where

Hq is the standard q-simplex in Eq+l"

{a a’[0, 1] ---+ [tq, a measurable}
{1 and for each [0, 1] exactly one of the components of a

equals one}.
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Let tl t be finite measures and let

Ol dlpAq ol dl3,1

and

)fo a2 dt fo aq dt

{(fo fro
"1

fo
If tl tp are atomless measures, then Apq Aq
THEOREM 4. If Y is a measurable and (absolutely) integrable n X m

matrix defined on [0, 1],

A Y(t)u(t) dt

and

u measurable, u(t) U}
Y(t) uo(t) dt Uo measurable, uo(t) U0}

then

Proof. By Lemma 5, if f is measurable with f(t) E U, then f may be
written in the form (2.1) where a and u are as given in the lemma. Thus

dO
[1 1 mWl f01f Y(t)f(t) dt f Y(t) a(t)u(t) dt E a(t)vi(t) dr,
Li=l i=I

where v(t) Y(t)u(t).
For ech mesumble subset E [0, 1], define

(E) v (t) dt

where v is the jth component of the n-vector v, i 1, 2, m + 1
j 1, 2, n. Each of the measures is atomless. Next consider the
[(m + 1). n]-dimensional vector w,, a , defined by

Wa I d#iI, i d#in, i d#21
k

Z" ’1"1 2 m+l dm+ldm+l dl )
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By Theorem 3, there exists a measurable with (t)
-=+ (t) 1, such that w wa.
Therefore

Ifols:idttlI, -.-, foltldttln) Ifol aldttlI,

d:, d a d21

0 or 1 and

If we let

I {t [0, 1] (t) 1}, i 1, 2, ..., m q- 1,

then each set I. is measurable, ,i=: Ii [0, 1], and I I. I. Next
define

fo(t) u(t) for t I, i 1, 2, ..., m + 1.

Then f0 is measurable, f0(t) U0, and

Y(t)fo(t) Y(t)u(t) dt
i1

m+l

E f a(t)v(t) dt f Y(t)f(t) dr.
i1 30 d0

Thus ny element of A is n element of A0. Since A0 A, Theorem 4 is
established.
To finish the proof of Theorem 1, note that without loss of generality

we my ssume t0 0 nd t 1_ so that

x(1) c+ C Y(t)u(t) dt
o

Therefore

and hence
m- m-

lmq-1 (m+l dttm+l olm-l a
m+ dtt,,+ldm+ld+l
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where c X(1)x0 + X(1) [ X-l(t)f(t)dt, C is the nonsingular matrix

X(1), and Y(t) x-l(t)B(t). Thus

Ku( tl Kv(1) c -- CAand

Kvo(tl) Kvo(1) c - CAo
But, by Theorem 4, A A0, so Theorem 1 is established.

3. Remarks.
1. If U is a given compact set, one might hope that a set S c U has the

bang-bang property, namely Ks(t) K,()(t), if and only if U0 c S. Un-
fortunately this is not true. For example, consider the (one dimensional)
control system 2 x with any restraint set U. Since the set of attainability
(in time t) is always the one point e(t-t)xo, we do not have a converse to
Theorem 1.

2. To see that Theorem 1 is, in general, best possible, consider the (three
dimensional) control system 2 u when the restraint set U is any bounded
set whose extreme point set U0 is not compact. Any subset of U not con-
raining all points of U0 obviously fails to have the bang-bang property.

3. As Neustadt [2, p. 115] has remarked, the convexity of the set of
attainability is of importance if it is desired to compute an optimal control
by means of the Pontryagin maximum principle. Moreover, the fact that
the optimal control can always be chosen to be a bang-bang control should
be of use to design engineers.

4. The existence of optimal controls, assuming the system is controllable

and the cost is given by C(u) [a(t)x(t) -- b(t)u(t) -- f0(t)] dt, is

assured by the same argument as given by Neustadt [2, pp. 115-116] since
we have shown that the set of attainability depends at most on the extreme
points of a compact restraint set. (We are assuming that the target set,
which is closed for each t, moves in an upper semi-continuous manner.)
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STABILITY CRITERIA FOR FEEDBACK SYSTEMS
WITH A TIME LAG*

ALLAN M. KRALL]

1. Introduction. In the back of many earlier texts on control systems,
topics such as time lag systems, sample data systems and nonlinear systems
appear. At the present time, books are appearing in these various fields
with one notable exception--time lag systems. The principal reason for
this omission is simply that not enough is known about them, especially
when tests for stability are considered. This paper proposes to fill in some
of the gaps in this area.
We will consider a linear feedback system in which the open loop transfer

function has a time lag r. In a great many instances the open loop transfer
function may be represented by Ke-’h(s)/g(s) where g(s) and h(s) are
relatively prime polynomials in s, g(s) s + as’- + h(s) s

-t- bs"- + If the open loop output is multiplied by e and added to
the input to form the "error", the closed loop transfer function is of the
form

Ke-"’h(s)
g(s) Kee-h(s)

Stability problems may then be resolved by studying the zeros of the
characteristic equation

F(z) g(z) Kee-h(z) O,

the system being stable if all the zeros of F(z) have negative or zero real
parts.

Unfortunately, unlike systems with no time lag, F (z) has infinitely many
zeros, and sometimes an infinite number with arbitrarily large positive real
part. Since slight variations in the coefficients of F(z) only vary the zeros
locally, it is necessary to know when such situations occur.
THEOREM 1.1. Let F(z) g(z) Kee-rZh(z), where g(z) z - alz

n-1

,andh(z) z blz"-1 r > O,K >= OandO >= 0arereal
constants, ai and bi are complex constants.

I. If n > m" the number of zeros of F(z) with positive real part (or lying
in any right halfplane) is finite; if K O, F(z) has an infinite number of
zeros with arbitrarily large negative real parts.

Received by the editors January 30, 1964, and in revised form May 1, 1964.
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By letting 0 0, we have positive feedback; 0 r, negative feedback. Thus we

can consider both simultaneously.

160
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II. If n m" when K O, F(z) has an infinite number of zeros given by

1(1.1) z (log K -- i(O - 2kr)) + o(1),
T

where k O, --1, +/-2,..., and only a finite number of other zeros. If
K 1, F(z) has only a finite number of zeros with positive real parts. If
K > 1, F(z) has only a finite number of zeros with negative real part.

III. If n m" the number of zeros of F z with negative real part (or lying
in any left halfplane) is finite; if K O, F(z) has an infinite number of zeros
with arbitrarily large positive real parts

Proof. See [7].
TEOnEM 1.2. With the notation of Theorem 1.1, if n > m or n m,

K 1, for fixed K, all of the zeros of F(z) with positive real part lie within
a circle of radius M -- 1, where

M-- sup[llai I- Kl’lbi[} and l[ a, l}+l] if n> m,

Proof. If ]z] > p and Re (z) _-> 0, then whel n > m,

IF(z) l->-Izi [al-izl
i=1

i=1

]zl[]z]-- (1A-M)]A-M

>0.

When n m,

I (z) l>_  l.lzl

i=1

i--1

>0.

Note that the radius of this circle is independent of as long as >_- 0.
Thus in trying to find which values of K lead to stable systems, we need

to consider only the cases n > m and n m, K < 1. We now extend the
Nyquist criterion and the root-locus method to cover these situations.
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2. Nyquist criterion. If n > m or n n, K < 1, let R be any number
greater than the number p of Theorem 1.2. R is large enough so that a circle
of radius R centered at the origin contains all of the zeros of g(z). Let CR
be a semicircular contour varying along the imaginary axis from -R to R
and then from (0, R) to (0, R) along half of the previously mentioned
circle in a clockwise manner, avoiding zeros of g(z) on the imaginary axis
by arbitrarily small semicircles centered at those zeros.
THEOREM 2.1. The number of times Ke-TZh(z)/g(z) passes through e-i as

z varies around CR is equal to the number of imaginary zeros of F(z). If
F(z) has no imaginary zeros, let P be the number of zeros of g (z) with positive
real parts, Z be the number of zeros of F (z) with positive real parts, N be the
number of counterclockwise encirclements of e-i by Ke-TZh(z)/g(z) as z
varies around CR. Then Z P N.

Proof. (See [4].) It is well known that the number of counterclockwise
encirclements of the origin by a meromorphic function as z varies in a
counterclockwise manner around a contour is equal to the number of zeros
minus the number of poles of the function contained within the contour.
Now as z varies around C, the number of encirclements of e-i by
Ke-*Zh(z)/g(z) is the same as the number of encirclements of the origin by
e Ke-*Zh (z)/g(z). This is the same as the number of encirclements of
the origin by 1 KeOe-Zh(z)/g(z), which is the same as the number of
encirclements of the origin by F(z)/g(z). Since C is a clockwise contour,
we seeZ P- N.
COROLLARY 2.2. A necessary and sufficient condition that F(z) have no

zeros with positive real parts is that N P.
Note that in constructing the path of Ke-Zh(z)/g(z) as z varies along

the imaginary axis, the magnitude of Ke-Zh(z)/g(z) is the same as when
r 0. Only the argument is changed by an amount -ro when z io.
Further note that M and N circles may be used the same as when r 0.
(See [6, pp. 141-144].)
There is an alternate method which may be used which involves only the

Nyquist contour with r 0. This procedure was first used by A. A. Sokolov
and N. N. Miasnikov (see [9, p. 421]) who were considering the Mikhailov
eriterionthe Soviet equivalent of the Nyquist criterion.
THEOREM 2.3. Let N(r) be the number of counterclockwise encirclements of

e by Ke-Zh(z)/g(z) as z varies over C. Then if the path of Kh(z)/g(z)
does not intersect the unit circle as z varies over C, N(r) N(O) for all
r>_O.

Proof. If N(r) N(0) for some r 0, then, since the Nyquist contour
is continuous in r, there must be a r0,0 < r0 < r, for which the Nyquist
contour passes through -0e Thus there is an o such that Ke-’h(ico)/g(io)

--iOe and Kh(io)/g(io) 1, which is impossible.
iaIf the path of Kh(z)/g(z) does intersect the unit circle, let e e
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e be the points of intersection. For each e let io- be a point on
the imaginary axis such that Kh(ioi)/g(ioi) e. Then if Ke-’h(z)/g(z)
is to pass through e- we must have

Ke-iJh(ioJ)
g(ioj)

or

1
r (o + . + 2),

where k 0, :i:l, +2, .... Let these nonnegative values of r for all j, k
be arranged in an increasing sequence rl, r2, rn, We then have
THEOaEM 2.4. If tl and t2 are in the same open interval (ri, ri+i), then

N(t) N(t2).
Thus tests for stability may be made by considering the ordinary Ny-

quist diagrams with r 0.

3. The root-locus method. Although the Nyquist criterion is left rela-
tively unchanged for systems with a delay, the root locus diagrams are
radically altered. This is to be expected, since the characteristic equation
contains an infinite number of zeros. We will see, however, that only a
small part of the root-locus diagram is important, and with the aid of some
construction rules, that part may be easily found.

It will be convenient to distinguish between various parts of the root
locus. Hence the following.

DEFINITION. The root-locus of F(z) is the set of all points z such that z is a
zero of h(z), or for which there is a real number K, -o < K < , such
that F(z) O.

The positive root-locus of F z is the set of all points z such that z is a zero

of h(z), or for which there is a real number K, 0 <- K < , such that
F (z) O. The zeros of h(z) are included in the root-locus since they are limit
points of the zeros of F(z) for all of the appropriate choices of K, i.e., they are
zeros of F z when K
The negative root-locus can be similarly defined although we will not

need to consider it. It is easy to see that the negative root-locus for 0 is the
positive root-locus for - .
THEOaEM 3.1. Let z be a point in the complex plane. The following state-

ments are equivalent.
z is on the root-locus of F z

(ii)

(3 1) cos ( ry) Im (h(z)g(z)) + sin ( ry) Re (h(z)g(z)) O.

(See [5].)
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Proof. Supposc z is on the root-locus. If g(z) 0 then for some K 0,
Keie-*Z/g(z) 1. Thus

h(z) K_I eX [cos (0 ry) i sin (O ry)].
g(z)

h(z)g(z) K- e Ig(z)12 [cos (0 ry) i sin (0 ry)].

Since K, r, x are real,

Re (h(z)g(z)) K-eZ g(z) cos (0 ry),
(3.2)

Im (h(z)g(z)) -K-eXlg(z) 12 sin (0 y).

Multiplying the first by sin (0 ry), the second by cos (0 Ty) and add-
ing, achieves (3.1). So (i) implies (ii).

Conversely, if (3.1) is satisfied, then Im (eie-Zh(z)g(z)) O. So
eiee-Zh(z)g(z) R(z), where R(z) is real. If R(z) 0, then either
h(z) 0 or g(z) 0 and z is on the root-locus. If R(z) O, let
K [g(z) l/R(z). If K 0, then g(z) 0 and z is on the root-locus.
If K 0, then Kee-Zh(z)/g(z) 1 and F(z) 0. So (ii) implies (i).
Note that K can be found by

K eX]g(z) 12 cos (0 ry)/Re (h(z)g(z)),

or by

K -e g(z) 12 sin (0 ry)/Im (h(z)g(z)).

THEOREM 3.2. The multiple points of the root-locus are isolated and satisfy

(3.3) h(z)[g’(z) + rg(z)] g(z)h’(z) O.

Proof. If z is a multiple zero of F(z) for some value of K, then F(z) 0
and F’(z) 0. Eliminating KeOe froin these two equations results in
(3.3). Since (3.3) is a polynomial of degree at most n + m, there can be
only a finite number of isolated multiple roots of the root-locus.
THEOREM 3.3. The points on the root-locus of F(z) for specific K are con-

tinuous functions of K.
This follows directly from Hurwitz’ Theorem (see [10, p. 119]). To

"muke" functions, different branches of the root-locus may be identified
at multiple points first according to argument and then ccording to mag-
nitude for vlues of K first slightly less han nd then slightly larger thn
that value of K giving a mulliple poinl,.
THnOanM 3.4. With the exception oj’ multiple points, the points on the root-

locus of F(z) for specific K are differentiable functions of K.
Proof. (See [3].) Let z0 be a simple zero of F(z) when K K0. We need
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to show that

exists, where z is a point of the root-locus and limK-*K0 Z Z0. We have

0 g(z) Kee-*Zh(z),
0 g(z) Koee-Zh(z) (K Ko)eie-*Zh(z),
0 (z zo)W(z) (K Ko)eie-Zh(z),

where W(zo) 0and W(zo) dF/dzlz zo,K Ko. From this we
find that

(3.4) lira
z-- z0

K-0 K K0

iOe e h(zo)
g’ (zo) Koei e- (h’ (zo) -h(zo)

THEOREM 3.5. If h(z) and g(z) have real coefficients, (3.1) becomes

cos (0 ry) (-1)’y2’+1 2k+1 2k 1
k=o (2k + 1)!

--) y(3.5) (--1)2k+l-ih()(x)g(2+-’)(x) + sia (0 ry) "

(- (’) (z)g (z) o.
i=0

Proof. (See [5].) This follows from expanding h(z) and g(z) in MacLaurin
expansions about x and solving for the real and imaginary parts of h (z)g (z)i
THEOREM 3.6. The root-locus contains the entire real line (y O) if and

only if 0 0 or 0 r when h z and g z are real polynomials.
Proof. If the x-axis is contained in the root-locus, then y 0 is solu-

tion of (3.5). Thus sin 0 0, and 0 0 or 0 z. The converse is trivial.

4. The positive root-locus.
THEOREM 4.1. As x becomes arbitrarily large to the right, the positive root-

locus of F z approaches
1(4.1) y (0 + 2kr),
T

where O, +1, 4-2,
K---+ as x--> . in the right halfplane asymptotically. Further,

As x becomes arbitrarily large to the left, the positive root-locus of F(z)
approaches

1(4.2) y -(0 (n- m)r + 2/cr),
T
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where k O, +/-1, +2, ..., in the left halfplane asymptotically. Further
K ---Oasx -- -.Proof. Let u(z) eiOe-rZh(z)/g(z) and consider only those values of z
greater in absolute value than each of the zeros of g(z) and h(z). For those
values of z, the positive root-locus of F(z) consists of all points where u(z)
is real and u(z) > 0, i.e., arg u(z) 2/ for some integer k.
Nowargu(z) 0 ry z7 argh(z) argg(z). For bounded y, as

x -+ , arg h(z) -- 0 and arg g(z) -- O. Thus for bounded y, as x -- ,argu(z) 0-- ry-+- o(1).
Choose any e > 0 and then any y (l/r) (0 -+- 2kr) (1/r) e, where

/c is any integer. If z x -C iy, arg u(z) 2kr + -4- o(1). By choosing
x > x0 so that Io(1) < /2, we see arg u(z) 2k- + . where 3’ is be-
tween /2 and 3/2. Similarly, if x > Xl and y (l/r) (0 -+- 2]) -C (l/r) ,
arg u(z) 2k- , where t is between /2 and 3/2. Choose x so that
x > x0 and x > xl. Consider a straight line between z0 x -+- /(i/r)
(0 -+- 2]cr) A- i(1/r)e and zl x -4- i(1/r) (0 A- 2kr) i(1/r) e. Since

arg u(z) is continuous in z, at some point between z0 and zl, arg u(z) 2k-
and u(z) > O.
Note that as x --+ +, arg h(z) arg g(z) -+ O, so that may be chosen

arbitrarily small. Further note that for each z approaching the asymptotes,
K is given by

--iO

K e e g(z) erXx,-m(1 -- o(1)),
h(z)

as x -- m, so that K -- m as x - m.
The second part of the theorem follows by replacing z by -z.
Note that those values of K for which the root-locus crosses the imaginary

axis increase as the root-locus becomes farther away from the origin. This
means that for fixed K most of the zeros of F(z) lie in the left halfplane, and
also that it takes a larger value of K to force more to cross the imaginary
axis. Thus only a finite part of the complex plane near the origin needs to
be considered.
We need to represent g (z) and h (z) in factored form. Let

II (z h(z) II (z

where -’. a- n and . . m. We also need the following.
DEFINITION. The angle of departure (arrival) of the root-locus of F(z) at

Zo is the angle made at Zo by the tangent to the root-locus for increasing (de-
creasing) K.
THEORE 4.2. As K approaches O, distinct branches of the positive root-

locus of F(z) approach each zero, pi of g(z). As K approaches , distinct
branches of the positive root-locus of F(z) approach each zero, zi of h(z).
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As in (3.3) this follows directly from Iturwitz’ Theorem (see [10, p. 119]).
THEOREM 4.3. If p is a zero of g(z) of order as, then the positive root-

locus of F(z) departs from p making angles- ( r z r
(4.3) a" "

+ 0 y- 2/r),
where 0,1, a l and y Imps-.

If z is a zero of h(z) of order then the positive root-locus of F (z) arrives
at z making angles

(--’. ai arg (z.- pi) arg (z.- z)
(4.4)

0 y 2k),
where O, 1, 1 and y =Im z.

Proof. (See [4].) Consider one of the branches of the positive root-locus
which departs from p. Choose K close to 0 and let z be on that branch for
that value of K. Then we have

KeOe- (z z)i

Taking arguments,

E rg ( E r (z p) + 0 2.

Solving for those terms involving p (or z) and letting K approach 0 (or
completes the proof.
THEOREM 4.4. Let zo be any point on the real axis, h(z) and g(z) have real

coecients, {zi} and {Pi}i be the real zeros of h(z) and g(z) greater than zo
and 0 0 (0 ). Then Zo is contained in the positive root-locus of F(z) if
and only if 1i + 1i i8 eyen (odd).

Proof. (See [4].) Consider the case where 0 0. Since g(z) and h(z) have
real coefficients, zeros of g(z) and h(z), if complex, occur in conjugate pairs.
Along the real axis, if z and are complex conjugates, arg(z0 z)
+ arg (z0- 1) 0.
Now, as in the proof of Theorem 4.1, consider

U(Zo) e-Zh(z)
e(Zo)

ar u(zo) -o + ar (Zo z,) , ar (Zo p).

1
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On the real axis y0 0 and the arguments from complex zeros drop out.
Thus

arg U(Zo) ti arg (Zo zi) ai arg (Zo pi),

where the sums are taken over real zeros.

If E=I ,i -4- E=i O/i is even, then E=I/i E-----i (i is also even,
u(z) > 0, and z0 is on the positive root-locus. If =1 4- E=I O/i is odd,
then E,r’--1 /i E=I Oli is odd, it(z) 0 aild z0 is Ilot oil the positive root-
locus.
The case where 0 r is similar.
TnEOIEM 4.5. If the coefficients of g (z) and h (z) are real, 0 0 or -, and

F(z) has a zero of order m at z a on the real axis for K Ko, 0 < Ko < ,
then the positive root-locus arrives at z a making angles

2kr
Ok ---, lc O, 1,..., m 1.,

m

and departs from z a making angles

(2/ 4- 1)r
m

k=O, 1,...,m-- 1;

or arrives at z a making angles

(2k + 1)
m

and departs from z a making angles

2tc-
Ck= ., 1 0, l, ,m-- 1.

m

Proof. (See [4].) Siace the coefficients of g(z) and h(z) are real for
0 0, r, if zeros of g(z) Kee-’h(z) leave or arrive at the real axis, they
do so in conjugate pairs as K varies from 0 to K0. Thus the eveilness or

oddness of the number of zeros of g(z) plus zeros of h(z) to the right of
z a is the same as that of g(z) KoeOe-’h(z) and h (z).

Write

F(z) g(z) KoeiOe-’h(z) (K- Ko)eOe-’h(z) O,

where z is on one of the branches of positive root-locus near a. Let
g(z) KoeiOe-’h(z) (z a)mG(z), where G(a) O. G(z) is real on the



FEEDBACK SYSTEMS WITH TIME LAG 169

real axis. Then

(z a)mG(z) (K Ko)eie-rZh(z) 0;

dividing by the second term and taking arguments,

m arg (z a) -t- arg G(z) arg (K K0) 0 + ry arg h(z) 2tcr,

where lc is an integer. Thus

arg (z-- a) 1_. (-argG(z) - argh(z) nu arg (K- K0)
m

-t- 0 ry -I- 2kr).

Now -arg G(z) -I- arg h(z) -t- 0 ry + 2kr approaches either an even or
odd multiple of r as z approaches a since G(z) and h(z) are nonzero and real
on the real axis and y 0. Note that arg (K K0) is either 0 or r depend-
ing upon whether K > K0 or K < K0. Letting K approach K0 completes
the proof.
The most frequent occurrence is when there is a double zero of F(z) on

the real axis for some value of K. In this ease, 00 r/2, 01 3r/2 and
0 0, 1 r; or 00 0, 01 r and 40 r/2, t 3r/2.
From the preceding theorems it would appear that the root-locus for

time lag systems is similar to those with no time lag. This similarity, how-
ever, is superficial. The root-locus diagrams become radically altered as
simple examples such as z Ke 0 and z Ke 0 (studied ex-
tensively by E. M. Wright) as well as the asymptotic theorem will testify.
A rather easy procedure has been found by Yaohan Chu [2] for construct-

ing time lag root-locus diagrams. It consists of first constructing a diagram
where there is no time lag and using this diagram to construct the time lag
diagram. We refer the readers to his paper rather than reproduce it here.
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referee who is responsible for many corrections and improvements in this
paper.
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SOME CONDITIONS FOR THE STABILITY OF NONLINEAR
TIME-DEPENDENT DIFFERENTIAL EQUATIONS*

H. H. ROSENBROCK

1. Introduction. In an earlier paper [1] a method was given for investi-
gating the stability of a nonlinear system

(1) : f(x, t); f(0, t) 0.

[Fhe equation (1) was replaced by

(2) A(x, t)x,

and conditions on the elements of A were found which ensured stability.
This method will be applied here to the nth order differential equation

(3) x(n) f(x, , X(n-l), t),

which will be replaced by

X
(n) + anX

(n-l) - -- a:2 + OlX O,
(4)

a ai(x, 2, x-) t)

Conditions on the a will be found which ensure uniform asymptotic
stability of the point x 0.

If M, h, n are the roots of the equation

(5) X" + aX- + + a2 + a 0,

then knowledge of the ,(x, 2, x(-1), t) is equivalent to knowledge of
the a. Consequently conditions on the a which ensure stability can be
replaced by conditions on the h, and it turns out to be convenient to do
this. Conditions are given under which the solution x 0 is uniformly
asymptotically stable.

2. Derivation of results. For convenience, a special form of the result
proved earlier [1] will first be derived. Equation (4) is written in the form

(6) A(x, t)x,

* Received by the editors February 12, 1964, nd in revised form April 20, 1964.
Cmbridge University, Cmbridge, England. Now t Electronic Systems Lbor-

tory, Msschusetts Institute of Technology, 77 Massachusetts Avenue, Cmbridge,
Massachusetts.
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where

(7) A

0 1 0 0 /
0 0 1 0

0 0 0 1
-al -a2 -a3 an

and the element Xl of x replaces x in (4). This way of representing (3) is
not generally unique, because a term such as xlx2 in the equation for a?
can be regarded as alxl with al x2 or as ax with a Xl. The results
developed later may therefore be applied to any one of the equations (6)
which can be derived from a given equation (3).
The matrix A in (7) may be represented by a point in an n-dimensional

Euclidean space En having coordinates ai. When this is done, the restric-
tions on A which ensure the asymptotic stability of x 0 will be expressed
by the condition that A remains always in some region G of E,. The way
in which the region G may be obtained will appear later.

In an open region R of the space Ix}, equation (6) is supposed to satisfy
conditions which ensure the existence and uniqueness of solutions starting
from any x R at => to. Also, for all x R and for all _-> to we suppose
that A G.
The stability conditions are developed by considering a closed, convex,

bounded region H in R, which has x 0 as an interior point and is such
that each point in the boundary of H is in at least one of a given set of
hyperplanes (these will be n -t- 1 or more in number).

Let n be the outward unit normal to one face of H. Then we can prove
the following result (see Appendix 1 ).
THEOREM 1. Let the following conditions be fulfilled.

For all x R and all >= to A G.
(ii) For each face of H at every vertex u, and for all A G,

(8) n’Au __< --e < 0.

Then x 0 is uniformly, asymptotically stable. All solutions of (6) starting
at tl >__ to from some point xl H, where H is in R, remain in H and tend to
x O, uniformly in tl, as -- . If R is the whole space Ix}, the uniform
asymptotic stability of x 0 is global.

In the above statement of the method the region R was supposed to be
given and the region H to be sought within R. If the closed region H is
given, however, we need only verify that A G for x H, _-> to. Simi-
larly the existence and uniqueness of solutions need only be demonstrated
for initial points x and times t, where x H, => to the boundary points
of H will usually require special attention when this is done.
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The above results will now be applied to the closed region H which is
the smallest convex set containing the 2n points v in the space Ix}"

n--1
vi i(1, ai,a,-" ,a ), i 1,2,---

(9) - i 1, 2,v+i --(1, a,ai,... ,a ),

where the ai are all real and distinct and the are positive. The bounding
hyperplanes each pass through n of the points v, of which no two may have
the same value of i (see Appendix 2). For convenience call these n points
Ul, u, u,., where ui may be either v or Vn+, and write

(10) u =bi a. ,
so that the possible negative sign is absorbed in bi.

Let x be a point in the hyperplane S defined by ul, u, Un Joining
Ur tO X and to each of the other u, and expressing the fact that these lines
are coplanar, we obtain

(11)
tlr--1 Ur

X tr Ur+l llr ,U,-- U[ 0,

where the vectors shown are the columns of the determinant. Equation
11 gives

tll llr: 112 tlr 7"’’1 Ur--1 tlr: Ur: tlr+l tlr tln tlr

which on expanding has the form

(13) mx p,

where rn is a certain vector. This equation expresses the fact that the pro-
jection of x on the vector m is constant.
The condition expressed by (8) can now be written

(14) 1-mAur <- -e < 0,
P

1
since it follows from (12) and (13) that-m is an outward normal of fixed

P
length. Then from (7) and (10),



174 H.H. ROSENBROCK

(15)

(16)

where

(17)

and

(18)

(19)

n--1
dpr arn -" anOr -" "’"---aa,-l-a

II
and the ), are defined by (5).
On using (16) and (14) we obtain (compare (12))

(20)

Dr
112 tlr tlr--1 tlr Ur r

Adding the rth column in the numerator determinant to each other column
gives

r Ul
Dr Drbr Ir U2 {I}r, "’’, Un

O/r O/r Or(21)

Then using (17) we obtain

(22)

b b2 b
bx ax b2 a2 ba

n--2 n--2 n--1
Ol Oll U2 012 On

r r r

/ bib2 b,A l
<= --< O,
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where A is the Vandermonde determinant [2]

1 1 1

(23) A a a a H (a--a).
__< i<__<

nl nl n-1
(1 O2 On

By using the result anulogous to (23) for each cofactor of we obtain
from (22),

(24) ar l1 brdPr E (_1)-_1 II (a a) + A <= --e < 0,
ar l_<k_<n bk l__<i<’=<ni,.

< - < 0.br6 (-
(,) 1 E b II (a a) II (a ak) t_

i<k k<j )

Then using (19) and remembering that b may be chosen with either sign,
we see that (25) is equivalent to

(. --,) 11 (---)
l kr l
ir ik

For simplicity of applicution it is convenient to introduce arbitrary
positive constants defined in terms of the (arbitrary) constants by

(27) Or r (r ai) -1, r= 1,2, ...,n,
Oin
ir

and to write

(28) r iin

H (- .).
r . 2...., ,

Oin
ir

where for symmetry the constant a0 0 has been introduced. Then (26)
becomes

1(29) 1 + (sgn) %1
kr

The result embodied in (29) contMns the stubility condition which was
sought. If (29) is satisfied for some a, Or, r 1, 2, n, this ensures
that condition (8) is fulfilled. Then if some condition A G is sufficient
to satisfy (29), Theorem 1 can be applied subject to this condition. A1-
ternutively, since the a are determined by the ,we may prove the re-
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sult subject to F, where (X)and F is some region of the space
{}. The result which has been proved can therefore be stated in the fol-
lowing way.
THEOnEM 2. Let the differential equation (2) have a unique solution in a

region R. Let H be the closed set in R which is the smallest convex set containing
the points (9), and let there exist a region F and a constant such that (29)
is satisfied for all F with some real, distinct ar and positive Or and for
r 1, 2, n. Then all solutions of (2) starting at tl >= to from some xl H
remain always in H and tend uniformly, asymptotically to x 0 provided
that F for all x H and all >= to.

3. Examples. Consider first the second-order differential, equation

2 + a2(x, 2, t)2 + al(x, 2, t)x O.(30)

Suppose that )1, h are real, and let the region F be defined by

(31) 2 =< a2 < hi < al < ao O,

where o/1 and a2 are distinct negative constants. Then for . F,

(32)

(0/1 Xl) (0/1 X2) O,
’( )

(- X)(- X) __<__ O,
(.- )

which shows that (29) is satisfied with 01 02 1. Thus if (31) is satisfied
for all x in the appropriate region H and for all => to, all solutions starting
in H at t => to remain in H and tend uniformly, asymptotically to x 0.
This result is slightly stronger than one obtained previously [3].
Now consider the nth order equation (4), with n > 2, and suppose

again that each is real and that F is defined by

(33) 0 <_-

where

(34)

(35)

Then for F,

(36)
0/r

0/r- o/r--1
<- Or, r 1,2,...,n,

0/n < 0/n-1 < < 0/1 < 0/0 O,

0=< 1-- / < 1.

0/

0/r 0/1 0/r 0/r--1

0/r

0/r 0/r+1 0/r-
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(37) i,,rl Or- r

so that

(38)

It follows from (34) that (29) is satisfied with e -al,. If (33) is satisfied
for all x in the appropriate H, and for all __> to, all solutions starting in H
at tl -> to remain in H and tend uniformly, asymptotically to x 0.

Finally, consider (30) again, but allow the hi to be complex. Let F be
defined by

Rek _-< -m- < 0,

(39)

Re}, =< -m- 0,

(Re hi + m) - (Im M) < (m )

(Re + m) + (Ira k) (m ),

ImX -Imk if Imk 0 or
Re k Re k

Im h2 0,

where

(40) 0 < , < _m.
4

The geometrical implication of conditions (39) is illustrated in Fig. 1.
In (29) put

q,1 --m, a2 m2/y
()

01 /m, 0. 1 7/m,

and suppose first that Xl and X. are complex,

(42)

The left-hand side of (29) then becomes, for r 1,

() 1 i o _<_ 1 I \----/)

(44) --m 1
(m--)e +



178 H.H. ROSENBROCK

t

:FIG. 1

By (39) and (40),

(45)
(m )2 _{_ o2 <_ (m V) m m-- (m--

m

so that

(46) -rail- m " [- w
m

< -m
Lm nv)

<
2

For r 2 the left-hand side of (29) becomes

(47)

(48)
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By (39) and (40),

(49)

and so

+< )m- + (m-

(--m)2--m2q 2:,

O" .9[_
(50) m

1
1 [m2 \ (m--v) 2"

When hi and h are real, it is easy to see that ]3’1 and 13"2[ are no greater
than the values which they take in (43) and (47) respectively. Hence
for , F, where F is defined by (39), the condition (29) is fulfilled for
r 1, 2 with e v/2. If (39) is satisfied for all x in the appropriate H
and for all >= to, then all solutions starting in H at _>_ to remain in H
and tend uniformly, asymptotically to x 0.

Appendix 1. Proof of Theorem 1. We first show that condition (8) im-
plies that n’Ax _<_ -e < 0 whenever A G nd x is a point in the face
of H having n as its unit outward normal. For each such point x can be
written

(51) x cu,

where u are the vertices of H lying in the face considered, every c _>_ 0,
and ’] c 1. Then for any given A G,

Choose a vertex u, of H and let r0 be the distance from u, to the origin.
Define the sets U(r), 0 =< r _-< r0, by the property that y belongs to U(r)
if and only if y rx/ro, where x belongs to the boundary of H. The sets
U(r) are clearly boundaries of sets which have the same properties as H
and for any y in U(r), n’hy n hx(r/ro) <- r/ro. If we now let
V(y) r for y in U(r), it is clear that V is Lyapunov function and all
of the conclusions of Theorem 1 are valid.

Appendix 2. Properties o H. The region H is defined by the points v
in an n-dimensional space. We have to show that the bounding hyper-
planes are found by selecting all sets of n points v having different values
of i. This can be proved in the following way.
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(i) Consider a hyperplane S passing through n of the points v, no two
of which have the same value of i. Then S does not include the origin.
For if it did the determinant formed from the n chosen points v would be
zero. This determinant [2] is

(53)

1 1 1
O/1 0/2 O/n

(I O2 Cgn

n--1 n--1 n--1
19/1 0/2 n

-’t-12 n II (O/j- O/i),

which is nonzero when the a are distinct.
(ii) The n points v which are not in S lie on the same side of S as the

origin. For the straight line joining each vertex in S to the origin, when
continued, passes through a v not in S.

(iii) No hyperplane containing n points v, of which two have the same
value i p, is a bounding hyperplane. For such a hyperplane includes
the origin, yet does not contain two points v having the same value i q.
These last points lie on opposite sides of the hyperplane.

(iv) From (i) and (ii) it follows that each hyperplane such as S is a
bounding hyperplane. By (iii) there are no others.
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ON EXPONENTIAL STABILITY OF LINEAR DIFFERENTIAL
SYSTEMS*

NAM P. BHATIA
1. Introduction. In this note we examine conditions on the linear differ-

ential system

(1.1) 2 A(t)x,

(where the dot denotes the derivative with respect to t) which guarantee
the existence of a quadratic form as a Liapunov function. We also give a
proof of the stability theorem of Perron (see [5, pp. 142-152]) for the
system

(1.2) 2-- A(t)x + f(t,x), f(t, O) O, >= O,

removing thereby the restriction of boundedness of the elements a(t)
of the matrix A (t).
Throughout this note x denotes an n-vector in R, the real n-dimensional

Euclidean space and A (t) is an. n X n real matrix whose elements a(t)
are defined and continuous on I {t’0 <= < -4- oc }. No assumption as to
boundedness of these elements is made. x stands for the euclidean norm
of x. Thus x x’x (’ denotes transpose).

It seems relevant to quote the existing results which motivated this
note, with perhaps a few comments. For this we need the following deft-
nitions.
DEFiNITiON 1.1. The solution x 0 of (1.1)is said to be exponentially

stable, if there exist positive constants a and a such that for any solution x(t)
of (1.1), x (to) xo the inequality

(1.3) x(t) <= a][ Xo exp [--a(t to)], _>- to,

holds.
Let B(t) be a symmetric matrix with elements b(t) bi(t) defined

and continuous on I.
DnFITOZ 1.2. The quadratic form x’B(t)x is said to be positive defi-

nite if there exists a positive constant b such that

(1.4) x’B(t)x >= bx’x, >= O.

DEFINITION 1.3. The quadratic form x’B(t)x will be said to have the prop-
erty P if it is positive definite and if the elements bik(t) of B (t) are uniformly
bounded on I.

* Received by the editors June 8, 1964, and in revised form July 1, 1964.

" Department of Mathematics, Western Reserve University, Cleveland, Ohio.
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Thus x’B(t)x has property P if and only if there exist positive constants
b: and b2 such that

(1.5) blX’X <-_ x’B(t)x <= b2x x, >- O.

Necessary and sufficient conditions for x’B(t)x to have property P are re-
produced here from [2]" The quadratic form x’B(t)x has property P if
and only if the matrix B(t) has uniformly bounded coefficients and the
inequalities

Bk(t) > O, k 1,2, ,n--l;

B,(t) det B(t) >=
hold for >_- 0, where t is an arbitrary but fixed positive number and Bk(t)
stands for the principal minor of the matrix B (t) of order k.

If V x’B(t)x, then we shall set

, ,[dB(t) A’(1.6) V. k at + (t)B(t) + B(t)A(t)

assuming that the b(t) have continuous partial derivatives on I.
It is an elementary excereise to show [1, 4] that the existence of a

quadratic form V having property P such that *V.: is positive definite
guarantees exponential stability of the solution x 0 of (1.1). The con-
verse of this theorem has been proved under certain restrictive conditions
on A(t) [1, 6, 7, 8]. MMkin [6] (also reproduced in [1]) showed that"
THEOREM 1.1 (Malkin). If the solution x 0 of (1.1) is exponentially

stable and if the elements a(t) of A (t) are uniformly bounded on I, then
corresponding to each quadratic form x’C(t)x with property P one can give
a quadratic form V x’B(t)x possessing property P such that V*(1.1)

Cx (t)x. And in fact the following formula determines V.

(1.7) V z’B() z [X(r)X-()z]’C(r)[X(r)X-()z] dr,

where X(t) is any fundamental matrix solution of (1.1).
Roseau [7, 8] improved upon Malkin’s result and he proved:
TnEOIEM 1.2 (Roseau). If the solution x 0 of the system (1.1) is

exponentially stable and if the matrix A satisfies the condition

(1.8) R(s, t) A(r)X(r)X-l(t) dr --+ 0 as (s t) ---> 0

uniformly on s >>_ >-_ 0, then for every quadratic form x’C(t)x having property
P one can give a quadratic form V x’B(t)x having property P such that

CV:.I) x (t)x In fact formula (1.7) holds.
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In 2 we give an example to show that the existence of a quadratic form
V such that both V and -V1.1) have property P does not imply (1.8)
and give necessary and sufficient conditions for the existence of such a
quadratic form. In this connection we introduce the definition of exponential
decay of solutions of the system (1.1). It turns out that the exponential
decay of solutions of (1.1) implies a certain property of the trace of A (t).
This yields another necessary and sufficient condition for the existence of a
quadratic form V such that V and --VI.1) both have property P.
In 3 we introduce more general notion, "the generalized exponential

decy" (g.e.d.) of solutions of (1.1). This ws motivated by HMe’s defini-
tion of exponential stability [3]. We give necessary nd sufficient conditions
in terms of the existence of quadratic forms for this cse.

In 4 we give proof by the Lipunov method of Perron’s theorem on
stability of (1.2), without, however, the restriction of boundedness of the
elements of A (t) s in the classical result [5]. In this we use n ide of
Yoshizaw [9]. Roseu [8] hs Mredy proved this result by nother method.

9.. Exponential decay. Consider the sclr differential equation

(2.1) (2t cos 1)r.

Its general solution r(t), r(to) ro, is

(2.2) r(t) ro exp [sin #- sin t0- A- to].

Notice that

r(t) <= ro e exp [-(t to)], _-> to,

so that we have exponential stability. Malkin’s formula (1.7) gives the
Liapunov function

V= rft exp[2(sinr- sint) 2(- t)] dr,

for which V* -r and V satisfies
4ee V r

e

so that both V and -V* have property P. Notice however that the co-
efficient (2t cos t 1) is neither bounded nor does Roseau’s condition
(1.8) hold. For in this case

r2R(s,t) (2-cos- 1) exp[sin sin (-- t)]d-

exp[sins- sint- (s-- t)]-- 1.
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Setting s + 1/t, we notice that s -- 0 as -- , but R(t + l/t, t)
does not approach 0. Notice however that (2.2) satisfies

(2.3) e-2[rolexp[-(t- to)] <_- Ir(t) <-- e2lrolexp[-(t- to)], t->_ to.

DEFINITION 2.1. The solutions of the system (1.1) are said to decay ex-
ponentially if there exist positive constants a, a, b, such that every solution
x (t), x (to) Xo, of 1.1 satisfies the inequalities

Xo I!/ exp [-b(t to)]

<= x(t) <= Xo Ila exp [--a(t to)], > to

This leads us to the following theorem.
THEOREM 2.1. The solutions of (1.1) decay exponentially if and only if

there exists a quadratic form V x’B(t)x such that V and -V1.1) both have
property P.

Proof. Let the solutions of (1.1) decay exponentially. Let x’C(t)x be
any quadratic form having property P. Set (following MMkin)

V x’ B(t)x ft [X(’r)X-l(t)x]’C(T) IX(T) X-l(t)x] dr.

Then VI.I) -x’C(t)x and V has property P. To see that V has property
P, notice that there exist positive constants c and c such that

(2.5) cx’x <= x’C(t)x <= cx’x.
Then

x

We recall now that any solution x(t), x(to) Xo, has the form x(t)
X(t)X-1 (to)xo. This together with (2.4) implies

exp [--2b(r t)] dr -<_ ft
exp [--2a(r t)] dr,

11" <
2a

and thus

C20x’x <= V x’B(t)x <- x x.
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Suppose now that there is a quadratic form x’B(t)x V such that V
and -VI.1) both have property P. Let cl, c2, bl, b2 be positive constants
such that

blXtX 1<-_ V <= bx’x and cx x <= V .1) <= clx x.

This implies that

C2 v <_ V.) < C_l v.
bl b2

Along any solution x(t), x(to) xo, set V(t) x’(t)B(t)x(t). Then. this
last inequality implies

_c__ V(t) < dV(t) < _c_3 V(t) >_ O.
b dt b2

This yields on integration as V(t) > O,

V(to) exp -1 (t- to) -<_ V(t) _<_ V(to) exp

which in turn implies (2.4) because of the property P of V. Thereby
a 1/ X//bl, a Cl/2b2, b c2/2bl. This proves the theorem
completely.
A similar proof as above can be constructed to prove the following.
THEOREM 2.2. The solutions of (1.1) decay exponentially if and only if

there exists a positive definite form V of order m with uniformly bounded
coefficients such that -V.I) (it is also a form of order m) is positive definite
and has uniformly bounded coefftcients.

This result improves Malkin’s Theorem 24.5 in [4] in. that the restric-
tion of boundedness of elements of A (t) is removed.
We now prove the following results.
THEOREM 2.3. If the solutions of (1.1) decay exponentially then

(2.6) k -< exp 2 TrA(s) ds dr <= K, >= O,

for some positive constants k, K. (Tr A(t) .= a,(t).)
THEOnEM 2.4. If the solution x 0 of (1.1) is exponentially stable and if

there is a positive constant lc such that

(2.7) exp g Tr A(s) ds dr >= , >= O,

then the solutions of (1.1) decay exponentially.
For the proof of these two theorems we need the following lemma.
LEMMA 2.1. If the solution x 0 of (1.1) is exponentially stable and

X(t) denotes any fundamental matrix solution of (1.1), then there exist posi-
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tire constants al and a2 such that

(2.8) alx’x <= x’Z’(r, t)Z(r, t)x <= a2x x, r >= >= O.

Here Z(r, t) adj X(T)X-I(t).
Proof. Let Y(r,t) X(r)X-(t). ThenZ(r,t) (det Y(r,t))y-l(r,t).

Since Y(r, t) has uniformly bounded elements for r _-> >- 0 the same
holds for the elements of Z(r, t). Now the matrix Z’(r, t)Z(r, t) is sym-
metric and has elements which are continuous functions of t, r. Also
Z’(t, t)Z(t, t) E, the identity matrix, and det (Z’(r, t)Z(r, t)) 1 for
r >_- _-> 0. This implies, using the argument of Theorem 1 in [2], the exist-
ence of positive constants al and a= such that (2.8) holds.

Proof of Theorem 2.3. Exponential decay of solutions of (1.1) implies
that the quadratic form

(2.9) x [X(r)X-(t)] [X(r) x-l(t)] drI x

has property P. This implies, because of (2.8), that the quadratic form

[X(T)X-(t)] Z’(T, t)Z(T, t) [X(T)X-I(t)] drI X

has property P. But this last form is the same as

x [det X(T)X-I(t)] dr x x x [det X(r) x-l(t)] dr.

However we have the well known formula for the determinant of a funda-
mental matrix solution of (1.1), namely

det X(t) (det X(to)) exp ftt Tr A (s) ds,

which gives det X(r)X-1 (t) exp Tr A (s) ds. This shows that property

P of (2.9) implies (2.6). The theorem is thus proved.
Proof of Theorem 2.4. Note that exponential stability of the solution

x 0 of 1.1 together with the condition (2.7) implies (2.6). This implies
that the quadratic form (2.9) has property P. If V denotes the quadratic
form (2.9), then *V(1.1) -x x, so that the conditions of Theorem 2.1
are satisfied. The solutions of (1.1), therefore, decay exponentially and the
theorem is proved.

It is useful perhaps to give the following theorem, which is really a
corollary of the above two results, but is equivalent to them.
THEOnEM 2.5. A necessary and sufficient condition for the existence of a

quadratic form V such that V and --VI.1) both have property P is that the
solution x 0 of (1.1) be exponentially stable and the condition (2.7) holds.
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3. The generalized exponential decay.
DEFINITION 3.1. The solutions of the system (1.1) are said to exhibit

generalized exponential decay (g.e.d.), if there exist a nondecreasing function
$(t) possessing a continuous derivative such that (t) -- as -- and
four positive constants a, a, , b such that every solution x(t), x(to) Xo,

of 1.1 satisfies the inequalities

(3.1)
x0 ll exp [-b(((t) (/)(to)]

<- x(t) <= Xo ]a exp [-a(4)(t) 4)(to))], t>=to.

Remarlc 3.1. The g.e.d, does not imply exponential stability in general,
as the following example shows. Consider the scalar equation

1(3.2) r,
1-t-t

whose general solution is

r(t) r0exp[--(log (t-+- 1) log (t0q- 1))].

We have thus g.e.d, with a a /5 b 1 and 4)(t) log (t q- 1).
But we do not have exponential stability.
The following theorem gives a necessary and sufficient condition for

g.e.d.
THEOREM 3.1. The solutions of the system (1.1) exhibit generalized ex-

ponential decay if and only if there exist two quadratic forms V x’B (t)x
and W x’C(t)x having property P and a nonnegative continuous function
O( such that Jt O( r dr q- m and

V* -o(t)W.

Proof. If the solutions of (1.1) exhibit g.e.d., so that (3.1) holds, then
for any quadratic form W x’C(t)x having property P we set

v-- f [X(T)X-i(t)x] dT.
Jt

We notice immediately that

V* -,’(t)W

and f. 4’(r) dr -t- by the assumptions on 4(t). Further V has

property P. For if c, c. are positive eonstants such that

ClX’X <- W x’C(t)x <-_ cx x, >= O,
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we have

clft el(,) x(-)x-(t)x d.

This yields, on using inequalities (3.1),

Cl X 12 2 <-v<-Cllx I
2b 2a

which is property P for V.
Suppose now that V, W, O(t) exist as desired in the theorem. Set (t)

f O(r) dr. If bl, b2, Cl C2 are positive constants such that blx’x <= V

<- b2x’x and ClX’X W <- c,x x, >= O, then for any solution x(t), x(t0) x0,
if V(t) x’(t)B(t)x(t), we have

Clo(t) c y(t) < y(t) < o(t) y(t)
dt

This yields on integration

V(to) exp [-b((t) (t0))] _-< V(t) <= V(to) exp [--a((t) 4(t0))],

where a cl/b2 and b cz/bl. Further this inequality yields, because of
the property P of V, the inequality (3.1) with a b2/bl and bl/b.
This completely proves the theorem.
Example 3.2. The solutions of the second order system

2
2= y, 1---x---[Y,

which is equivalent to the single differential equation

2
+-2+x=0,

exhibit g.e.d. For we may consider the quadratic form

2V x’ y-t--[xy
which has property P for >= 2. Then

x + -+- xy-[

3 2
Thus we can set W x -+- yZ -+- -[ xy and O(t)

property P for -> 2 and -f-2 dt + .J

Notice that W has
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Remark 3.2. The g.e.d, indeed implies uniform stability. However, it
does not in general imply uniform asymptotic stability which is equivalent
to exponential stability for linear systems [1].

4. The stability theorem of Perron. In the case that the solution x 0
of the system (1.1) is exponentially stable, the above discussion is incon-
clusive as to the existence of a quadratic form V with property P such that
--V?I.1) is positive definite. Following Yoshizawa [9] we can prove the fol-
lowing useful theorem.
THEOREM 4.1. The solution x 0 of (1.1) is exponentially stable if and

only if there exists a continuous function v(t, x) having the following prop-
erties"

v( t, O) 0 and there are positive constants a and b such that

a. x --< <t, x) <= b. x II, t=> 0,

(ii) v(t, x) is locally lipschitzian in x and if we set

**V(1.1)-- lira sup [v(t A- h, x A- hA(t)x) v(t, x)],
h -O-t-

then

where c is a positive constant.
Proof. If v(t, x) is a function having properties (i) and (ii), set

v(t) (t, x(t) ),

where x(t), x(to) Xo, is any solution of (1.1). Then property (ii) implies

lim sup
v(t 4- h) v(t) < c v(t)

h-.o+ h b

This immediately gives

v <__ v to exp I---c to)l, >= to,

which in turn implies

x(t) <= - x01 exp ) (t to) => to,

which is inequality (1.3).
Now suppose that (1.3) holds. Let p be any positive constant such that

0< p < a. Set

(4.1) ,(t, x) sup [11 x(t + )x-l(t)x exp ()].
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We assert that this v has properties (i) and (ii). Note that

x =< (t, x) =< sup [a x (exp (--at)) exp (pr)] 11 x II,

which is property (i). Further for h > 0, we have

v(t + h, x + hA(t)x)

sup [ll X(t + h + r)x-i(t + h)(x + hA(t)x)II exp (pr)]
r>__0

exp (--ph).sup [ll X(t + T)x-i(t + h)(x + hA(t)x)I1 exp (pr)]

-< exp (-ph).sup [ll X(t + r)x-i(t + h)(x + hA(t)x)]1 exp (pr)]
r>__0

_<_ exp (-ph)[v(t, x) + he(h)],

where (h) -- 0 as h - 0. Thus

** < lira sup
1 [exp (-ph)[v(t, x) + he(h)} v(t, x)]V(1.1)

h-O+

v(t,x) lira
exp(--ph)-- 1

-o+ h
-p(t, x) <= - x II,

This proves the theorem.
Remark 4.1. We have defined exponential stability in the case of a

linear system (1.1). However, if 2 f(t, x), f(t, O) O, is a nonlinear
system, where x, f are n-vectors and the function f(t, x) is such that every
solution x(t, to, Xo) with x(to, to, Xo) Xo exists for => to, then if the
solutions of this system with x0 =< h (where h > 0) satisfy the inequality
(1.3) we say that the origin x 0 of this system is exponentially stable.
It is clear that Theorem 4.1 is applicable to this case with the restriction
that the conditions (i) and (ii) hold for x --< R, where R is a positive
constant and **v(.) is replaced by

** 1
v lira sup [v(t+ h,x+ hf(t,x)) -v(t,x)].

h-O+

We will now prove a stability theorem for the system (1.2), which is
essentially due to Perron. But we do not make any assumption as to
boundedness of the coefficients of A (t) as in the classical result [5].
THEOREM 4.2. Suppose that the origin x 0 of the system (1.1) is ex-

ponentially stable and the function f(t, x) is continuous and satisfies the con-
dition

(4.2) f(t, x) o(11 x 11).

Then the origin x 0 of the system (1.2) is exponentially stable.
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Proof. Set v (t, x) as in (4.1), where X(t) is any fundamental matrix
solution of (1.1). Then v(t, x) has property (i) and is lipsehitzian. Now
**v ealeulated for the system (1.2) gives

v**= lim sup
1 [sup [11 X(t + h-Jr- r)x-l(t + h)(x-t- hA(t)

h-0+ >__

-t-hf(t,x))llexp (or)]- sup [II x(t -t- r)X-l(t)x exp (Or)]]
r>_0

<- pv(t,x) + lira sup [sup [11Z(t nt- r + h)X-l(t + h)f(t,x) exp (pr)]]
h---O+ >_

<- or(t, z) -t- sup [c
r>_0

--or(t, x) -t- a f(t, x)

<--- oil xll-t- a[If(t,

Since by hypothesis Ilf(t, x)II/ll x -" 0 x 0 uniformly on
0 __< < -t- , we conclude the existence of a positive constant h such that

for xll =< h,t > 0.

This implies by Remark 4.1 that the origin x 0 of the system (1.2) is
exponentially stable. We notice that this conclusion goes beyond the con-
clusion of Roseau [8].
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ON THE SOLUTIONS OF SYSTEMS OF SECOND ORDER
DIFFERENTIAL EQUATIONS WITH VARIABLE

COEFFICIENTS*

I. W. SANDBERG

Introduction. In the study of parametrically excited dynamical systems,
attention is frequently focused on the properties of differential equations
of the form

.2d x dx(1) -d + A -d + B(t)x O, >= O,

in which x is an n-vector valued function of t, A is a constant n >( n matrix,
and B(t) is an n )< n matrix-valued function of t. Usually, B(t) varies
periodically with and one is primarily interested in determining whether
or not the trivial solution x 0 is stable.
The matrix A is often associated with the damping present in a physical

system. For a given B(t), it is reasonable to expect that the system will be
stable if the damping is sufficiently large in some sense, and it is frequently
desirable to actually determine the amount of damping necessary for
stabilization.
The purpose of this note is to indicate in a simple manner the utility of

the type of results of [1] in obtaining sufficient conditions under which all
solutions of the nonhomogeneous equation

d2x dx(2) dr--T + A + B(t)x y, >= O,

both approach zero (i.e., the zero vector) as t-- and belong to
22 (0, ), the set of measurable complex n-vector-valued functions of
defined on [0, such that the square of the modulus of each component
is integrable on [0, ). It is assumed throughout that A and B(t) are com-
plex matrices, that the elements of B (t) are uniformly bounded and piece-
wise continuous, but not necessarily periodic, in t, and that y is an arbi-
trary element of 2n(0, ).

In particular, for a subclass of equations of the type (2) of direct engineer-
ing interest (in which A and B(t) are Hermitian for ->_ 0), we show that
if the smallest eigenvalue of A exceeds a number that depends in a simple
manner on the eigenvalues of B(t), then all solutions approach zero as
t-- and belong to n(0, ).

* Received by the editors July 9, 1964, and in revised form October 5, 1964.
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey.
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Notation and definitions. Let M denote an arbitrary matrix. We shall
denote by Mt, M*, and M-1, respectively, the transpose, the complex-
conjugate transpose, and the inverse of M. The positive square-root of the
largest eigenvalue of M*M is denoted by A{M}; and, if M is Hermitian,
X{ M} and _{M}, respectively, indicate the largest and smallest eigenvalues
of M. The symbol in denotes the identity matrix of order n; and s and o,
respectively, are complex and real scalar variables.

Let ) denote the set of points at which B(t) or y(t) is discontinuous.
By a solution of (2) we mean any complex n-vector-valued function x
which is twice differentiable everywhere on [0, and satisfies (2) on the
complement of with respect to [0, ).

Results and discussion. It is intuitively palatable that all solutions of (2)
should possess a given property if all solutions of the corresponding equa-
tion obtained by replacing B(t) with some constant matrix C possess that
property and B(t) is sufficiently close (in some suitable sense) to C. The
following theorem, which is proved in the next section, is a precise state-
ment consistent with this notion.
THEOREM. Suppose that there exists a constant n X n matrix C such that

det[sln+As+C]#0 for Re[s]_-> 0, and(i)

(ii) sup AtB(t) C} sup Al[-021 + ioA + C]-1} < 1.
--oo<o <oo

Then all solutions of (2) belong to 2n(O, and approach zero as t---> .
It is sometimes possible to considerably simplify the application of this

result to specific cases by exploiting the (easily verified) inequality

A{M} =< n max 17n l,

in which M is an arbitrary n >( n matrix with elements mk.
The following corollary of the theorem provides a simple upper bound

on the amount of damping necessary to stabilize a parametrically excited
dynamical system of a very general type.
COnOZLAnV. Let A be a positive-definite Hermitian matrix, and let B(t)

be a positive-definite Hermitian matrix for >- O. Suppose that

and that

inf _{B(t)} > 0,
t>0

_X{A} > (sup X{B(t)} )1/2 (inf X_{B(t)} )1/2.
t>=0 t_0

Then all solutions of (2) belong to ,(0, and approach zero as ---> .
For similar results concerned with the special case in which n 1,

see [1] and [2, 3, p. 212].
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TABLE 1
bl/bo Q1 Q

0.024 100 41.7
0. 040 50 25
0. 060 33 16.7
0.080 25 12.5
0.120 17 8.3
0.160 12.5 6.3
0.20 10 5

With regard to the necessity of the condition of the corollary, it is of
interest to consider the recent results of Phillips [3] concerning the determi-
nation of the value of reactance variation in order that parametric oscilla-
tions can just be maintained in a time-varying damped resonant system
governed by (1) with n 1 and B(t) b0 bl cos ot, in which b0, bl,
and o are positive constants. Using a semigraphical technique and the
results of McLachlan concerning the Mathieu equation, Phillips finds that
if, with a given bl(b0) -1 =< 0.2, the quantity %/o/A exceeds the appropri-
ate value of Q in Table 1, then there exists o for which all solutions of (1)
do not approach zero as t-- .
The values of Q2 given in Table 1 were computed in accordance with the

corollary and are such that if, for a given b(b0)-, %//A does not exceed
the corresponding value of Q2, then for any real-valued B(t) such that
(b0 b) =< B (t) =< (b0 + b) for => 0, all solutions of (1) approach zero
as t-- . Observe that the values of Q1 are only roughly twice the cor-
responding values of Q2.

Proofs.

Proof of the theorem. We need the following lemma* which is a very
simple version of the type of result proved in [1].
LEMMA. Let k(. and Q(. denote measurable n X n matrix-valued func-

tions of defined on [0,
p 1, 2,

). Let ]c (t) possess elements kab (t) such that for

]a( t) I dt < a, b 1,2, n,

and let the elements of Q(t) be uniformly bounded on [0, ). Let g and f de-
note measurable n-vector-valued functions of defined on [0, such that
g 22n(O, ),g(t)--Oast-- ,

f(t)*f(t) dt for (0, ),

For the sake of completeness, a proof of the Lemma is given in the Appendix.
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and

g(t) f(t) + fo lc(t- r)Q(r)f(r) dr,

Suppose that, with

t>_O.

K(ioo) fo l(t)e- dt,

sup A[Q(t)] sup
>0

Then f 0, and f O as
Now consider (2). From

d x dx+ A + Cx y- [B(t) C]x, O,

we obtain

x(t) + Jo (t- r)[B(r) C]x(r) dr u(t) + v(t)

for 0, in which u is a solution of

d u du
d+A+ Cu=O,

v(t) Jo (t- )() ,
and k(. is he inverse Laplace ransform of [1, + sA + C]-.

In accordance wih our assumption ha de[sl, + sA + C] 0 for
Re[] 0, i follows ha k(. satisfies he conditions of he lemma, u(t)
+v(t)Oast (see he proof of Theorem 6 of [1]), and (u
2.(0, ). Thus, he heorem follows from a direc application of he

lemma.
Proof of the corollary. Le

6=supX{B(t)}, and =inf{B(t)}.
t0 t0

Consider he heorem and le C (b + )1,. Then, since A is assumed
o be positive-definite, i is clear ha condition (i) is satisfied. From he
easily verified inequality

sup {(t) ( + ).} (6- ),
t0

and he ideniy

1, + iA + (6 + 0)1,]--}
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in which D diag[dl, d2, dn] with Ida.} the eigenvalues of A, it fol-
lows that condition (ii) is met if

(3) 1/2(g _b) sup [-- -t- 1/2(g -t- _b) -t- iwX_{A}]- < 1.

Inequality (3) is satisfied if _X{A} > (g)12 (_b) 1/2. This proves the corol-
lary.

Appendix.

Proof of the lemma. For an arbitrary h 2(0, ), let h be defined
by

h h(t)*h(t) dt

Assume that the hypotheses of the lemma are satisfied. Let y be an
arbitrary positive number, let

if 0_-< =< y,(t)
0, if t> y,

and let fy and gy be defined by

fy(t) ]f(t), if
if
if

gy(t) ,I t)’
if

Finally, let e be defined by

O<=t<=y,
t>y,
O<=t<=y,
t>y.

Then, from

we obtain

e(t) fo lc(t- r)Q(r)fy(r) dr,

g( t) f( t) + I k(t r)Q(r)f(r) dr,

t>O.

t>=O,

fy(t) fly(t) x(t)e(t), t>=0,

whieh implies that fyll --< Ilgy -t- xe -< gll -t- Ilell.
Consider !l. Le p,(t) and P,(ico) be defined by

p,(t) Q(t)fy(t), t>_0,

--laste py(t) dt,
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Using Parseval’s identity and the well-known extremal property of the
largest eigenvalue of a Hermitian matrix, we find that

e (27r) -1 Py(ico)*K(ioo)*K(ico)P,(ico) doa

sup

Thus, with

sup

A2{K(i) }(2r)-1 P(i)*P,(ioo) doo

A2{K(i)} f0 f(t)*Q(t)*Q(t)f(t) dt

A2/K(i0) sup h2{Q(t) f 2.
tNo

r= sup AIK(ico)}supA{Q(t)},

we have (recall that r < 1 by assumption) f (1 r) -1 g for all
y > 0. It follows that f at2n(0, ).

It remains only to show that f(t) -- 0 as -- . Since by assumption
g(t) --+ 0 as -- , it clearly suffices to prove that if f a32(0, and
our assumptions concerning lc(. and Q(. are satisfied, then

.t
lc(t-- r)Q(r)f(v) dv-+O as t-+ .

Let p(t) Q(t)f(t) for => 0, and observe that p a32(0, ). Thus,

lC(t r)p(r) dr (2)- K(io)P(io)et do, >= O,

in which
T

P(i) 1.i.m.r_ J0" e-i’tP (t) dt.

Since p oe (0, ), and

fo ]ab( t) 12 dt < a, b 1, 2, n,

it follows that the modulus of each element of the n-vector K(i)P(i) is
integrable on the w-set (- m, m ). Thus, by the Riemann-Lebesgue lemma,

o

This completes the proof of the lemma.
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A GENERALIZATION OF LASALLE’S BANG-BANG"
PRINCIPLE*

HUBERT HALKIN]

Introduction. This paper is devoted to some new results for the minimum
time problem for a time varying linear control system.
A fundamental result in this problem is the "Bang-Bang" Principle of

J. P. LaSalle [1]" If there exists an optimal steering function then there exists
a "bang-bang" steering function which is optimal. In LaSalle’s version of
this principle, a bang-bang steering function is a measurable function taking
on values at the vertices of some hypercube. In this paper we prove the
same principle under the additional restriction that a bang-bang steering
function be piecewise continuous, i.e., continuous at all but a finite number
of points.

This generalization of LaSalle’s Principle transforms an interesting
mathematical idea into a practical engineering tool.
The two main elements of this paper are the following"
(i) We assume that the time varying linear differential equation is piece-

wise analytic with respect to the time.
(ii) We use a generalization of Lyapounov’s Theorem on the convexity

and closure of the range of a vector integral [2].
We conjecture that other existence theorems in the theory of optimal

control [3, 4] could be similarly strengthened.

The "bang-bang" principle. The present paper should be considered as a
continuation of LaSalle’s original paper [1] and we shall suppose that the
reader has that paper at hand.
We shall assume that the elements of the matrices A (t) and B(t) are

functions of which are defined and piecewise analytic for >__ 0.
By a piecewise analytic function f(t) for >= 0 we mean the following:

for each r > 0 there is a finite set It0, tl, tk} with to 0 < tl < t2
< < tk r, a finite collection of functions fl(t), f.(t), f (t) and
an e > 0 such that

(i) f(t) f(t) for all (t_, t) and each i 1, 2,... k,
(ii) f(t) is defined and analytic on (t_- e, t,- e) for each i 1,

With LaSalle we shall denote by 2 the set of admissible steering functions
and by 2 the set of measurable bang-bang steering functions; we introduce

* Received by the editors June 6, 1964, and in revised form July 31, 1964.
f Analytical and Aerospace Mechanics Department, Bell Telephone Laboratories,

Incorporated, Whippany, New Jersey.
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the new notation 2’ to denote the set of piecewise continuous bang-bang
steering functions.

In this paper we prove the following theorems.
THEOREM 1". If of all piecewise continuous bang-bang steering functions

there is an optimal one relative to ’, then it is optimal (relative to ).
THEOnEM 2*. If there is an optimal steering function then there is always

a piecewise continuous bang-bang steering function that is optimal.
These two theorems are respective generalizations of Theorems 1 and 2

of LaSalle. In order to prove Theorems 1" and 2", we need only replace
Lemma 1 of LaSalle by the following result.
LEMM_ 1". Let M be the set of all real valued measurable functions a(t)

on [0, 1] with a(t) <-- 1. Let M be the subset of piecewise continuous func-
tions in M with [a(t) 1. Let y(t) be any n-dimensional function which
is defined and piecewise analytic on [0, 1]. De,he

and

{701K a(t)y(t) dt"

{7oK a(t)y(t) dt.

Then K is closed and K K1.
Let M be the subset of functions in M with a(t) 1 and let

K a(t)y(t) dt" a M

From LaSalle’s Lemma 1 we know that K is closed and K K. From
standard results in measure theory we know that K c /, where /
denotes the closure of the set K1. In order to prove Lemma 1" it remains to

prove thatK is closed or equivalently that the set lf y( t),dt" E a}is
closed, where a is the set of subsets ,of [0, 1] which are the union of a finite
number of intervals. This last statement is a consequence of the following
theorem which has been proved in [2]"

Suppose that is a class of subsets of [0, 1] and that z( t) is an n-dimen-
sional vector function on [0, 1] possessing the following two properties"

(i is an algebra of Borel sets such that, if C is any element of , then
there exists a collection )c of sets D, defined for every a, 0 <-_ a <= 1, such
that )c , DI C, t(D,) a(C) where denotes the Lebesgue measure
and D,

(ii) z(t) L(O, 1) and for every n-vector p,

{t" p.z(t) > O, 0 <= <= 1} ,
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where the dot denotes the scalar product. Then the set

ffc z(t) dt: C a}
is closed and convex.

It is trivial to show that the class ( satisfies condition (i). Let us show
that a and y (t) also satisfy condition (ii). Since each component of y (t) is
piecewise analytic* on [0, 1], the real-valued function p.y(t) is also piece-
wise analytic for any p. It is thus sufficient to provethat

{t: f(t) > O, It,_1, t]} (

for each i 1, 2, ..-,/, where fi(t) is analytic on (ti_l- e, t-t- e) for
e > 0 and equal to p.y(t) on (t_l, t). This last statement follows ira-
mediately from the fact that if n analytic function is not identically zero
then the set of its zeroes has no ccumultion point in the interior of the
domain of analyticity.

Final remarks.
1. If the system under consideration is normal (in the sense of LaSalle)

then Theorems 1" and 2* are an immediate consequence of LSalle’s
Theorem 3 which states that all optimal steering functions u* are of the
form

u*(t) sgn[Y(t)],

where is some nonzero n-dimensionM vector. (From the definition of
normality we know that no component of vY(t), O, is identically zero
on an interval of positive length; we know also that no component of
vY(t), 0, has a set of zeroes with n accumulation point in the interior
of the domain of analyticity.) Accordingly Theorems 1" and 2* re true
generalizations only in the case of nonnorml systems.

2. The results of the present paper could colloquially be summarized
s follows: anything which cn be done with an arbitrary admissible con-
trol cn also be done with relay control with finite number of switching
times.

Acknowledgment. I m deeply grateful to Dr. Lucien W. Neustadt for
his mny valuable comments and suggestions.

In LSlle’s pper the vector y(t) denotes column of the mtrix function Y (t)
X-(t) B(t), where

(t) A(t) X(t) nd X(0) I.

In this paper we have assumed that the elements of the matrices A (t) and B(t) are
piecewise nlytic. This assumption implies that the matrices X(t) and Y(t) re
piecewise nalytic.
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SINGULAR OPTIMAL CONTROLS FOR A CLASS OF
MINIMUM EFFORT PROBLEMS*

DONALD R. SNOWf

1. Introduction. Suppose a system is described by the linear second-order
scalar differential equation

(1.1) 2 -- a(t)2 -- b(t)x -- c(t) u(t).

We are to find the function u(t), u --< 1, which drives the system from
given initial state Ix(0), 2(0)] to the origin (0, 0) within a given finite time
T while minimizing the integral of u(t) I. As is proved in [1, Appendix 1],
any completely controllable second-order linear system can be described
by (1.1) by using a suitable nonsingular linear transformation. Aspects of
this minimum effort problem or solutions to specific examples have been dis-
cussed by various authors [2], [3], [4], [5]. A general discussion of minimum
effort control problems is given in [6].

Since 1958 the standard method of solution of such problems has been
the application of the Pontryagin maximum principle [7], [8] or some
modification of it. It will be shown in this paper that for those systems
where

(1.2) b(t) d(t),

this method breaks down for large regions of initial states because of in-
sufficient characterization of the optimal control. Problems for which (1.2)
holds therefore belong to the class of singular optimal control problems.
The maximum principle, which is u necessary but not sufficient condition
for optimality, is not useful here since an infinity of control functions are
described by it, not all of which are optimal.

This paper will present a direct analytic method of solution for these
singular problems. We first ask the question" for which initial states in the
phase plane (x, 2) do there exist controls u(t), u[ _-< 1, which drive the
system to the origin (0, 0) within the given time T? This set of initial
states is called the T-controllable region of the phase plane and equations
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for the boundary of this region will be derived in terms of T, a(t), and c(t).
The subregions of T-controllable initial states for which the maximum
principle is not useful will be called the singular subregions and will be corn-
pletely described.
We will then determine the optimal controls for any T-controllable initial

state and it will be shown that for each initial state in the singular sub-
regions there are infinitely many optimal controls, most of which are not
bang-coast-bang. To have a well-posed problem (unique solution) in these
cases an additional constraint must be specified. Such a constraint might
be the requirement that the response time be smallest. This time would be
less than or equal to the upper limit on the time, T. For initial states in the
T-controllable region that are not in the singular subregions, the optimal
controls will be shown to be unique. These controls could be obtained by
the maximum principle method as well as by this new method; however,
this new method is direct and eliminates the need of guessing the adjoint
variable initial conditions.

Reference [9] is a recent paper on singular control problems in which the
system equations as well as the integral to be optimized are linear in the
controls. That paper does not cover the present case since the integral here
depends on u (t) which is nonlinear on 1 _<- u _-< 1.
To illustrate the method, the results will be applied to an important

special case, namely to the system 2 q- a2 u, where a is a constant. The
regions and optimal controls will be shown.

2. Statement of the problem. We will consider the following scalar
differential equation

(2.1) 2 q- a(t)2 q- b(t)x -4- c(t) u(t),

where a(t) and b(t) are given continuous functions, c(t) is a given piece-
wise continuous function, u (t) is the control function, assumed to be in the
class U, where U is the set of all piecewise continuous functions u(t),
u --< 1, on 0 _-< _-< T, where T is a given (fixed) number. The initial state
and desired terminal state on x(t) are

(2.2)

and

(2.3)

Ix(0), (0)] (, )

[z(T), (T)] (0, 0).

The functional or payoff function to be minimized is taken to be

(2.4) J[u] fo u(t) dt.



SINGULAR OPTIMAL CONTROLS 205

The general problem may then be formulated as:find a function u(t) U
such that the solution of the differential equation (2.1) has initial state
(2.2), terminal state (2.3), and makes J[u] as small as possible.
We first find conditions on the coefficients of the differential equation

such that the usual method of the Pontryagin maximum principle does not
determine the optimal controls. Let xl x and x. a? be the state vari-
ables and pl and p2 be the adjoint variables of the Pontryagin method. Us-
ing these variables the equivalent first order system, the Hamiltonian, and
the adjoint system are:

1 X2
(2.5) Equivalent system:

2 -a(t)z b(t)x c(t) + u.

Hamiltonian"
H Pll - P22-

plX2 p2a (t)x2 p:b (t)x pc (t) nt- p,u u I"

(2.6) Adjoint system"

OH
OXl

pb(t),

OH pa(t) p.

According to the maximum principle, any optimal control u(t) maxi-
mizes H as a function of u. Since the u-dependent terms H in H are given
by t- pu u I, we can see that an optimal u must satisfy the relation

+1 if p2(t) > 1,
(2.7) u(t) if p.(t) < 1,

1 if p(t) < --1.

The general method now is to guess the values of pl(0), p(0) (or use an
iteration method as in [10]), use the given al, a:, and integrate the system
(2.5)-(2.6), choosing u (t) according to requirement (2.7). If this trajec-
tory does not have the desired terminal state (0, 0), we guess new values
for p(0), p2 (0) and try again.

DEFINITION. A regular initial state is a T-controllable initial state (al, a2)
for which the Pontryagin maximum principle characterizes at least one
optimal control, i.e., there is at least one set of adjoint variable initial con-
ditions such that (2.7) gives an optimal control. All other T-controllable
initial states are called singular initial states.
PUOPOSITION 2.1. There are singular initial states for this problem if the

coe.licients of the diTerential equation (2.1.) satisfy the relation

(2.s) b(t) ---- o(t).

If this condition holds only on subintervals of 0 =< _-< T, the problem
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can be treated separately on these "subintervals of singularity". Note that
condition (2.8) does not depend on c (t).

Proof of Proposition 2.1. We first show that (2.8) is equivalent to p2(t)
= _t:1 being permissible solutions of the adjoint system (2.6). When (2.8)
holds, the adjoint system leads to the equation 2 a(t)#., which has the
solutions p(t) --- 1. Conversely, substituting p(t) +/-1 into (2.6), we
get pl(t) =- +/-a(t) and i51(t) +/-b(t). Hence (2.8)follows.
Now note that when p(t) is given, (2.7) determines the optimal control

uniquely except at the values of for which p2(t) +1. If these excep-
tional values of time are isolated, the value of the optimal control at these
times is immaterial. But when p2(t) =- +1, we have/ u u I; and
then, any u _-> 0 will maximize/ giving the maximum value/ 0. When
p. -= -1, any u _-< 0 will maximize/, again giving the maximum value
/ 0. Thus when p2(t) :i:1, the maximum principle does not charac-
terize the optimal control except to indicate that it must not change sign.
It will be shown in 5 that the two choices of adjoint variable initial con-
ditions [p(0), p(0)] :t:[a(0), 1] which give p(t) +/-1 correspond to
two regions of T-controllable initial states. It will also be shown in 5 that
there are no other adjoint variable initial conditions that lead to optimal
controls for initial states in these regions. Hence these are regions of
singular initial states.

3. A lemma. We now state a lemma without proof.
LEMMA 3.1. Given any K(t) >= 0, continuous and strictly monotone increas-

ing on [0, T], and two real numbers A and M with 0 <- A <= M T. Let UM"4

be the class of all piecewise continuous functions with 0 <= u(t) <= M on [0, T]
or which

T

u(t) dt= A.

For each u UMA let

.T
(3.1) Jo K(t)u(t) dt Bu.

Let

u.(t) =f0M if 0 <_ _<_ A/M,
if AIM t<= T,

and

if 0 <= < T-- A/M,u,(t) .M if T- A/M <= <= T.
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M uL(t)

y- AREA A

0 :1 -0 T

R

FIG. 1. Functions UL and uR

(See Fig. 1 ). Then, for all u UMA, we have

T T

(3.2) fo K(t)uL(t) dt <= B. <-_ fo K(t)uR(t) dt,

and, for any number B in this range, we can find at least one u UM
such that B, B.
When K(t) this lemma is just a formal statement of the fact that for

a given area, the shape that has its centroid farthest to the left is the tallest
allowable rectangle with this are at the left end. Similarly, for the right
end. In all cases except when B is at the lower or upper limit in (3.2) there
are infinitely many suitable u’s; for example, the rectangle of maximum
height with area A, shorter but wider rectangles located properly, triangles
with area A, etc. This lemma will be the basis for the characterization of
the optimal controls and T-controllable region.

4. Characterization of the T-controllable region. Throughout the re-
mainder of the paper we assume that the differential equation satisfies
(2.8). Then it can be written in the form

(4.1) d_ [2 -[- a(t)x] u(t) c(t)
dt

DE]’INITIO N. t control u(t) will be called admissible if it is in U and if it
drives the system from the initial state (2.2) to the terminal state (2.3).

Notation. The T-controllable region in state space (see definition in 1
will be denoted by R. The subregion for which there are nonnegative
missible controls will be denoted by P and that for which there are non-
positive admissible controls by N. The interiors of these regions will be
denoted by R, po, and N, respectively.
We now reduce the problem to an equivalent formulation.
TEOnEM 4.1. Given the initial state (a a.), let

T T

(4.2) A -a.- a(O)a H- fo c(t) dt, B a - fo K(t)c(t) dt,
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where

(4.3) K(t) foteXpIla(r) drl ds.

Then, u U is admissible if and only if
T

(4.4) A f0 u(t) dt,

T

(4.,5) B f0 K(t)u(t) dt.

Proof. The general solution of (4.1) cn be written

K(t) [u(s) c(s)] ds -- a2 - a(O)ax( t)
K’(t)

1 K(s)[u(s) c(s)] d+ K’(t
From this it can easily be shown that x(T) 2(T) 0 if and only if

T

[u(s) c(s)] ds + + a(0)l 0

T- fo K(s)[u(s) c(s)] ds 0.

Hence, for u U, u stisfying these conditions is equivalent to u being
dmissible, and these conditions re just (4.4) and (4.5).

For a given initial state, (4.4) and (4.5) give characterization of the
subclass of U that re dmissible controls. To describe the region R we find
the values that A and B cn assume for controls in U and then determine
the corresponding initial states (al, a2). Region R and its subregions are
independent of the functional to be minimized; but, it will be shown in
5 that the regions P and N re the regions of singular initial states when
the particular functional (2.4) is used.
THEOIEM 4.2. An initial state (al a) is in region R if and only if

(4.6) --T<_ A <= T,

and
A--T) /2 T

f
T

(4.7) 2 K(t) dt <= B -- fo K(t) dt <= 2 K(t) dt,
T--A)I2

where A, B, and K(t) are defined by (4.2) and (4.3). The boundaries of the
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region are given by considering equality to hold on the left and right, respec-
tively, in inequality (4.7).

Pro.of. For any admissible u (t), let v (t) u (t) -- 1. Then 0 <= v <= 2.
In terms of v (t), conditions (4.4) and (4.5) become

T

(4.8) A -t- T f0 v(t)dt,

T T

(4.9) B - f K(t) dt f K(t)v(t) dt.

Conversely, any piecewise continuous v(t), 0 _-< v _-< 2, that satisfies these
two conditions corresponds to an admissible u(t).
Now suppose (al, a2) R. Then there is a u U satisfying (4.4) and

(4.5), and hence a v(t) satisfying (4.8) and (4.9). Since 0 _-< v __< 2, (4.8)
shows that 0 =< A -- T _-< 2T, or --T =< A __< T. Use of Lemma 3.1 with
M 2 and the left hand sides of (4.8) and (4.9) as the constants gives

T T T

fo K(t)v(t)dt<= B-- fo K(t)dt<= fo K(t)v(t)dt,

or
At-T) /2 T

f
T

T
2 K(t) dt <= B + K(t) dt <- 2

Now suppose that the initial state (al, a) is such that A and B satisfy
(4.6) and (4.7). By Lemma 3.1, there is at least one v (t), 0 =< v _-< 2, that
satisfies (4.8) and (4.9). This v(t) corresponds to a u U that is admis-
sible. Hence (a, a) R.
THEOIE 4.3. An initial state (o a) is in region P if and only if

(4.10) 0 =< A =< T,

and
A T

(4.11) fo K(t) dt <- B <= fr-A K(t) dt,

where A, B, and K(t) are defined by (4.2) and (4.3). The boundaries of the
region are given by considering equality to hold on the left and right, respec-
tively, in inequality (4.11).

Proof. Suppose (a, a) P. Then there is a u U, 0 _-< u _-< 1, satisfy-
ing (4.4) and (4.5). Condition (4.4) with 0 =< u _-< 1 gives 0 =< A -< T.
Use of Lemma 3.1 with M 1 gives

T T

f K(t)u(t)dt <- B <= f K(t)u,(t)dt.
.o .o

By the meaning ofu and u, in Lemma 3.1, this is just (4.11).
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Now suppose initial state (0/1, 0/2) is such that A and B satisfy (4.10)
and (4.11). By Lemma 3.1 with M 1 there is at least one u U with
0 -< u _-< 1 that satisfies (4.4) and (4.5). By Theorem 4.1 this u is admis-
sible and since u >_- 0, we have (0/1,0/2) P.
By analogous reasoning with -u(t), we can prove the following result.
THEOREM 4.4. An initial state (0/1, 0/2) is in region N if and only if

(4.12) -T -< A =< 0,

and
T --A

(4.13) J.+ K(t) dt <= B <= fo K(t) dt,

where A, B, and K(t) are defined by (4.2) and (4.3). The boundaries of the
region are given by considering equality to hold on the left and right, respec-
tively, in inequality (4.13).
By (4.10), (4.12), (4.11), and (4.13), the regions P and N are disjoint

except for the initial state corresponding to A B 0. This unique point
in R is the initial state for which the control u(t) 0 is admissible, and is
the origin if and only if c(t) =- O. When c(t) O, the T-controllable region
is symmetric with respect to the origin since then -u in place of u in (4.1)
leads to the solution -x instead of x. For this case region N is the image of
region P under reflection in the origin. Region R transformed into AB-
space is always symmetric with respect to the origin (regardless of c(t))
since conditions (4.4) and (4.5) are linear in u(t) and the class U is sym-
metric.
We will now subdivide the set of initial states R (P [J N) into four

mutually disjoint sets R, i 1, 2, 3, 4. It will be shown in 6 that the set
R (P U N) is the set of regular initial states and that the optimal con-
trols for initial states in each of the regions R have a specific form. To
define these regions, we let

(At-T)/2 T

B 2/_ K(t) dt- /_ K(t) dt,
(4.14)

B 2 K(t) dt- K(t) dr;

and if 0 <= A <= T, we let
A T

or, if--T_-< A __< 0, welet

(4.16) BN K(t) dt, BRN K(t) dt.
+A



SINGULAR OPTIMAL CONTROLS 211

The description of region R, inequality (4.7), then becomes BL --<_ B
=< B. Region P, which requires 0 <_- A -< T, is described (see (4.11)) by
BLe <= B <= BRe. SinceP c R, wehaveBc _-< Br _-< BRe __< B. This
inequality can also be verified by use of the monotonieity and positivity of
K(t). Then for 0 -< A __< T the regular initial states satisfy

(4.17) RI"B, <= B <= B,
or else

(4.18) R2 B <- B

Analogously, we find that for T __< A =< 0 the regular initial states satisfy

(4.19) R’Bz, <= B -<- Bv,

or else

(4.20) R4"B,-< B =< B,.

For the example considered in 7, these regions are shown in Fig. 5.

5. Optimal controls for singular initial states. Given an initial state
(a, ag.) R we can now ask for those admissible controls which minimize
J[u] in (2.4) since we know at least one admissible control exists. Theorem
4.1 gives a more convenient characterization of the admissible controls.
Note that the quantity A in (4.2) and (4.4) gives a lower bound for J
for the given initial state since

T T

(5.1) AI f0 u(t) dt <= fo lu(t) dt J"

THEOnEM 5.1. Any admissible control that does not change sign is optimal.
Proof. Equality holds in (5.1) if and only if u(t) does not change sign.

Since A is the lower bound for J, any such u must be optimal.
Regions P and N contain M1 initial states for which there are admissible

controls that do not change sign. Hence for initial states in P and N,
Theorem 5.1 shows that the optimal controls are precisely those admissible
controls that do not change sign. For these initial states there are also
admissible controls that do change sign, but these are not optimal.
To determine the optimal controls for an initial state in P, we compute

A and B from (4.2) and find all nonnegative functions u(t) that satisfy
(4.4) and (4.5). If the initial state is on the boundary of P, B will be at
the lower or upper limit in (4.11). Hence the optimal control for such an
initial state is the unique nonnegative admissible control for this state,
namely the u or u shown in Fig. 1. But if the initial state is in P, the
interior of region P, strict inequality will hold on both sides of (4.11).
Then, by the discussion following Lemma 3.1, there are infinitely many
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suitable u’s. These re of rbitrry form s long s they stisfy 0 _-< u =< 1,
hve re A, nd hve K(t)-weighted integrM B. The nlogous result
holds in region N.
An dditionl constraint my be imposed if it is desired to select only

one of the infinitely mny minimum effort optimal controls for given ini-
tial state in P or N. This might be desirable in computational scheme.
An example of such constraint would be to select that minimum effort
control which mkes the system rrive t the origin t the erliest time
t _-< T. This constraint is simple to pply when c(t) O, since then it cn
esily be shown that the system must be at the origin t the instant the
control is turned off for the lst time. Thus this control is the one with the
re A concentrated s fr to the left s permitted by B. It is shown in
Fig. 2 for initial states in P. This is minimum fuel control regardless of
c(t), but if c(t) 0 on G -< =< T, the system does not rech the origin t
time G, nd hence this control is not minimum time-minimum fuel
control.
We hve shown that there re infinitely mny optimal controls for ech

initial state in P U N nd that most of these controls re composed of
rcs ttmt do not lie on u -- 1, 0, or 1. Hence they re not characterized
by the Pontrygin mximum principle (see (2.7)). We now show the fol-
lowing.
THEOnEM 5.2. Region P [J N is the region of singular initial states, i.e.,

there are no adjoint variable initial conditions that give a Pontryagin optimal
control (see (2.7)) for any initial state in P U N.

Proof. Condition (2.8) llows the djoint system (2.6) to be solved ex-
plicitly s p(t) [a(0)p(0) p(O)]K(t) -+- p(O), where K(t) is given
by (4.3). This is strictly monotone increasing or decreasing unless the
initial conditions [p (0), p (0) + [a (0), 1] re used, in which case p(t)--- + 1. For initial states in P the only optimM controls with u 0 nd 1
hvetleasttwojumps;forexmpleu (1,0, 1) oru (1,0, 1, 0),
where this notation means that u 1 during the first interval of time,
u 0 during the next interval, etc. (Controls with only one jump, nmely

AREA A

FG. 2. Minimum time-minimum fuel control in region P when c(t) 0
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u (1, 0) or u (0, 1), correspond to boundary points of P.) To obtain
a control with at least two jumps from (2.7), p. (t) would have to change the
sign of its slope at least once. But p2(t) is strictly monotone unless it is
identically 4-1, in which case (2.7) does not characterize the optimal con-
trols sufficiently anyway. Thus there are no adjoint variable initial con-
ditions that give an optimal control by the Pontryagin maximum principle
method for any initial state in P. The analogous argument works for
region N. HenceP U N is contained in the region of singular initial states.
Theorem 6.1 (below) will show that all the T-controllable initial states
outside P U N re regular and therefore that po U N is precisely the set
of singular initial states.
The proof of Proposition 2.1 showed that p2(t) q-1 leads to nonnega-

rive optimal controls. Thus we can think of the adjoint variable initial
conditions [pl(O), p(O)] [a(O), 1] as corresponding to all initial states
in the singular region P. Likewise, we can think of [-a(O), --1] as corre-
sponding to the singular region N.

6. Optimal controls for regular initial states. Since P and N contain all
the T-controllable initial states which have admissible controls of one sign,
all the admissible controls for the remaining initial states must change sign.
For any admissible u(t), let

(6.1)

where

and

u(t) u+(t) u-(t),

u+(t) (2(t) ifu(t) >=0,

if u(t) < O,

u(t) if u(t) <= 0
u-(t)

if u(t) > O.

This decomposition is unique since at each we require at least one of
u+ or u-to be zero. Using this decomposition, u(t) u+(t) + u-(t).
THEOREM 6.1. The initial states in regions R i 1, 2, 3, 4, are all of

the regular initial states and have unique optimal controls of the forms

u (--1,0, +1) in R.,

u (--1, O, -1) in R.,

u (q-l,O, --1) in Ra,

u (--1,0, --1) in R4,



214 DONALD R. SNOW

where this notation means that in R1, the optimal control has u =- 1 during
the first interval of time, u =-- 0 during the next interval, and u 1 during
the last interval, etc.

Proof. Using decomposition (6.1), the functional (2.4) and condition
(4.4) become

T aT T T

Adding, we have
T

J- A 2 fo u+(t) dr.

Since A is a fixed number for a given initial state, minimizing J is equiva-
lent to minimizing

T

(6.2) J1 f0 u+(t) dt.

Using the transformation v(t) u(t) -k 1, the admissible controls corre-
spond to the piecewise continuous functions v(t), 0 -<_ v __< 2, that satisfy
(4.8) and (4.9), and minimizing (6.2) is equivalent to minimizing the area
above the line v 1 (the cross-hatched area in Fig. 3). Hence we need to
find the function v(t) that satisfies 0 _-< v _-< 2, has a given area and a given
K(t)-weighted integral, and has the smallest area above the line v 1.

Consider an initial state in R2 (see (4.18)); i.e., 0 -_< A __< T andBL _-< B
_<_ B Lp. We will show how to obtain the unique optimal control by modifi-
cation of the optimal control for the same A but with B Bp. This is a
boundary point of region P and the optimal control is given uniquely by
uc(t) in Lemma 3.1. In. terms of v(t), it has total area A -t- T and K(t)-

T

weighted integral B, q- f K(t) dt (see (4.8) and (4.9)) and is shown in
’0

Fig. 4. We will modify this function keeping the same total area but so that

:FIG. 3. Geometrical interpretation of the problem
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the value of the K(t)-weighted integral (a "generalized centroid") de-
T

creases until it reaches the value B -./, K(t)dt. At the same time we

need to do this by transferring as little area as possible from below v 1
to above this line in order to minimize (6.2). Since K(t) is monotone in-
creasing we can accomplish this by transferring vertical strips from the far
right below the line to as far left as possible above the line. Such a strip is
shown in Fig. 4. By transferring enough such strips to move the generalized
centroid left to the desired value, we obtain the optimal control in terms of
v(t). It is unique since any other admissible control corresponds to a v(t)
with more area above the line v 1. Transformed back to u(t), the unique
optimal control for any initial state in R2 is of the form u (--1, 0, -1)
where the first jump is taken as early as possible consistent with the corre-
sponding A and B. An analogous argument works for initial states in
R3, and R4. It is readily seen that these unique optimal controls could have
been obtained by application of the Pontryagin maximum principle (see
(2.7)) with a suitable choice of adjoint variable initial conditions. Hence,
these are regular initial states. Since Theorem 5.2 shows that the remaining
initial states are all singular, region R U R2 U Ra U R4 is the set of all
regular initial states.
The geometrical argument in the above proof could be replaced by

simple variational argument but the geometry gives more insight and
shows the uniqueness immediately.
To compute the optimal control for a regular initial state we only need

to find the jump points t and t since we know the general form of the
control. To do this, we use (4.4) and (4.5) to get two relations between the
jump points and let tl be the smallest value that satisfies these two equa-
tions; then, we find the corresponding t.. This method is direct and elimi-
nates the need of guessing the adjoint variable initial conditions of the
Pontryagin maximum principle method. The optimal trajectory corre-
sponding to an optimal control may be obtained by using the general solu-
tion of (4.1) which was given in the proof of Theorem 4.1.

AREA T

FIG. 4. Optimal control for 0 <= A <= T and BL,
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7. Example. Consider the differential equation
constant. If a 0, this describes the "l/s2’’ plant. If a 0, it describes a
system with damping term proportional to the velocity. Both of these
systems have many physical applications; e.g., satellite attitude controls,
a body moving in a viscous fluid, etc.
From (4.2) and (4.3) we get

K(t) (eat 1),
a

B=I.
Using Theorem 4.2 and these quantities, the T-controllable region has
boundary curves

2

a22 log cosh ()a 2
a + log cosh

a

where T a: + aa T. Note that one of these curves can be obtained
from the other by replacing (a, a) by (-a, a). This occurs since
c(t) 0 implies the T-controllable region is symmetric with respect to the
origin (see the discussion following Theorem 4.4).
By Theorem 4.3, the singular subregion po hs boundary curves

a 1
log (1

a a

a + log(1 + ae a)
a

where 0 -< -a2 a0/1 =< T. By Theorem 4.4, the singular subregion N
has boundary curves

a
log 1 -4- a0/),

0/1
012 1 --aT

a a log 1 ae 0/),

where T __< a2 a0/1 0. Since c(t) 0, the boundaries of N are
those of P with (o1 O/2) replaced by al, a2).
The boundaries of the regular regions R, given by equality in (4.17)-

(4.20), consist of parts of the boundaries of R, P, N, and the line A 0;
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i.e., a. zc aal 0 or al --a2/a. (Note that the expression on the right
here occurs in each boundary curve equation.)
The T-controllable region R and its subregions are shown in Fig. 5 for

the case where a 1, T 1. For other values of a, the regions have the
same general shape. Taking the limit as a -- 0, we can show that all the
boundary curves for the case a 0 are parabolas.
For any initial state in P the optimal controls are given by the u’s,

0 _-< u _-< 1, with area al/(-a2 aal). By the definition of region P there
are such functions and in P there are infinitely many (see the discussion
following Theorem 5.1). Similarly, for region N.
For initial states in the regular regions Ri, the optimal controls are unique

and have the forms given in Theorem 6.1. Using (4.4) and (4.5) to get rela-
tions between the jump points tl and t for initial states in R2, we find that

tl= 1log 1 aa2 + ear

a 2 4

t2 T- A tl.

The optimal trajectory for an initial state in R is shown in Fig. 5. The jump
points and optimal trajectories for initial states in the other regular re-
gions may be computed in a similar manner.

It may be shown that the optimal trajectory from any regular initial
state enters one of the singular initial state subregions. It might appear
then that these trajectories could not be unique. However, the size of the
singular subregions depends on the available time left to go, which at the
initial time is T. As the trajectory is traversed, the time left to go decreases
and hence the size of the singular subregions for the available time to go de-
creases. Using this fact, it can be shown that the trajectory never enters a
singular subregion corresponding to the available time left and that for
t -<_ =< T, the trajectory is actually on the boundary of the decreasing
singular subregion. Hence the regular initial state optimal trajectories can
be unique even though they enter the initial state singular subregions.

8. Concluding remarks. We have shown a characterization of a class of
singular minimum fuel problems and an analytic method for their solution.
Equations were given describing the region of T-controllability and the sub-
regions of singularity for which the Pontryagin maximum principle is not
useful. We have also determined the optimal controls for any initial state in
the T-controllable region and have shown that there are infinitely many
optimal controls for each initial state in the singular regions. The T-con-
trollable region does not depend on the fmctional to be minimized, of
course, and hence holds for all differential equations (2.1) satisfying con-
dition (2.8) with controls assumed to be piecewise continuous and u -<- 1.
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2

-1 +

FIG. 5. T-controllable region and subregions for example considered with a 1,
T=I.

With a few minor changes the results hold for measurable functions instead
of piecewise continuous functions. This method can be extended to many
additionul classes of problems, some of which will be discussed in future
papers by the author.
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AN OPTIMAL REGULATOR PROBLEM*

ALBERT CHANG

1. Problem statement. We consider an optimal regulator problem for
systems whose behavior may be described by the linear differential equation

(1) 2(t) Ax(t) - Bu(t).

In (1), A and B are n X n and n X r matrices of real constants, respectively.
The vector x(t) (xi(t), x2(t), xn(t)) is called the state (at time t)
and the function - u(t) (ui(t), u (t), u (t)), the control. The
control -- u(t), 0 <= < , will be called an admissible control if it is
measurable and if, in addition, for each t, 0 _<_ ,

U(t) (U U U i 1 2, r,u,..., )]1 -<- 1,

The set of all admissible controls will be denoted by U. We shall regard two
controls identical if they are equal almost everywhere (a.e.).

Let u U and x0 be any point in the state space Rn. The solution of (1)
corresponding to u, which satisfies the initial coadition x(0; x0, u) x0, is
given by

xo + fo s) ds.(2) x(t; Xo u) e"4 e’4(t-)Bu(

The point x0 is clled the initial state, and u is said to transfer x0 to the
origin if limt_ x(t; x0, u) 0. For convenience, x(t; xo, u) will often be
abbreviated to x(t; u) or x(t), when the initial state or control, or both,
intended are clear from context.
We consider the function J" U X R "-+ R defined by

(3) J(u, Xo) @(t; Xo u), Qx(t; xo u)} - {u(t), Ru(t)} dt.

Here Q is a nonnegative definite matrix and R is a positive definite matrix.
J is well defined although it may assume the value + for certain u and x0.

The following coaditions are assumed to hold"
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(a) The pair (A, B) is controllable [2], i.e.,

rank [B, AB, A"-IB] n.

(4) (b) The pair (A, Q) is observable [2], i.e.,

rank [Q, AQ, An-IQ] n.

(c) The autonomous system 2 Ax is Ljapunov stable.

We consider the following"
PROBLEM. Given the system (1), an initial state x0, and the conditions

(4), let T U be the set of all admissible controls which transfer x0 to the
origin. The problem is to find a u T such that J(u, x0) inferJ(v, x0).
A solution to the problem will be called an optimal control. It will be

shown that there exists a unique optimal control for any choice of the initial
state. Then, using a result of Rozonoer, we shall show Pontryagin’s maxi-
mum principle, suitably strengthened, gives necessary and sufiScient con-
ditions for a control to be optimal. We then consider the problem of con-
structing a feedback control which yields optimal control.* It is shown that
an optimal feedback control is a linear function of the state in a neighbor-
hood of the origin. However, no closed form expression is derived for it that
is valid for all states. Nevertheless, it may be computed by running the
system backwards in time, in a way similar to that proposed by LaSalle for
the time optimal control problem [1]. Our final result is that the optimal
feedback control is a continuous function of the state which, in principle,
makes this computation feasible.

Essentially the same problem under consideration was discussed in a series
of papers by A. M. Letov [3], [4]. Krasovskii and Letov showed later that
the solution proposed in [3] and [4] may be correct only for special choices of
initial state [5]. More recently, Johnson and Wonham gave examples
showing that the results in [3] and [4] are, in general, incorrect [6].

2. Existence of optimal controls. In this section we shall show that our
problem has a unique solution for any choice of the initial state.

If 0 < < 1 and u, u U, then the function u defined by

(5) u(t) hub(t) -- (1 k)u(t), 0 <- < ,
is also a member of U because t is convex. Using (2
for arbitrary initial states x0, x0,

it is easy to verify that

(6)
x(t; ,xo + ( ,)xJ, u)

,x(t; x0, u) + (1 )x(t; x0, u), 0<_t <.
See 5 for definition of the term "feedback control."
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In particular, setting xo x0 x0, ote that if u. and u2 transfer Xo to
the origin, then so does u.

Furthermore, now observe that the integrnd of (3),

(7) f x, u) x, Qx} + (u, Ru)
is convex function; for ll x, x, u, u nd 0 < h < 1,

f(hx + (1 k)x,ku + (1 k)u)
(s)

f(x, u) + (1 k)f(x, u).

Moreover, since R is positive definite, equMity holds in (8) only if u u.
The following lemm will be needed in wht follows.
LEMMA 1. Let u u U and let x01 and Xo be arbitrary initial states. Then

ff u is defined by (5),
J(u, x01 + (1 X)x0) J(u, xo) + (1 x)J(u, x0).

Moreover, equality holds only if u u whenever the quantities are finite.
Proof. Using (6) nd (8), we hve

f(x(t; kXo + (1 h)Xo2, u), u(t)) dt

f(kx(t; Xo ul) + (1 },)x(t; x0 u),

),u(t) -+- (1 k)u2(t) dt

<= fo f(x(t; Xo u), u(t) dt

+
kJ(u, Xo) + (1- k)J(u, Xo).

In view of the property of f mentioned above, equality holds only if
u(t) u:(t), a.e., whenever the quantities are finite. This proves the
lemma.
We deduce immediately from Lemma 1 the following corollary.
COROLLARY 1. If an optimal control exists for initial state xo, then it is

unique.
Proof. Suppose u and u2 are optimal controls for initial state x0, but

ul(t) u(t), a.e. Setting x0 Xo Xo in Lemma 1,J(u, Xo)
+ (1 k)J(u, x0), which contradicts the optimality of u_ ad u.
Consider the fuuction V"/n -- R deftned by

V(xo) inf J(u, Xo).
uU

Given an initial state x0, the existence of an optimal control will be proven
in two steps. First, we show there is a u U such that J(u, Xo) V(xo),
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and then we show that u necessarily transfers x0 to the origin. It is then
clear that u is the optimal control for the initial state x0.

PROPOSITION 1. Given an initial state Xo, there exists a u U such that
J(u, xo) V(xo).

Proof. It follows from a lemma due to LaSalle [1] that there is a tl <
and an admissible control t-- (t) defined on 0 _<_t_<_ tl such that
x(t;x0,u) 0. Settingu(t) (t) for0 < < tlandu(t) 0for
> tl, J(u, x0) < . Therefore, since R is positive definite, it suffices to

consider only controls belonging to some bounded set, say

B u V u (t), (t)) gt

Note that B is compact in the weak L topology.
Let d infoe,J(v, xo) V(xo). We have to show there is a v B such

that J(u, x0) V(x0). Let u} be a sequence in B such that

1J(u xo) 5 d + .
Since B is weakly compact, there is a u B and a subsequence of {u]
converging weakly to u. We show u is the required control.
The Banach-Saks theorem (renumbering indices if necessary) states

there is a sequence of controls Vn} converging to u in norm with
v (u + u + + u)/]c. Now v B because B is convex. Then since
J(u, x0) is a convex function of u (Lemma 1 ),

l j(u Xo) < d + l l +J(v Xo)
= <

i=l

Since v u in norm, it is clear that x(t; v) x(t; u) for each t. In
addition, there is subsequence of {v} converging to u, .e.; so we my
assume v(t) u(t), a.e. Therefore, f being continuous,

lim f(x(t; v), v(t)) f(x(t; u), u(t)), a.e.

The proposition then follows from the inequalities,

d f(x(t; u), u(t)) dt

f limf(x(t; v),v(t)) dt
o

lm inf f(x(t; v), v(t)) dt

lira inf J(v, x0) d.
k

The third line follows from the Fatou-Lebesgue theorem.
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In view of Proposition 1, we may define

V(xo) minJ(u, Xo).
uEU

The function V has the following properties.

LEMMA 2. (a) V(x0) 0 if and only if Xo O.
(b) V is a convex function (and therefore continuous).
(c) /fa _<_ 1, V(axo) <= V(xo).

Proof. (a) If V(xo) 0, then J(u0, Xo) 0 for some u0 U. Inasmuch
as R is positive definite and Q is nonnegative definite, uo(t) 0, a.e.; there-
fore,

V(xo) eAtxo AtQe xo) dt.

It follows from the observability of (A, Q) that Xo 0 [2]. Conversely, it
is clear that V(0) 0.

(b) Given x01, x0 Rn, choose Ul, u U so that V(x01) J(ul, xo)
and V(x) J(u, x). Letting 0 < X < 1, the statement follows upon
application of Lemma 1,

V( )kXo + (1 X)Xo <= J )kXo + (1 X) Xo:, Xul - (1 X)u)

<= XJ(u xo) - (1 )g(u., x)
)kV(xo -- (1 k)V(xo’).

(c) This follows from (b) and the fact that V is nonnegative.
We now are in a position to show that a control which minimizes J(u, x0)

necessarily transfers x0 to the origin.
PnOPOSIT_ON 2. Given Xo suppose u U and J u, xo V xo ). Then u

transfers Xo to the origin.
Proof. Let B {x Rn x (x, X}112 }. Since V is continuous,

V(x) > 0 for each x B, and B is compact,

inf V(x) b > O.
xEB

It follows frmn Lemma 2(c) that V(x) >= b whenever x a,
Now observe that

tl
V(xo) V(x(h Xo, u) + fo f(x(t; Xo, u), u(t) dt.

UThe last relation expresses the fact that the control -- () u( -t- h),
0 <- -<_ , minimizes J(., x(h Xo, u)). Since

V(0) lim_. f0 f(x(t; xo, u), u(t) d,
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it follows that there exists T< such that for all t > T, V(X(t;
x0, u)) b, which implies x(t ;x0, u)ll . Since 5 was arbitrary, this
shows u transfers x0 to the origin, completing the proof of the proposition.
Combining Corollary 1 and Propositions 1 and 2, we have the following

theorem.
TnEOaEM 1. For each initial state Xo there exists a unique optimal control.

3. Necessary conditions for optimality. In this section, we state Pon-
tryagin’s maximum principle, as it applies to our problem, and modify it
to a form which yields both necessary and sufficient conditions for a control
to be optimal.
The Hamiltonian for the problem is

5C(, 2, u) f(x, u) -t- (/, Ax -t- Bu},(9)
where

We consider the Hamiltonian system

i 0,
ow

(11) (t) 03C
x;’ i 0, 1, -.., n.

If x0 (x1, X2, X) is the initial state for (1), the corresponding initial
condition for (10) is 20 (0, x1, x, x). The solution for the x com-
ponent of 2 is expressed in terms of x(t; Xo, u) by the integral

(12) x(t) i f(z(t; Xo u), u(t)) dt.

Hence, the value of x(t) may be interpreted as the cost associated with the
control u up to time t. The initial conditions for (11) are not specified.

Considering and 2 fixed, the ttamiltonian is a function of u 12. Let
(, 2) denote the maximum of over t.

u).

i)(, 2 is well defined because t is compact and C is a continuous function
of u.

Pontryagin’s maximum principle as it applies to the problem is expressed
as follows.
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THEOREM 2. [7] If U U is an optimal control, then there is a nontrivial
solution k(" of (11) corresponding to u such that
(a) 5C((t), (t), u(t)) Nl;((t), a?(t)), a.e.,
(.b) grC(6(t), (t)) 0,
c b is a nonpositive constant.
We need to distinguish between the cases when 0 < 0 and 0 0. The

problem is called normal when k < 0, and abnormal when 0 0. If the
problem is normal, since 5C is linear and homogeneous in , we may and
shall assume 0 1.
We now proceed to strengthen Theorem 2 in two ways. First we show the

problem is always normal; and. second, the vector (t) in the theorem must
satisfy the boundary condition limt_. (t) (-1, 0, 0, 0). With
these additions, the maximum principle will then be shown to be a sufficient
condition for optimality.
The proof of the next lemma depends on a construction used by Gamkre-

lidze in studying the time optimal control problem [8].
LEMMA 3. For every initial state, the problem is normal.
Proof. Suppose u is an optimal control but $(t) 0. In this case, we

obtain from (9) and (11), the equations

(13)
(, , u) (, Ax + Bu},

(t, -A.
Then, since u maximizes the Hamiltonian, u(t) sgn ((t).B), >-_ O,
where sgn" R ---> R is the vector valued function whose ith component,
1 <=i<=r, is

1 if x > 0,

(sgn(x x --1 if x < 0,,x,..., ))=

[undefined if x= O.

We shall obtain a contradiction by showing that

(14) fo (u(t), Ru(t)} dt .
First we observe that (t) 0, since 0 0 and (. is a nontrivial

solution of (11). To establish (14), it suffices to show the set of points
for which (t).B 0 is a discrete set. Observe that the components of
(t) .B are analytic functions since (t) o.e--At for some nonzero 0 Rn.
Thus, if (t).B vanishes on a nondiserete set, it vanishes identically,
o.e-’4tB O, >= O. Successively differentiating the last expression with
respect to and putting 0 yields
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0.B 0,

(15)
o"AB O,

o. An-IB O.

But by hypothesis, (1) is controllable;so

rank [B, AB, An-IB] n,

implying that (15) cannot hold, which proves the lemma.
In view of Lemma 3, we may put 0 1. Then, if u maximizes the

Hamiltonian, from (9) we have

(16) u(t) sat (R-1B*b(t)), >= O,

where B* is the transpose of B and sat" R R is the function whose ith
component, 1 <_ i <- r, is

if x >__ 1,

(sat (xl, Z2, xr) )i if xi < 1,

1 if x --1.

In addition, with 0 1, (11) becomes

(17) (t) -A*(t) + Qx(t),

where A* is the transpose of A.
LEMMA 4. If U U is an optimal control and (. is a solution of (12)

such that u(t) sat (R-1B*(t)), then limt_ (t) 0.
Proof. We shall only indicate the idea of the proof because it is similar to

that of Lemma 2. Since u is an optimal control limt_ x(t; u) 0, and there-
fore for large t, the solution of (17) differs little from the solution of (13).
With this observation, Lemma 4 can be proved by the same method used
in proving Lemma 3.
The results of this section are summarized in the following.
THEOREM 2’. If U U is an optimal control, then there is a solution (. of

(17) corresponding to u such that
(a) u(t) sat (R-1B*b(t) ),
(b) limt (t) 0.

4. Sufficient conditions for optimality. In this section, the conditions
in Theorem 2’ will be shown to be sufficient conditions for a control to be
optimal. Throughout the discussion, the initial state x0 will be assumed
given and fixed.
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If ul u, U, let
tl

d(ul no., h) fo %/iu(t) uz(t), u(t) u(t)} dt.

Similarly, if u U, let

J(u, h) Jo f(x(t; u), u(t) dr.

The following lemma is a particularization to our problem of a more general
result due to Rozonoer [9].
LEMMA 5. Let u, ul U. Suppose there is a solution (. of (11) cor-

responding to u such that

3((1), (t; u), u(t)) ((t), (t; u));

then

((t), (t ;Ul) (t ;u)) -+- o(e) <= 0,

whenever d(u, u tl) <= .
The strengthening of the hypothesis of Lemma 4 to conditions (a) and

(b) of Theorem 2’ allows us to prove the next lemma.
LEMM 5’. Let u, u. U. Suppose there is a solution k(" of (17) cor-

responding to u such that
() u(t) st (R-B*(t)),
(b) limt_ (t) 0.
Then for any > 0 and N > O, there exists a t > N such that

J(u, tl) J(u, t) <__ x<t u) x<t ;u)ll /

whenever d(u, u t) <= e.

Proof. Since 0 1, we have, upon application of Lemma 5,

(18) J(u, tl) J(ul h) + ((h), x(t; u) x(t; u)) + o(e) <- O,

whenever d(u, u, t) <= e. Given N and a > 0 and using condition (b),
we can find t > N such that

l((t,), x(t, ;u,) x(t; u))l <= a x(t, ;u,) x(t;

The last expression together with (18) proves the lemma.
We are now in the position to prove the principal result of this section.
THEOREM 3. Let u U transfer xo to the origin. Then a necessary and

cient condition for u to be optimal is that there exist a solution b(. of (17)
corresponding to u such that
(a) u(t) sat (R-’B*(t)),
(b) limt_ (t) 0.



AN OPTIMAL REGULATOR PROBLEM 229

Proof. The necessity part is just a restatemenl of Theorem 2’.
To prove lhe sutficiency, suppose u0 is the optimal control for the initial

state x0, but u is nonopfimal. Then for some a > 0 and N > O, and for
all tl > N,

(19) J(u, tl) J(uo, tl) -- O/.

t?or 0 < X < 1, consider the controls u defined by

(20) ux(t) (1 X)u(t) + Xuo(t), >- O.

We remark that the formula in Lemma i is valid if J (u, Xx01 + 1 X)x0 ),
J(u, x01 ), nd J(us, x0 are replaced by J (ux, ti ), J (u0, t ), and J (u, tl
respectively; thus J(ux, t) _-< XJ(u0, ti) + (1 X)J(u, h). Subtracting
J(u, h) from both sides of this inequality and using (19) yields the in-
equality

(21) J(u,

Now we use Lemma ,) to reach a contradiction. Both x(t; u) and x(t; no)
are bounded because u and u0 transfer x0 t.o the origin. Application. of (6)
yields

x(t; u) x(t; u) X(x(t; u0) x(t; u) ),

and therefore there is a constant fl such that, for all h,

We note that for h < , d(u, ux, h) X’)’, and , < . Finally, using
Lemma 5,

J(u, tl) J(u,/1) =< (/3X -t- o(’yX).

Since 6 can be made arbit,rarily small, the last expression contradicts (21).
Therefore u must have been opt,imal.

5. Optimal feedback control. A function v" R" -+ 2 will be called an
admissible feedback control if the autonomous differential equation,

(22) a? Ax + v(x),

has a unique solution for any init,ial state. Let x(t; Xo) be the solution of
(22) which satisfies the boundary condition x(0; x0) x0. Then v is said
to be an optimal feedback control if for every x0, the time function-- v(x(t; Xo)), >= O,

is the optimal control for the initial state x0. In. this sect,ion we shall consider
the problem of determining an optimal feedback control.
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It is expedient to combine (1), (16), and (17) into the single equation

(23)

where (x, $) (x, x, x, , ’, C).
In the sequel, (x(.; x0), (.; 0)) will denote the solution of (23) which

satisfies the boundary conditions x(0; x0) x0 and (0; 0) 60.
The significance of (23) is this: given an initial state x0 according to

Theorem 3, the problem of determining the optimal control for x0 is equiva-
lent to finding a 60 such that x(t; Xo) --+ 0 and (t; 0) --+ 0 as -+ .
Since 0 and (16) define the control when the state is x0, the problem of
determining an optimal feedback control is one of choosing an appropriate
$ for each state x.

Unfortunately, because (23) is nonlinear, there is no simple relation
between x and the proper 6, in general. However, for all states sufficiently
close to the origin, we shall show there is a linear relation between and x
of the form Px, where P is an n X n real matrix.
We observe that if the control region 2 is replaced by Rr, i.e., the mag-

nitude constraints on the control are removed but otherwise the problem
is the same, then everything done so far is valid if everywhere R-1B*
is substituted for sat (R-1B*6). In fact, the only places where we explicitly
used the assumption that the control region was t are in (16) and Lemma 3.
When the control region is Rr, 16 is valid with the above substitution, and
the proof of Lemma 3 carries over essentially without change.
Assuming the control region is Rr, (23) becomes the linear equation

(24) BR-1B*
For brevity, let,

D
-A* ]"

Then taking the Laplace transform of (24),

(25) S (2,(s) (x(O)\(0)) D

where a(s) and (s) are the Laplace transforms at x(-) and h(" ), respec-
tively. From (25),

(26) (8I D)-1
\(0)//"
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The right hand side of (26) is a column vector of rational functions in s.
Given x(0), in order to satisfy the desired boundary conditions at , it is
necessary to choose k(0 so that the poles of each of these rational functions
have negative real parts. Such a choice is possible because of Theorems 1
and 3. If we letx(0) take on the valuese. (0,0, ...,0, 1,0, ,0)
with the 1 in the jth coordinate, 1 <= j <= n, we get corresponding to each
ej, for an appropriate k(0), a vector P. (P., P2’, "", Pn’). Now
from the linearity of (26), it is clear that if x(O) =1 aiei, then an
appropriate choice for (0) is .=1 aiPj. In matrix notation, this can be
expressed

(27) (0) Px(O), P (P).

It follows that in the case when the control region is Rr, the optimal feed-
back control is, in view of (16) and (27), given by*

(28) v(x) R-1B*Px.

Now consider the asymptotically stable system,

(29) 2 Ax -+- BR-1B*Px.
LetG {x RhI! (R-IB*Px)i <= 1, i 1,2, r}. G is a neighbor-
hood of the origin, and because (29) is stable, we can find a neighborhood S
of the origin such that if x0 S, then the whole trajectory of (29) starting
at x0 remains within G. It is then clear that the optimal feedback control
for states in S is the same regardless of whether the control region is 2 or
Rr. We state this conclusion s follows.
PUOPOSITON 3. There is a neighborhood S of x 0 such that if x S,

the optimal feedback control is v(x) R-B*Px for some n X n matrix P.
We have seen that if x(0) S, an ppropriate choice for k(0) in (23) to

satisfy the desired boundary conditions at is given by (27). The next
lemma shows this is the only appropriate choice.
LMMA 6. For each Xo, there is a unique such that the solution of (23)

satisfies the boundary condition

(30) lira (x(t; x0), (t; 0)) 0.
t->o0

Proof. The existence of at least one such 0 follows from Theorems 1
and 3. Suppose (x(. x0), (. b0) nd (Xl(. x0), kl(" k02) are two
solutions of (23) which satisfy the boundary conditions (30). We have to
show 0 0. From Theorem 3, it follows that the controls defined by

* This result was previously obtained by Kalman [10], who also gave numerically
efficient means of computing P.

t Later by Lemma 6, we show P is unique.
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u(t) sat (R-B*(t; o) ),
u(t) sut (R-1B*g/(t; o) ),

are both optimal for the initial state x0. By Corollary 1, u(t) u2(t),
0 _<_ , and therefore x(t; x0) x.(t; x0) on the same interval. Then
from (23),

d
d- (1 2) -A*(1

Solving the last equation,

bl(t; 01) b2(t; bo2) e--A*t(o1- 02).
Since ul(t) u2(t) and both l(t; o1) and 2(t; 02) converge to 0, for some

R-1B*I(t; 01) R-1B*2(t; o2), >= T.

Hence, after transposing, (01- o2)e-’4tB O, >= T. We showed in
proving Lemma 3 that the last relation holds only if 01 02, which proves
the lemma.
Lemma 6 implies that the matrix P in Proposition 3 is unique. Combining

Lemma 6 and (27), we have the following.
LEMMA 7. There is a neighborhood S of x 0 and a unique matrix P

such that if Xo S, the solution of (23), (x(.; x0), (.; 0)), satisfies (30)
if and only if bo Pxo.
We now are in a position to describe how the optimal feedback control

may be computed. For states in S, it is given by Proposition 3, but for
states not in S, we do not have a closed form solution. However, using
Lemma 7 to determine the appropriate initial conditions, integrating (23)
backwards in time with x0 S, yields an optimal trajectory. We are assured
that every optimal trajectory can, in principle, be determined by such an
integration because of Theorem 3 and Lemma 7. By making the number of
such trajectories sufSciently large, the feedback control can be determined
on an arbitrarily dense set of states.

In practice, with the above method of determining v(x), the value of
v(x) can only be determined on a proper subset of state space, and since no
numerical computation can be perfect, the following result is of some
importance.
PROPOSITION 4. The optimal feedbaclc control is a continuous function of

the state.
Proof. By Lemma 6, there is assigned to each x0 a unique 0 such that

if (x(.; x0), (.; 0)) is the solution of (23), then x(t; Xo)--->O and
(t; 0) - 0 as -- . Let F be the function defined by this assignment"
F(xo) o. Then, in view of (16), to prove the assertion, it suffices to
show that F is a continuous function.
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Let W c S be a compact neighborhood of the origin. Given. z0 and assum-
ing 0 F(zo), there is a h > 0 such that x(tl xo) W, the interior of
W. We consider the map G" W -- R defined by G(y) x(-h y), where
z(-h y) is the first component of (x(-h y), /(-h Py) ). G is one-to-
one because of Lemma 6. Moreover G is continuous because the solution of
(23) depends continuously on its initial conditions. Since V is compact,
G-, the inverse of G, is continuous. Observe that, by construct,ion, G-I(:c0)

x(tl ;x0). Hence since x(tl ;x0) W, there is a neighborhood N of x0

such that G-I(N) W. Then ifx N,

F(x) b(--h F(G-I(x))) (-tt P.G-I(x)).
Since (-h y) depends continuously on y, the last expression proves F
is continuous, completing the proof of the proposition.

6. Remarks. Most of the results in 2, 3, 4 can be extended to more
general cost functions than (3). The essential property of (3) for the argu-
ments in these sections is the convexity of the integrand. However, the
method for determining the optimal feedback control in 5 relies sub-
stantially on the quadratic form of the integrand.

Efficient methods for computing the matrix P of Proposition 3 were
devised by Kalman [10]. Further research is needed to discover practical
and efficient ways of computing or approximating the optimal feedback
control.
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A TRANSFORMATION APPROACH TO SINGULAR SUBARCS
IN OPTIMAL TRAJECTORY AND CONTROL PROBLEMS*

HENRY J. KELLEY
Abstract. Mayer variational problems in which the control variable

appears linearly are considered and a canonical form sought for the system
equations which is somewhat analogous to that adopted by Wonham and
Johnson for linear constant coefficient systems with cost functional quad-
ratic in the state variables. A means of synthesizing a transformation to
the canonical form in terms of the mutually independent solutions of a
first order linear homogeneous partial differential equation is described.
It is then shown how the Legendre-Clebsch necessary condition applied
in the transformed system of variables may be employed to obtain in-
formation on the singular extremals of the problem and the possible ap-
pearance of singular subarcs in the solution.
Two examples are employed for illustration, one a simple servomechanism

problem and the other Goddard’s problem of optimal thrust programming
for a sounding rocket.

Introduction. Optimal control problems in which the control variable
appears linearly yield to conventional treatment if the optimal control has
a bang-bang character. Difficulties arise with the possibility of intervals
during which the optimal control may be intermediate between the specified
limits, such segments of the solution being singular subarcs, in classical
variational terminology. The Green’s Theorem technique of Miele [1] is a
powerful tool for solution of such problems, applicable, however, only if
the state space is of very limited dimension. There is presently available
no general theory for determining singular arcs, deciding as to whether or
not they are minimizing even locally, i.e., over a short time interval, or for
determining their role as subarcs of a composite solution. In the special
case of systems linear in the state variables, investigated by LaSalle [2],
the appearance of singular subarcs corresponds to degeneracy in the sense
of nonuniqueness of solution.

In the present paper we investigate the possibility of a canonical form

* Received by the editors February 10, 1963, and in revised form September 19,
1964.
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for such problems which resembles that chosen by Wonham and Johnson
[3] for study of problems featuring linear constant coefficient systems and
cost functional an integral quadratic form in the state variables. Initially
our concern will be with synthesis of the desired form by means of an
appropriate transformation. Following this, attention will be turned to the
application of optimality criteria in the transformed system of variables.

It has been called to the writer’s attention that the transformation scheme
presented herein is similar to a scheme developed by Faulkner for treat-
ment of the ease in which the differential equations of state are reducible
to a single total differential equation [4, 5, 6]. The two schemes appear to
be equivalent for problems of that type, which are of fairly frequent oc-
currence in application.

Transformation to canonical form. Our analysis begins with the usual
Mayer problem statement. A minimum is sought of a function P of the
terminal values of variables Xl, x and the terminal value of the inde-
pendent variable, time t. The variables xl, x are state variables satis-
fying a system of first order differential equations of the form

(1) 2i p(xl x,. t) q- q(x x t)y, i 1, n.

In the class of problems of present interest, the differential equations are
linear in a single control variable y, as indicated. Initial conditions number-
ing at most n -t- 1 and terminal conditions numbering at most n may be
imposed upon the variables x, x and t. The variable y is subject to
an inequality constraint of the form

(2) y =< y _-< Y2.

We wish to consider the possibility of introducing new variables

(3) zj fj(Xl Xn t), j 1, m,

satisfying equations of state whose right members are not dependent upon
the variable y explicitly"

(4) ij Of Of j= 1 m.
= - p + 0"-

Evidently m < n unless all the q are identically zero. The vanishing of the
collected coetticient of the variable y,

(5) qi-- O, j 1,...,m,

has been assumed in (4).
For the purpose of determining functions f. having the desired property,

we seek the solutions of the linear homogeneous first order partial differen-
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tial equation (5). From the theory of characteristics [7] we are led to con-
sideration of the ordinary differential equations

(6) dx
ds

q(x, x, t), i 1, n,

in which s is pmmeter nd is fixed. If one of the quantities x s dopted
instead of s s independent variable, the general solution my be repre-
sented in terms of n 1 prmeters:

(7) C (xl, x,, t), ] 1, n 1.

The C are constants of integration and the / are mutually independent
integrals of the system. Each integral is a solution of the partial differen-
tial equation (5).
The first n 1 of the new variables z. are then to be defined accorditg

to f. .. The nth variable z,, we define as

(8) z x,

choosing such that q 0 over the domain of interest, a choice which we
assume for the time being open to us. The mutual independence of the
functions . together with q 0 insures that the transformation between
the variables z and x is nonsingular by the nonvafishing of the Jacobian
determinant

(9) O(Zl, ,Zn)
O(Xl ,’’" Xn) z O.

The Legendre-Clebsch condition in the transformed variables. To
provide intuitive motivation for our next step, we digress momentarily,
considering the possibilities offered by our transformation in (rarely oc-
curring) problems devoid of inequality constraints on the control variable.
In such cases we are led to an equivalent problem in a state spce of smller
dimension, the z., j 1, n 1, becoming the state variables and
z x the control variable. This comes about through the identical
vanishing of the Lagrange multiplier associated with the nth equation of
state

(10) i, p - qy.

In this equation as well as in the first n 1 equations of state (4), the
variables x are presumed eliminated in favor of the z.. by use of the inverse
transformation. It should be oted that jump discotinuities i the new
control variable z,(t) x(t) occurring at corner poits of the solutio
imply impulsive behavior of y(t). Such behavior would be admissible in the
absence of an inequality constraint on y, which we have momentarily as-
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sumed, and the Weierstrass necessary condition would then be directly
applicable.

Unless the transformed equations were linear in the new control variable
zn x,, the Weierstrass necessary condition could then be employed in
conjunction with the Euler equations for the transformed problem to yield
information not obtainable via the corresponding condition in the original
problem. The extremals of the transformed problem are the singular ex-
tremals of the original, and those satisfying the strengthened version of the
Weierstrass condition are minimizing, at least over short intervals. In the
special case in which the transformed equations of state (4) are linear in
the new control variable x,, an additional transformation to a state space
of still smaller dimension is indicated.

Redirecting attention1 to the problem of main interest, in which the in-
equality constraint (2) is operative, we perceive that the course of action
just described is not open to us. We may, however, examine sub-arcs over
which the control variable y takes on values intermediate between the
specified bounds

(11) Yl < Y < Y.,

with similar considerations in mind. If y (t) is the optimal control, we
must, evidently, restrict attention to small variations y(t) e(t),
where v(t) is an arbitrary piecewise continuous function and the
of the variation, e, is vanishingly small so that y - tiy satisfies (11).
In the literature of classical variational theory, such variations are often
referred to as weak variations, and the Legendre-Clebsch condition, neces-
sary for a wealc relative minimum, plays a role loosely analogous to that of
the Weierstrass condition whenever a restriction to vanishingly small
variations is either assumed or imposed.
We rewrite (4) with the notatio a. for the functions appearing o_ the

right as

(12) aj(xl xn t), j 1, n 1,

and with the variables x eliminated in favor of z, as

(13) b(zi z, t), j 1, u 1.

Introducing the usual Lagrange multipliers -, j 1,
the Hamiltonian

nl

H---

and write the Euler-Lagrauge equations correspondig to the z,

n 1, we form
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OH(15) },i= j= 1,...,n-- 1,
OZ

and that corresponding to z,.,

OH(16) Oz-- O.

The Legendre-Clebseh necessary condition is

(18) OH >__ O.

Solutions of the system (13), (15) and (16) are the extremals of the
transformed problem and the condition (18) provides an additional cri-
terion for screening these candidates. If the left member of (18) is positive,
the singular subare is locally minimizing, i.e., over short time intervals; if
negative, maximizing. The vanishing of the left member of (18) corre-
sponds to the special ease, mentioned earlier, in which z enters the function
H linearly. Thus along singular ares of the original problem, (18) partially
fills the gap created by the Weierstrass necessary condition’s being trivially
satisfied.

If it is not possible to choose the variable z according to the scheme
z x, q 0, or if it is inconvenient to invert the transformation Z(X)
analytically, one may deal with the equations of state in the form (12)
adjoining the n 1 equations (3) as constraints by means of additional
Lagrange multipliers. The more complex form of the Legendre-Clebseh
necessary condition as given in [g], for example, must then be applied.

Examples. 1. A servomechanism problem. In [1] and [9] the following
problem has been studied in some detail. Given the system

(19) 21 x2 + y,

(20) 22 y,

Xl(21) 23 2’

the control taking the system from a specified initial state to xl z2 0
and extremizing the final value of x; is sought. The structure of the solu-
tion of this problem is rather complex, belying its innocuous appearance.

for 6z O, or

02H(17) z-j 6z, >__ 0,
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An application of the transformation scheme just described leads to zl xl

+ x2, z. x/2, and z3 Xl. An examination of the Legendre-Clebsch
condition leads to the conclusions"

(a) The singular subarcs of [1] and [9] are locally minimizing for the case
of a minimum of the final value of x3.

(b) The singular subarcs are not minimizing if the function whose
minimum is sought is the negative of the final value of xa, and the optimal
control is bang-bang.

In [1] a result stronger than (a) is obtained, and for problems which fit
the linear/quadratic format of [1] this will generally be the case. Owing to
al assumed restriction in the problem statement of [1], the results do not
apply to case (b). It should be noted that the family of solutions contain
not only the singular arcs found in [9] for unlimited final time, but also
other singular arcs for finite final time, as pointed out to the writer by A.
E. Bryson of Harvard University in personal communication.

2. Goddard’s problem. The problem of determining the optimal thrust
program for the vertical flight of a sounding rocket is one which has been
extensively studied in the stronuticl literature. The state vribles re
ltitude h, velocity V, nd mss m, stisfying

T= -D(h,Y) --g(h),
m

T
C

itt which rocket thrust T is bounded above and below according to

ONTNT.

The function D is aerodynamic drag, g is the acceleration of gravity, and c
is rocket exhaust velocity. The problem usually of interest is the minimiza-
tion of propellant expenditure m0 mx with fixed initial mass for attain-
ment of fixed final altitude, final velocity and time unspecified.
The transformation scheme leads to z h, z me as new state

variables and za V as new control variable. The problem is nonsingular
in the state space of reduced dimension. The version of the problem featur-
ing drag proportional to the square of the velocity has been investigated
fairly thoroughly and in this case a single intermediate thrust subarc enters
the solution, which the Legendre-Clebsch condition confirms as locally
minimizing. The advantage of employing such variables in the sounding
rocket problem was first recognized by Faulkner [5] and later, independ-
ently, by Ross [10]. In the case of a general drag law, e.g., one which ex-
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hibits sharp variation in the vicinity of sonic velocity, the Legendre-
Clebsch condition may rule out intermediate thrust operation over a
certain velocity range.

Concluding remarks. The transformation scheme and application of the
Legendre-Clebsch condition appear to be useful for examination of singular
subarcs in Mayer problems linear in a single control variable, although, of
course, the information obtained is only a fragment of that needed for
complete analysis of such problems. Perhaps the most interesting and
suggestive feature of the approach is the idea of treating problems of this
kind in a state space of reduced dimension. A different but somewhat re-
lated approach to the testing of singular arcs is presented in [11].
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CONTROLLABILITY AND THE SINGULAR PROBLEM*

H. HERMES

Introduction. The concept of complete controllability of linear systems
was introduced by R. E. Kalman [1]. It is part of the purpose of this paper
to extend the concept to nonlinear systems, with control appearing linearly.
All systems considered are of this form.

Geometrically, a linear system is completely controllable at time to if
any state can be attained in finite time by a trajectory of the system having
arbitrary initial data x0 at time to. The motivation for the extension of this
concept to nonlinear systems came largely from results obtained in [2] and
from the geometric interpretation of nonintegrability of Pfaffians given in
[3] and [4]. In particular, Carathdodory gives an argument to show that if,
for a single Pfaffian equation, there are points in every neighborhood of a
given point which are not "reachable" from the given point by curves
satisfying the equation, the equation is integrable. This result was general-
ized to systems of Pfaffians in [4]. There is a difficulty in applying these
ideas to Pfaflian systems which are quite naturally associated with control
systems having control appearing linearly. (See 2.) The reason for this is
that usually the independent variable appears explicitly in the Pfaffian
system, hence its integral curves (which can be related back to solutions of
the control system, and are used to connect neighboring points to a given
point) must have parametrized as t(a), a monotone function of . This is
not the case in the proofs in [3] and [4], and with this restriction, in general
the results of these papers are no longer valid.
The relation between singular problems and controllability arises quite

naturally from the Pfaflian approach and can be anticipated from results
obtained by LaSalle in [5]. In 2 we define the concept of a totally singular
arc, i.e., an arc satisfying the differential constraining equations, for which
there exists an adjoint vector such that the maximum principle yields no
information as to the optimality of any of the components of the control
along this arc. In particular, if the system were linear and admitted no
totally singular arc, the system would be proper in the sense of LaSalle [5]
and completely controllable in the sense of Kalman [6]. Even if the controls
are merely restricted to be 2. (Lebesgue square integrable) functions, it is
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shown that totally singular arcs can exist and comprise some or all of the
boundary of the attainable set, thereby being optimM trajectories for
certain time optimal control problems. These are also precisely the arcs
along which the system need not be locally controllable, i.e., if we assume
initial data x0 given at time to, there may exist points in every state space
neighborhood of a point V(tl) of a totally singular arc v, which are not
attainable in time h > to by trajectories of the system with 2 controls.
Here v denotes the solution of the system with control v. Precisely, if for
every ti to there exist points in every state space neighborhood of v(ti),
which arc not attMnable with 2 control in time tl, the arc * is totally
singular. However, it is shown by example that there do exist totally
singular arcs about which the system is locally controllable.

1. Complete controllability for linear and mildly nonlinear systems.
Throughout this section H will denote an n r matrix valued function
of t, which is in 2[t0, tl] for any given finite h > to. Controls will. be .
vector-valued functions. We begin with the following basic lemma.
LEMMA 1.1. A necessary and suj]icient condition that there exist an r X n

matrix valued function V(t) in 2[t0, h] such that for some h > to,

H(r) V(r)dr is nonsingular is that for some h > to, H(r)Hr(r)dr
is nonsingular.

Proof. Sutticiency is immediate by choosing V(r) H’(r). To show

f
tl

necessity assume there exist V, > to, such that H(r)V(r)dr is

but [ H(r)Hr(r)dr is singular for all > to, innonsingular, particular

tl. This implies there exists a constant vector c 0 such that

c H(r)Hr(r) dr 0, and since H r)Hr(r) is positive semi-

definite, we obtain cH(t)= 0 almost everywhere in [to, tl]. Thus

jl
tl

f
tl

cH(r) V(r)dr 0, which contradicts the nonsingularity of H(r)

.V()dr.
We next consider the system

(1.1)

Define

c(t) H(t)u(t), x(to) Xo, u < e[to, hi.

tl

M(to, h) H(r)Hr(r) dr.

THEOnEM 1.1. A necessary and sujcient condition for the system (1.1)
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to be completely controllable at to is that there exists tl > lo such that M to tl)
is nonsingular.

Proof. (Sufficiency.) Let 2 be any given point in E’’, Euclidean n-space.
We will show is attainable from x0 at time t. Indeed pick u(t) H(t) ,

". H(r)H(r) d or
\t /

M-(to, t) ( x(to)).
(Necessity.) Assume M(to, t) is singular for all tl > to. This implies

(see proof of Lemma 1.1) that there exists a constant vector c 0 such
that cH(t) =-- 0 a.e. Since x0 is rbitrary, let it be such that C.Xo 0. We
will show the point c is not attainable from x0. Indeed suppose for some

u and t, c Xo + H(r)u(r) dr. Then

c.c c C.Xo - c g(r)u(r) dr O,

a contradiction to the fact that c 0.
COOLLAnV 1.1 (Kalman). The linear system

(1.2) c(t) A(t)x(t) -}-H(t)u(t), x(to) Xo,

is completely controllable at to and and only if
t
(to r)H(r)Hr(r)qr(to r) dr

is nonsingular for some t > to. Here (t, r) denotes a fundamental solution
of the homogeneous system 2(t) A(t)x(t).

Proof. Make the transformation y(t) -(t, to)x(t). Then x satisfies
(1.2) if and only if y satisfies

(1.3) $(t) (t0, t)H(t)u(t), y(to) Xo.

(Note (t0, t) -(t, to).) From the transformation, it follows that
the system (1.2) is completely controllable if and only if the system (1.3)
is completely controllable, i.e., from Theorem 1.1, that there exists a t
> to such that

t
(to, r)H(r)Hr(r)r(to, r) dr

is aoasiagular.

Some special results for nonlinear systems. We next consider the non-
linear system

2(t) g(t, x(t) -t- H (t)u(t), x(to) Xo
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with the assumptions"
i) IgJ(t,x) <= N,j= 1,2,... ,n.
ii) gJ(t, x) g’i(t, 2) =< m IIx 211,j 1, 2, ,n.
iii) g is continuous as a function of for each x.

tl
Again let M(to, tl) H(r)Hr(r) dr.

THEOREM 1.2. A sucient condition that the set of points attainable by
trajectories of the system (1.4) with J2 control be all of E is that M(to, h)
be nonsingular for some h to.

Remarlc. Rather than state the theorem in this manner, one might con-
sider merely saying that the system (1.4) is completely controllable at to.
However, this notion has not been defined for nonlinear systems, and it
does not seem reasonable to this author to define it in such a global fashion
for these systems.

Proof. For arbitrary u, (1.4) has a solution designated which satisfies

=_ xo + f, +
Let 2 be any given point in En. We desire a control such that for some
finite point h > to, (tl) . It suiices to consider controls which come
from a finite dimensional subspace of 2., in particular the controls con-
sidered will be of the form u(t) Hr(t) where ( E. Hence the nora-
tion rather than will be used.

Define a mapping " E-* E as follows. Let a() g(r,(r)) dr,

and define if(() M-i(t0, h)[2 c() x0)]. From (1.5) it follows that
a fixed point of ff will yield a value such that (h) 2.

It is well known that with the conditions imposed on g [7, Theorem 7.4,
Chap. I], f is a continuous function of in the topology C[to, h], i.e., the
topology induced by the supremum norm. Thus a(() is a continuous func-
tion of ., and ff is a continuous function of .
We next show that there exists a K such that -<- K implies if(()

__< K. Letting (II =1 I( and M- be any matrix norm, since
[g[ =< N, for any (, IIa(() --< n(h to)N. Letting

K M-(to, tl) 11[I + nN(h to) -- Xo II],

it follows that for any (, Y(()II -<- K; hence, in particular, ff maps the
ball {( En: -I1 <-- K} continuously into itself. Thus Y has a fixed point.

Remarlc. The result obtained in this theorem is not surprising in view of
Theorem 1.1 and the boundedness condition on the vector g, which excludes
linear systems. Also the condition M(t0, h) nonsingular for some tl > t0
is much stronger than it need be. For example, if we consider a linear sys-
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tern of the form (1.2) and H(t) is a column vector with one component
zero, then M(t0, tl) is singular for all tl >= to, yet the system can certainly
be completely controllable.

2. Nonlinear systems with linear control; the singular problem. In this
section, we consider extending the notion of complete controllability to
systems of the form

(2.1) 2(t) g(t, x(t) - H(t, x(t) )u(t),

where g is an n-vector, H an n r matrix, while u is an . control vector.
It is assumed that g and H are C in all arguments. Throughout, the stipu-
lation 1 <= r < n is required to hold.

Let B (t, x) be a C1, (n r) n matrix with rank (n rank H) at each
point (t, x) in some domain ) of interest, such that

(2.2) B(t, x)H(t, x) =-- O, (t, x) D.

Since r < n, we know that rank B => 1 for all (t, x).
With the system (2.1), associate the Pfafiian system

(2.3) B(t, x) dx B(t, x)g(t, x) dt O.

Let b be an arbitrary linear combination of the rows b of B, taken with
scalar valued coefficients a(t, x), i.e.,

b(t, x) a(t, x)b(t, x).

Throughout, b will be used to denote such a linear combination which is
not identically zero.

DEFINITION 2.1. The Pfaan system (2.3) is integrable at the point (, 2)
if there exists a C scalar valued function (t, x) and an > 0 such that for
some b,

(t, x) b(t, x), bt(t, x) --b(t, x).g(t, x)

for =< < -t- e, Ix 2 < e. Here (t, x) den.otes the vector with
components Ob(t, x)/Ox. This notation will be used, when convenient.

Essentially this states that for some b,

b(t, x) dx b(t, x).g(t, x) dt

is an exact differential in a "neighborhood" of (, ). It should be noted
that any integrating factor can be included in the coefficients of the linear
combinatiou of the rows
The uotio, of integrability of a l’fafiia system is, of course, related

the property of conpletcness of au associated systen of partial differential
equations. To show the relation, let C(x), x E, be a smooth (n r)
X n matrix, and K(x) a smooth n X r matrix, both of maximum rank, such
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that C (x)K(x) 0. With the Pfaffian system

(2.5) C(x) dx 0

we associate the system of partial differential equations Kr(x) Of(x)/Ox
0. Each row k of Kr can be considered as defining a vector field X which

locally generates a one parameter semigroup of diffeomorphisms T(t)}
(see, for example, [8, p. 10]). In turn, such a semigroup determines a vector
field. If for each i, j 1, 2, r and for all arbitrarily small fixed r, the
vector field determined by Tj(r)T(t)Tj(--r)} is linearly dependent on
the fields X, the system of partial differential equations is said to be com-
plete. If it is not complete, the number m of linearly independent fields
formed in this manner is called the index of both the Pfatfian system and
the associated partial differential equation system [4].
From the results in [4], it easily follows that the Pfaan system (2.5) is

integrable (Definition 2.1) if and only if the index m is such that m + r < n.
If the index m is such that m + r n, Chow [4] shows that there is a
neighborhood of a point x0 E such that all points in this neighborhood
are attainable by curves satisfying (2.5). Front the viewpoint of local
controllability for a control system, we can interpret this as follows. If the

Pfaan system associated with the control system

2(t) K(x(t))u(t), x(to) Xo

has index m, where K is a continuous n X r matrix f,nction of x E with
constant rantc r, and m nt- r n, then every point in some neighborhood of xo
is attainable by an admissible trajectory. Indeed, since all points in some
neighborhood of x0 are attainable by absolutely continuous curves satisfy-
ing C(x(t))2(t) 0 almost everywhere, we must only show that such a
curve also satisfies the differential equation. But C(x(t) )2(t) 0 implies
2(t) is a linear combination of the columns of K(x(t)), since CK =- O.
Thus there exists u(t) such that 2(t) K(x(t))u(t) for almost all t.
Since K has rank r, it has a continuous left inverse on its range, from which
it follows that u is measurable.

Before stating an explicit criterion for complete controllability of a system
of the form (2.1), one may ask: "What should one expect the definition to
yield?" This can presently be answered as follows. Since the definition
should extend that given for a linear system of the form (1.2) which is a
special case of (2.1), one expects"

(a) If g(t, x) A (t)x, H(t, x) =- H(t), then the criterion which de-
fines complete controllability at to for (2.1) should be equivalent with

the condition q(10, t)H(t)H’(t)’(to, t)dt nonsingular for some

tl > to aS given in Corollary 1.1.
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(b) There should be a geometric interpretation of the condition; e.g.,
what points are attainable from the initial point in finite time? In the
linear system there were global attaitability results, i.e., any point could
be attained from the initial point via a trajectory of the system. In the
nonlinear problem, one would expect at most local results of this nature.
The approach will be to state a criterion for complete controllability of

(2.1) which we will show satisfies (a). We then use this criterion to try to
establish a geometric interpretation as mentioned in (b). Of course, how
the definition of complete controllability should be extended is somewhat a
matter of personal opinion.

DEFINITION 2.2. The system (2.1) is completely controllable at (, 2) )

if the associated PfaJian system (2.3) is not integrable at (, 2).
It will next be shown that this criterion is equivalent to the condition

given in Corollary 1.1 for the special case of the linear system (1.2). In this
case it suffices to take B B (t) in forming the Pfaffian system equivalent
(2.3). Also, in taking the linear combination of the rows of B to form the
single Pfaffian as in (2.4), we can consider the scalar functions a, as func-
tions of only t. Indeed we must only show that if the Pfaian form

(2.6) b(t) dx b(t)A(t)xdt

has an integrating factor, then this integrating factor, denoted by t, can be
taken as a function of only t. To obtain this, suppose (t, x) is such that

(t, x) b (t) dx (t, x) b (t)A (t) x dt is an exact differential. Then b
b 0 for all i, j 1, 2, n, and tb + b -xbAx bA.

Define (t) (t, 0), noting that for the linear system, ) (t0, X E
which implies (t, 0) 5) for > t0. It follows that (t) is also an integrating
factor.

Since it is sufficient to consider both t and the a as functions of only t,
there is no loss of generality in considering that if the Pfaffian system

(2.7) B(t) dx- B(t)A(t)xdt 0

associated with (1.2) is integrable, then (2.6) is an exact differential.
Since x appears linearly, Definition 2.1 simplifies for such systems, and

is" The Pfaflian system (2.7) is integrable at the point if there exists a C
scalar valued function (t, x) and an e > 0 such that for some b,

(t, x) b(t), Ct(t,x) -b(t)A(t)x

for _<_ < - e. (Note" Under the assumptions on B and H, , and Ct
exist and are equal.)

Define"

W(to t) ,(to t)H(t)Hr(t)r(to t) dt.
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Then Corollary 1.1 states that the system (1.2) is completely controllable
at to if and only if there exists tl > to such that W(t0, tl) is nonsingular.

Remarlc 1. If A and H are constant matrices, Kalman [1] shows that this
condition is equivalent to the condition" rank [H, AH, An-IH] n.
Remark 2. While the above condition given for the constant coefficient

case can be directly checked, W(t0, t) depends on knowledge of a funda-
mental solution q)(t, to) which is not always easily obtainable.

Remarlc 3. It is easily seen that W(t0, tl) is a positive scmidefinite matrix.
Thus if W(to, t) is nonsingular, W(to, t) is nonsingular for all >= tl.
The main purpose of this sectiot will be to show that the condition 2.2

for complete controllability of (1.2) is equivalent to W(t0, ti) being no-
singular for some t > to. This codition has the advantage of trot depe,d-
itg on knowledge of a fundamental solution.

Before stating the main theorem, a simple computation yields, for
to < t < t,

W(to, t) W(to, tl) + q(to, tl)W(t. t)’(t0, tl).

Thus if W(tl t2) is nonsingular (positive definite) it follows that W(to, t)
is also nonsingular (positive definite). The reverse implication need not be
true.
THEOREM 2.1. A necessary and sujcient condition that W(t t) be non-

singular for all t. > t is that the Pfaflian (2.7) be not integrable at tl
For ease in both using and proving this theorem, we list the implications

and their contrapositives.
(A) Necessary condition. W(t, t:) nonsingular for all t. > t implies

Pfaffian (2.7) is not integrable at tl.
(B) Necessary; contrapositive. Pfaffian (2.7) integrable at 1 implies

W(t, t.) is singular for some t > t.
(C) Sudcient condition. Pfaffian (2.7) not integrable at tl implies

W(t, t) is nonsingular for all t > t.
(D) Sudcient; contrapositive. W(t, t) singular for some t > tl implies

Pfaffian (2.7) is integrable at tl.
Proof. We shall prove (B) and (D).
Assume the Pfaffian (2.7) is integrable at t. Then there is a vector b,

which is a linear combination of the rows of B, and an > 0 such that
b(t) -b(t)A (t) for tl -<_ t + . Let (t, tl), (t, tx) I, be the
fundamental solution of 2 A (t)x. Then the vector b admits the repre-
sentation b(t) c-(t, t) c((tl t) for some constant vector c. Let
h(t) be any column of H(t). Then0 b(t)h(t) c(tl, t)h(t). Sinceh is
an arbitrary column of H, and W is positive semidefinite, we have cW(tl,
t)c= 0 for t <= -<_ t -4- , showing that there exists a t2 > tx such that
W(tl, t) is singular.
Assume, next, that W(t, t2) is singular for some t2 > tx. From Remark
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3, it follows that W(tl, t) is singular for all tl -<_ t2. This implies there
exists a vector c(t2) such that c(t2)W(tl t2)cr(t2) 0. Since the integrand
of the integral defining W(t, t2) is continuous,

c(t2)-(tl, t)/(t)HT(t)T(gl, t)cT(t2) ---0 for tl --t2.

It follows that 0 c(t.)(tl, t)H(t) =- c(t)4-(t, tl)H(t). Thus b defined
by b(t) c(t)P-(t, t) is an admissible vector in the sense that b(t)H(t)

0, i.e., b lies in the subspace spanned by the rows of B.
Define the scalar valued function (t, x) c(t2)-(t, t)x. Then b(t, x)
b(t), (t, x) -b(t)A(t)x for t <= t:, showing that the l?faffia

(2.7) is intcgrable at t.
The foliowhig illustrates the advantage of a definition of complete con-

trollability for linear systems which does not depend on knowledge of a
fundamental solution.

It is lcnown that an n-dimensional system which is formed flom a single
nth order equation having constant coejicients and the control as forcing term
is completely controllable. We next show that this is also true for time varying
systems of the form

x(n) (t) -[--al(t)x(n-)(t) - + an(t)x(t) u(t).

Specifically we shall show that for any to the associated PfafSan is not
integrable, implying W(t0, t) is nonsingular for all t > to.
We take the equivalent linear system of the form (t) A(t)y(t)

-t- h(t)u(t), where

0 1 0... 0
0 0 .

A(t) 0
o ".6
an an-1 al.A

One can choose B(t) as the (n 1) X n matrix

1 0 0 0

B(t) O. 1 0 0

0 0 1

The Pfaiiian system equivalent to (2.7) is then

dxl x dt 0

dx. x dt 0
(2.S)

h(t)

dXn_l xn dt O.
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If (2.8) is to be integrable there must exist scalar valued functions a.(t),
not all zero, so that the single

n--1 n--1_, aj(t) dxj + 0 dx _, a(t)xj.1 dt
=1

is an exact differential. But this would imply ai(t) 0, j 1, 2,
(n 1), which shows (2.8) is not integrable for any to.

Geometric interpretation, local controllability, and the singular problem.
By associating a PfafSan system of the form (2.3) with the system (2.1),
it is conspicuous that the stress is taken away from the functional form of
the elements of the matrix H, and placed only on what the range of H(t, x),
considered as an operator on Er, is. This obviously should be the case when
controls are required to be only 2 functions.

In [9] Markus and Lee consider a system of the form 2 f(x, u), f C
in E t, where 2 is a compact set contained in E with 0 in its interior and
is the range set of the control. Assuming f(0, 0) 0 and letting A

fx(0, 0), H fu(0, 0), it is shown that if the linear system Ax
Hu is completely controllable, then the set of points from which the

origin can be reached in finite time by trajectories of 2 f(x, u) is an open
connected set containing the origin. Kalman [10] pointed out that a similar
result can be obtained for a system of the form 2 f(t, x, u) by assuming
the linear approximation is completely controllable in terms of the crite-
rion given in Corollary 1.1.
The system

(2.9) 2(t) f(t, x(t), u(t)), x(to) x0,

where x is an n-vector, f is a C vector-valued function and u is an r vector-
vlued measurable control, is sid to be locally controllable along a solution
9 corresponding to control v if for some t > to all points in some state space
(n dimensional) neighborhood of 9(t) are attainable in time tl by tra-
iectories of (2.9) with admissible control.

It would be somewhat fallacious to say that a time dependent system is
locally controllable, sy at the origin, if all points in a neighborhood of the
origin in state space are attainable by trajectories of the system in finite
time. To see this, we consider the following example of G. Haynes.

Example.

2 -x+ (cost)u, x(0) 0, u(t) _-<

2 x + (sint)u.

An integral of the motion is seen to be x sin x_ cos 0, which one
can picture as a rotating (with time) line in x, x space. As varies from
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0 to 2r, all poin.ts of E are swept out by this line. Now multiply the first
equation, by cos t, the second by sin and one obtains by adding"

d (xz cos q- x2 sin t) u,
dt

or

xzcost+x2sint f0 u(r) dr.

Combining this with the integral of the motion gives

(t) u() &X12(t) -[- X

implying that as time increases, the two-dimensional neighborhoods of the
origin of E which are attainable also increase.

Since all solutions lie on a surface in (t, x) space, one would hardly feel
that the system should be termed locally controllable; indeed it is not
locally controllable by the definition given above.
We next proceed with an analysis, similar to that used in [9] and [10], to

examine local controllability about a given trajectory of the system (2.1).
Let x(to) 0 be initial data for this system, v an arbitrary . control and
v the corresponding solution. Let u(t; ), En, be a family of controls
such that u(t; O) v(t), u exists, and denote x(.; ) as the response to
u(.; ). Then x(.; ) stisfies

x(t; ) f [g(r, x(v; )) + H(r, x(r; ))u(r;)] dr.
t

vx(t; O) [g(r, (r)) + H(r, (r))v(r)]x(r; O)

+ H(, ())u(; O) &,
where Hv is an n X n matrix with i, jth element

1-1xjY

For each >_- to, we view x(t; }) as a mapping } --+ x with 0 -- Cv(t). Let
Z(t; , u) denote the Jacobian matrix x(t; 0). We have" If for some , u
Z(t; , u) is nonsingular, the attainable set at contains a neighborhood of the
point (). Let (t, to) be a fundamental solution matrix of the system

2(t) [g(t, (t) -+- Hx(t, v(t) )v(t)]x(t).

Then
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z(t. , u) (t )H(, ())u(; 0) d.
vt

From Lemmu 1.1 nd Corollary 1.1 we have"
THEOEM 2.2 (Kalman). A necessary and sucient condition that there

exist an r n matrix u such that Z(t , u) is nonsingular for some

t > to is that the linear system

9(t) [g(t, ’(t) + tt(t, ’(t) )v(t)]y(t) + H(t, ’(t))u(t)

is completely controllable.
In terms of the 1)faffian pproach the equiva,lcnt theorem is the following.
THEOREM 2.3. A necessary and sucient condition that there exist an r n

matrix u such that Z t , u is nonsingular for some tl > to, is that the
Pfaan system

B(t, (t) dx B(t, (t) )[g(t, ’(t)) + tt(t, (t) )v(t)]x dt 0

be nonintegrable for some tl to, i.e., that

(2.10) b(t, (t) )dx b(t, o(t) )[g(t, (t)) + H(t, (t) )v(t)] x dt

is not an exact differential for any b which is a linear combination of the
rows of B.
The sme method, when. pplied to a system of the form (2.9) yields:
THEOnEM 2.3’. A sucient condition that there exists a t to, such that

all points in some state space neighborhood of (t) for all t t are attain-
able in time t by trajectories of (2.9) with admissible controls, is that there
exists a t to such that the Pfaan system

B(t; v) dy B(t; v)f(t, (t), v(t) )y dt 0

is not integrable at tl
[The notation B(t; v) is used to denote the dependence of B on the

reference trajectory, specifically B(t; V)fu(t, (t), v(t)) 0.]
It is interesting t this point to see the implications of the ssumption

that (2.10) is n exact differential. This implies and is implied by

d b(t, , ,(2.11) (t)) --b(t, (t))[g(t, (t)) + H(t (t))v(t)],

which cn be recognized s the so-called djoint system of the mximum
principle [11] pproch to the time optimal problem for system (2.1). It
should be noted that if b(t, (t)) stisfies (2.11), the it is n djoint
vector which is orthogonl to 11 of the columns of H. Sice the mximum
principle (for control components bounded by one in bsolute vlue) im-
plies one chooses
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uJ(t) sgn bi(t, v(t))HiJ(t, v(t)),
i--l

in this case it yields no information,.

I shall designate such a problem as one which dmits a totally singular
rc , i.e., where the maximum principle yields no information in the time
optimal problem for any components of the optimal control. The arc would
be singular, but not totally singular, if there is an adjoint vector orthogonal
to some, but not all, columns of H.
THEOnEM 2.4. The Pfaffian form (2.10) is an exact differential if and only

if is a totally singular arc.

Proof. It has been shown above that if (2.10) is an exact differential,
then the vector b satisfies (2.11), which implies is a totally singular arc.
If is a totally singular arc, there exists a vector p(t) such that

(i) p(t)H(t, p(t) =- 0

and

(ii) 15(t) -p(t)[gx(t, ,v(t) + H(t, ,(t) )v(t)].

From (i) we conclude that p(t) is a linear combination of the rows of
B(t, (t)), while (ii) implies that this linear combination, (2.10), is an
exact differential.
To summarize" not a totally singular arc implies the Pfaffian form

(2.10) is not an exact differential, which implies there exist _>_ to and u
such that Z(; , u) is nonsingular and the attainable set at time con-
tains a neighborhood of the point (.). The contrapositive of this state-
ment provides an interesting characterization of totally singular arcs, i.e.,
if for every t > to there exist points in every state space neighborhood of
v (t) which are not attainable in time tl with 2. controls, the arc is
totally singular. On the other hand, as will be shown by example, a
totally singular arc can remain on the boundary of the attainable set, and
thus provide a time optimal trajectory.
THEOREM 2.5. If the system (2.1.) is not completely controllable at to,

Z(t; , u) is singular for all >= to u and all reference trajectories , i.e.,
every trajectory is totally singular.

Proof. Any vector b, which is a linear combination, of the rows of B, satis-
fies b(t, x)H(t, x) - O. Thus for any vector v(t),

0__ [b(t, x)H(t, x)v(t)] 0,
Ox

OF

v(t)Hr(t, x)b(t, x) =-- -b(t, x)H(t, x)v(t).
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Evaluation of this identity at the point (t, v(t)), substitution into (2.11)
and expansion of the left side yield

bt(l, v(t) + b(t, ,(t) )gx(t, ,(t) + g(t, ,v(t) )bxr(t, ,(t)

v(t)Hr(t, ,v(t))[bx(t, (t) bV(t, ,’(t))].

This identity provides a necessary and sufficient condition that (2.10) be
an exact differential, i.e., that be totally singular.
Now assume the system (2.1) is not completely controllable. This means

that for some b, a linear combination of the rows of B, the Pfaffian form
b(t, x) dx b(t, x)g(t, x) dt is an exact differential, or

bt(t, x) --b(t, x)gx(t, x) g(t, x)bT(t, X),

bx(t, x) =- --(t, x) =- o.
Evaluating these two identities at (t, (t)) for an arbitrary control v
shows that (2.12) is satisfied, hence every trajectory is totally singular.
A conjecture which one might be tempted to make is that if the system

(2.1) is completely controllable, it admits no totally singular arcs. This is
not true, as the following example from [2] shows.
Example 2.1.

21 Xl Xl X2U, Xl(O) 1,

: x. + u, x: (0) O.

For the time optimal problem of reaching the point (2, 0), it is shown in
[2] that u 0 is the optimal control, if the restriction In(t) -<_ 1 is ira-
posed, and it easily follows that this is also optimal in the class of controls.

For this problem, one can use for the matrix B the single vector
b (1, X12X2). The associated Pfaffian equation is

dx + xx dx. - x(x 1)dt O.

Letx (xi,x),a(x) (1, xx,x(x- 1)).Then

(curl a(x) ).a(x) 2xx 0;

thus the Pfaffian is not integrable.
The optimal path from the point (1, O) to (a, 0), a > 1, is obtained

with control u O, and is

(t 1

0

This is a totally singular arc. To show this, we note b(t, ,(t)) (1.0).
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b(t, ,(t)) dx b(t, (t) )[g(t, ,p(t)) + H(t, (t) .O]x dt

dx 4-0 dx

2xl /(t(x,t) 1,0,
1

Then (curl ).c 0, which implies the Pfaffian

dx -- 0 dx dt 0
1-t

dt.
1-t

2(t) A(x(t) -+- Bl(x(t) )u(t), x(0) z0,
(2.13)

22(t) A2(x(t) --B2(x(t))u(t), u(t) <= 1.

Assume that in some region of interest ) of state space

(2.14) A(x) --B2(x)A(x) -+- Bl(x)A(x) O,

and that A, B, i 1, 2, are C(0).
The Pfaffian system associated with (2.13) is the single Pfaffian equation

is integrable, and 90 is a totally singular arc. Here the arc 90 is on the
boundary of the attainable set.

It should be stressed at this point that while the nonsingularity of the
matrix Z(t; *, u) is sufficient for local controllability, it has not been showl
and is not true that this is a necessary condition. To show this we will con-
struct a time optimal problem (Example 2.2) possessing a totally singular
arc which yields neither a maximum or minimum. This arc, together with
the control which produces it and the nonzero solution of the corresponding
adjoint system, satisfies the maximum principle. For one thing this points
out that the maximum principle is, of course, only a necessary condition;
but, of more importance, the example is constructed such that aty theory
based on a linearized or variational principle will be inconclusive. The
abovementioned trajectory can be thought of as being an "inflection point"
in function space for the functional (time). It is easily seen that a problem
can be constructed such that at the inflection point (trajectory) the values
of the functional are "so flat that all order derivatives vanish." It becomes
difficult to show that such a trajectory is in the interior of the attainable
set, and therefore cannot be optimal. We shall first prove a rather special
theorem (Theorem 2.6) which will allow us to show local controllability
along the totally singular arc of Example 2.2.

Consider a control system of the form studied in [2], i.e.,
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(2.15) B2(x) dxl B(x) dx + A(x) dt O.

Since A(x) 0 and multiplication by a factor does not chunge integra-
bility, this can be rewritten, as

(2.16) B2(x) dx
B(x)

dx + dt O.
X(x) X(x)

Let

(B2(x) .B(x) 1);z(z)
\ (x)

then a necessary and sufficient condition that the Pfaffian (2.16) be in-
tegrable t point (t, x) is that Z(x). curl Z(x) 0 in neighborhood of
x. Computing yields

z().cu z() k()/+ (x)/
where w(x) (using the notation of [2]) cm be directly computed from the
right sides of the differentiM equations (2.13).

Let v be continuous control (this is sufficient continuity when the con-
trol ppers linearly) stisfying v(t) < 1, nd let be the corresponding
trajectory of (2.13).
THEOREM 2.6. U for some h t0, (h) is not a zero of , then for any

t > h all points in some state space neighborhood of (t) are attainable by
trajectories of (2.13), in time t with admissible controls.

Proof. The vritionl equation for the system (2.13) bout the tra-
jectory is given by

9(t) [A(v(t) + v(t)B(’(t) )]y(t) + B(’(t) )u(t),
where

A= A B
The Pfaffian equivalent to (2.10) for this variational equation is

B(o(t)) dy Bl((t)) dye.

-t- (--B2((t)), B((t)))[A(o(t))

+ v(t)B(o(t))]y dt O.

A sufficient condition that (2.17) be not integrable at tl is that

(2.s)
d__ (B(v(t)) B(v(t))) I= (--B.((tl)) B((h)))
dt

[A((h)) + v(h)B(,p"(h))],

which is implied by o((t)) 0, as can be shown by a straightforward
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calculation. [In terms of Theorem 2.4, (2.18) states that cv(tl) is not a
point of a singular arc. In [2, p. 97] it is shown that for systems of this
type, singular arcs are characterized by the fact that co is zero along them.
It follows that if Cv(tl) is not a zero of co, then it is not a point of a singular
arc; hence, (2.17) is not integrable and the conclusion of the theorem
follows.]

It should be stressed that the integrability of (2.16) requires co(x)
Z(x).curl Z(x) to be zero in a neighborhood of a point, while Theorem

2.6 deals only with the value of co at a point. It is possible (see Example
2.1) to have the Pfaffian (2.16) not integrable at a point (, 2) at which
co(a) 0, and yet have a trajectory such that v () 2 and the system
is not locally controllable about .
We next give the example of a problem which is locally controllable along

a totally singular arc.
Example 2.2 (A singular arc 0(t) such that all points in a neighborhood

of 0(t1) are attainable in time tl). Consider the system

2, u, u(t) -<_ 1,

2 1 + xxu, x O O.

Then A(x) 1, co(x) x. Hence, if we consider the time optimal prob-
lem of reaching the final point x](0, 1/2), the Green’s Theorem approach [2]
yields Fig. 1. The optimal arc is shown by the arrows. There is aa arc
along which co 0, i.e., x 0, and while this can be attained with the
control u 0 it yields neither a maximum nor minimum to the time
optimal problem. This arc we designate as

=- o,(t) =- t.

It is easily checked that the variational equation along 0 is not completely
controllable.
Now consider a relation xl / sin/:x, where/ 0 and k: 4. It

will be shown that for l sufficiently small, there exists a unique admissible

Xl
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continuous control g(t) with trajectory ea which has {(xl, x2): xl k
sin/c2x., x. >_- 0} as its track.
From the Green’s Theorem approach [2] and the symmetry of co(x) about

the line xl 0, the parametrization of ea must be such that, at the even
numbered crossings of the x-axis, counting only crossings which occur for
x > 0, one must have

k/= 0 0 k/’

We will be interested in the case n 1, so that 2r/]c. < 1/2. It will be shown
that there is local controllability along ca, and since ea(2r//c2) 0 (2r//c=),
it will follow that a neighborhood of 0(2u/]c=) is attainable in time 2r/]c2.

First we will show that for/cl sufficiently small, there is a unique con-
tinuous u which leads to a trajectory a having (xl, x:): x, /c sin/c2x=,
x= => 0} as its track. Differentiation of the track relation with respect to
yields

1() 12 [COS 2X2(g)]2(g),

Substitution from the system equations leaves

(2.19) u(t) /cik2[cos k,x(t)][1 + x(t)x:(t)u(t)].
For any control u,

x(t) f. u(-) -,

[x(t) exp u(r)

u(o.) u() d,,/ do- dr.

Substituting these in (2.19) yields an expression of the form

where the definition of the nonlinear operator ff is obvious. Let C[0, 1/2]
denote the space of continuous vector-valued functions u on the interval
[0, 1/2] with the supremum norm, and B1/ the closed ball of radius 1/2 in this
space. It is easily shown that for/Cl sufficiently small but positive, u B1/:

implies lClYU B112, and/cff is a contracting map. Thus kY has a unique
fixed point in B/. Call this point g. Then m is not a singular trajectory,
since k positive implies g(t) 0, and has the desired track.
Now for 0 < h < r/lc., ’(h) is not a point of the singular are, hence

not a zero of co. From Theorem 2.6 it follows that all points in some neighbor-
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hood of (t2), for any t. > 6., are attainable in time t2 by trajectories with
admissible controls; hence this is true for t2 2r/]c2.
To determine local controllability along by use of the fundamental

solution of the variational equation about this trajectory would be a vir-
tually impossible task.

In concluding, it should be noted that totally singular arcs were defined
with no mention made of transversality conditions. It is possible to use
these conditions, in very special cases, to rule out the existence of singular
arcs in the optimal strategy. Also, for a time optimal problem for a system
of the form

(2.20) 2(t) g(x(t) -4- H(x(t) )u(t),
the maximum principle yields the fact that the Hamiltonian is constant
along the optimal path. We shall show that this cannot be used to rule out
totally singular arcs, since such arcs automatically satisfy the condition
even though the Hamiltonian is seemingly a function of time along them.
For the system (2.20) with any given, control u(t) we define the Hamil-

tonian for the time optimal problem as

3C(t, x, p) p.g(x) -4-p.H(x)u(t) + 1.

A necessary condition is that 3C is a constant along the optimal trajectory;
it need not be so on a nonoptimal trajectory. Define the adjoint system as

(2.21) i5(t) -p(t)g(x, (t)) p(t)Hx(x(t))u(t).

THEOREM 2.7. The Hamiltonian for the system (2.20) is constant along
any totally singular arc.

Proof. We defined a totally singular arc as an arc which satisfies (2.20)
and for which there exists an adjoint vector p(t) satisfying (2.21) such that
p(t)H((t) =- 0 for a set of values having positive measure. Then

(2.22) d 3C(t, d(t) p(t)) t[P(t)’g(U(t)) + 1] 9g A- pgx.

From (2.20),

From (2.21 ),

Substituting in (2.22),

ikpiHupgx --d 3C(t,(t) p(t)) 9[ H u] + [-- px uqdt

[--H--pH]u {d }x [p(t)H( (t) )] u 0,

from the condition p(t)H(( t) O.
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THE SYNTHESIS OF LINEAR OPTIMAL SYSTEMS*

T. G. BABUNASHVIL[I"

A series of works has been devoted to the synthesis of linear optimal
systems. Among these we note the work of Neustadt [1], and N. N. Krasov-
skii [2]. In [1] the synthesis problem for homogeneous linear systems was
solved completely. The general case of inhomogeneous linear systems was
considered in [2], but the method proposed there is too complicated.
Here we shall describe a new synthesis method that is suitable for ar-

bitrary inhomogeneous (nondegencrate, see below) linear systems. In con-
nection with the method presented here, also see the work of Antosiewicz
[3].

1. Statement of the problem. Let there be given the equation

(1) 2 A(t)x + B(t)u + f(t).

Here, x is an n-dimensional phase column vector, A(t) is a summable
n X n matrix (i.e., a matrix whose elements are summable on any bounded
interval of the time axis), u is an r-dimensional control column vector,
B(t) is a summable n X r matrix, and f(t) is a summable n-dimensional
column vector. The control u is sought in the class of measurable functions
with values in a given convex, compact polyhedron U in r-space that con-
tains the origin.
The problem consists in finding, for a given initial position x0 in phase

space, the optimal control that transfers the phase point along the cor-
responding (optimal) trajectory of (1) from x0 to the origin iu minimum
time.

Let us write the equation

(2) -kA (t),

where k is an n-dimensional row vector, und let us define the "norm"

* Originally published in Dokl. Akad. Nauk SSSR, 155 (1964), pp. 295-298. Trans-
lated from the Russian by L. W. Neustadt, University of Michigan, Ann Arbor,
Michigan. The original article was submitted on October 24, 1963, and was presented
by academician L. S. Pontryagin on November 25, 1963. The work was carried out
in the seminar of L. S. Pontryagin on the theory of oscillations and automatic con-
trol.

Translated and printed for this Journal under a grant-in-aid by the National
Science Foundation.

The V. A. Steklov Mathematical Institute of the Academy of Sciences of the
USSR.
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v in the space of r-dimensional row vectors v according to the formula

A necessary condition for optimality (the maximum principle, see [4])
can now be formulated as follows.
For every optimal control u(t), 0 <= <= T, there exists a nonzero solution

(t), 0 <= <= T, of (2) such that, almost everywhere in [0, T],

(3) b(t)B(t)u(t) b(t)B(t)

Equation (1) is assumed to be nondegenerate (see [4]); this is equiva-
lent to the assertion that, for any given nonzero solution (t) of (2), the
control u(t) is uniquely defined by the maximum condition (3) for almost
all t.

Thus, if the origin can be attained from a given x0, the optimal problem
(for the given x0) will be solved if we can compute the initial value
(0) of the corresponding solution (t) of (2). We shall call the com-

putation of the vector 0 corresponding to the vector x0 the synthesis of
the optimal system described by (1).

2. Derivation of the fundamental equation (6) (also see [2] and [3]).
The solution x(t) of (1) with initial condition x(0) x0 has the form

x(t) (t) Xo + (I)-l(r)(B()u(r) + f(r)) dT

where (t) is the fundamental matrix for the homogeneous equation
2 A (t)x, normalized at 0. Let Txo be the optimal transfer time from
x0 to the origin. Finding the optimal control ux0 (t), 0 =< =< Tx is equiva-
lent to solving the equation

( f0z(T) x0 +
(*)

)foq-(t)f(t) dt q-l(t)B(t)u(t) dt

T

fo K(t)u(t) dt,

for the unknowns T and u(t), 0 _-< =< T; moreover, T is to be taken as
the smallest positive root of this equation. We shall call the solution
Txo Uo 0 <= <__ T the optimal solution of (4).
In order that, for any given T > O, equation (4) have a solution u(t) with

u( t) U, 0 <= <-_ T, it is necessary and sulficient that
T

(5) xz(T) <-_ f xK(t)I] dt,
J0

for every n-dimensional row vector x. For a proof, see [3].
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THEOREM. In order that (4) have an optimal solution Tx0, ux0 (t), 0 -<
<- Txo it is necessary and su2cient that there exist a nonzero row vector o
that satisfies the equation

fo fo(6) oz(To) oK(t)II dt min xK(t) dt,
xz(Txo)’oz(Txo)

(i.e., the minimum is taken over all x that satisfy the condition xz(Txo)
oz(To)). Any solution bo of (6) may be taten for the vector o in de-

fining the optimal control Uxo (t), 0 =< =< Txo, through the maximum con-
dition (3) wherein (t), 0 T is the solution of (2) with initial con-
dition o (0).

Proof. Let be n rbitrry n-dimensional row vector that stisfies
the condition xz(Txo) > 0, nd let axz(To) oz(Txo). It follows from
the nondegenercy of (1) that a > 0. It therefore follows from (6) that

axz(To) og(t) dt axg(t) dt,

i.e., (5), or equivalently (4), is satisfied. Conversely, if T0, ux0(t), 0 =<
=< T is an optimal solution of (4), then, according to the maximum
principle, there exists a solution (t) 0-1(t) of (2) such that
(t)B(t)Uxo(t) oK(t) ]1. Consequently, multiplying (4) by kx0,
we obtain

x0z(T0) fo
J0

boK(t)Uxo(t) dt for oK(t) dt,

i.e., (6) holds.
It is easily seen that the control u0(t), 0 _-< -< T given by the equa-

tion oK(t)uo(t) IboK(t)II, where 0 is any nonzero solution of (6),
is optimal" uo(t) Uxo(t), 0 <= <= T Indeed, if uo(t) Uo(t) on a
set of positive measure, then

l f0/oK(t)Uxo(t) dt <
0

oK(t)uo(t) dt

TO
C/oK(t)]] dt,

contradicting (6).
Thus, the synthesis problem is equivalent to that of solving (6) for

the unknowns k0 and T0 moreover, T must be taken as the smallest
positive root of this equation.

3. The solution of equation (6). Equation (6) may be solved by the
method of gradient descent as based on the following proposition.
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T

For any T > O, the gradient of the function g(x) ./, xK(t) dt with

respect to x is continuous. Every relative minimum of the function g(x) under
the condition xz( T) const. > 0 is an absolute minimum of the function
(under the given condition xz( T) const.).

Proof. By virtue of the nondegeneracy of (1), xK(t) xK(t)vx(t),
where vx(t) is a function that depends on x
set (of t) of full measure, and has values on the vertices of the polyhedron
U. For a small change in x, the function Vx(t) changes on a set of small

T

measure. Consequently, grad g(x) ./ K(t)vx(t) dt changes continuously

with x. Let x and x: be two stationary points of the function g(x) under
the condition xz(T) const. > 0; we shall show that g(x) g(x). Let
us assume the contrary, and let g(x) > g(x:). We hve that

T

grad g(x)= Jo K(t)vx(t) dt hz(T), i 1,2,

T T

xi.grad g(x) xK(t)vx (t) dt xK(t) dt g(x)

k. const., i 1, 2.

Consequently,
Further, we have that

T

K(t)(v(t) v(t)) dt (M- k)z(T).

Multiplying both sides by x, we obtain the relation
T T

Jo xK(t)vx(t) dt Jo xK(t)]] dt ( :).const > 0,

which is a contradiction since

The proposition gha has jus been proved yields he following mehod
for he solugion of (6).
We make a firs approximation" x for he solution 0, subjee o he

single eondigion XlZ(0) > 0, and begin o increase he ime from 0 up
o he firsg insgan (ghe firs approximation" o T,) when xz()

xlg(t)]] dt. (If xz(t) > .[ xlg(r)ll dr for every > 0, then

the optimal problem with the given initial value x0 evidently has no so-
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lution.) After this we find, by the method of gradient descent, the rain-
tl

imum of the function gl(x) ./o K(t)ll dt under the condition xz(tl)
tl

xlz(tl). If the minimum point x x, then x2z(tl) > .I, 2K(t) dt,

and we begin to increase the time from tl up to the instant t when
t2

once again xz(t) .f. xK(t)ll dt, obtain "second approximations" t2,

x2, etc. It is easy to see that the increasing sequence t =< t =< has
a finite upper bound if, and only if, the optimal problem with the given
initial value x0 has a solution, and this upper bound is equal to the optimal
time T In case T is finite, the sequence of unit vectors x/ll x II,
xe/ll xe ,"" (11 x is an arbitrary vector norm)converges to some compact
set of vectors that make up all the solutions of unit length of (6).
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AN ANALYTIC THEORY OF MODELING FOR A CLASS OF
MINIMAL-ENERGY CONTROL SYSTEMS (DISTURBANCE-

FREE CASE)*

WALTER J. CULVER
Summary. A quuntittive theory is developed for modeling s cluss of optimal con-

trol systems. A mathematical representation--a model system--is fit to an actual
system solely on the basis of the respective optimal performances of the two systems,
where performance is defined by a generalized quadratic criterion of the minimum
energy, minimal endpoint-error type. The plant to be controlled is assumed to be
linear time-varying (at least in the small), and the model is taken to be linear, but
constant-coefficient.

Necessary and sufficient conditions are derived for achieving certain pertinent
tasks of performance prediction and optimal control, wherein particular attention is
paid to the accomplishment of these tasks by computer methods. It is found that
the very structure of the plant representation may prohibit some model activities,
e.g., if a certain inequality relation is not maintained between the respective dimen-
sions of the state and control vectors.

Finally, the given performance index is used to partition the universe of linear
systems into equivalence classes, and the conditions are presented for two systems to
be performance-equivalent. These are shown to be the necessary and sufficient condi-
tions for the optimal control laws of nonidentical systems to be, in fact, interchange-
able in the large.

1. Introduction. Modeling is perhaps the most fundamental aspect of pur-
poseful behavior, being the foundation for virtually all processes of learn-
ing, identification, prediction, and control. In this paper we are concerned
primarily with the latter two activities, and more specifically, with mathe-
matical models by which real physical processes can be represented for
purposes of estimating their future behavior, controlling their future
behavior, or both.
We have developed what is believed to be a new approach to the prob-

lem of modeling a system which is to be optimally controlled, wherein
the model is chosen so as to match the performances--not the responses--
of the modeled and actual systems. If the outputs or states of the system
are not contained in the pertinent performance index, then the model
determination is explicitly independent of such states, an approach which
is in sharp contrast to more classical modeling (or identification) tech-
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niques [1], [2], [3]. Note that if the criterion of performance, say L, is really
meaningful for the problem at hand, then we should not particularly care
what the respective states do, so long as the respective performances, in
terms of L, are close enough.
At the time of this writing, our accomplished research along these lines

falls naturally into two parts.
The first of these parts outlines the fundamental properties of modeling

in our context, dealing especially with what a model can and cannot do in
an ideal, disturbance-free environment. This, considered as an indication
of the upper limit on model performance, is what the present paper is
concerned with.
The second part comprises the more physically realistic study of a dis-

turbance-contaminated environment. It depends upon much of the work
of the first part, indicates the possible superiority of model-control over
control based upon the exact plant equations, and will be submitted for
publication as a forthcoming paper [18].

9.. The problem formulation.

The plant. In specific terms, our study here is concerned with known
systems of time-varying linear differential equations, of which a typical
decoupled subsystem might be

K--1 K--1

1
d:x Clkx dkm
dt-- -- p( t)

_
q( t)

=o [ k=o dt

We will call the collection of such subsystems, together with their natural
interactions, the "plant. ’’1

Employing the so-called state variable transformations [4], [5], we can
put the plant equations in the vector-matrix form

(2) P(t)x -- Q(t)m,

where x is an n-dimensional state vector, m is a p-dimensional manipulated
or control vector, and P(t) and Q(t) are matrices of obvious dimensions
with typical elements pi(t) and qi(t) in ith rows and jth columns.

For purposes of generality in application, we do not assume these matrices
to be continuous, for if (2) is obtained from a perturbational analysis of a
nonlinear system, a denumerable number of discontinuities may arise.
Rather, we require only that these matrices be Riemann integrable and
bounded in norm [7, p. 97, prob.1] which, when applied to m as well, insures
that every solution vector x(t) be absolutely continuous [8]. We need these

The plant plus the proper equations of control we will call the control system,
or just "the system."

For an extended discussion of this and other general points, see [6].
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properties only on the closed interval [to, T], which we take to be the time
interval over which the system is to operate, arid, of course, (2) has mean-
ing here only when the derivative (t) exists. Note finally that even though
the states in this representation are absolutely continuous, the actual physi-
cal. states need not be, as a perusal of the state-variable transformations
quickly indicates.

The model. In keeping with the introductory remarks, we now postulate
constant-coefficient model

(3) AWBff,
where the barred variables have the same dimensions as the original ones,
A and B being constant matrices yet to be determined.
The justification for such a model rests upon the ever-present need to

simplify the computational aspects of on-line prediction and control. For
even though the plant is taken to be linear, still it is time-varying, a fact
which almost surely eliminates the possibility of completely closed-form
calculations. In fact, as we will see, the so-called fundamental matrix of
the plant has a prominent place in the requisite mathematics. This matrix
is an array of the general homogeneous solutions to (2), and has the follow-
ing important properties"

(4a) t, s) P t) t, s), almost everywhere,

(4b) (I)(t, t) I,

(4c) (t, u)(u, s) (t, s),

(4d) det (t, s) 0;

where (4a) has no meaning on the set of measure zero for which P(t) is not
defined, I is the identity matrix, and det denotes determinant.

Unfortunately, except in the very special cases [9] where P(t) commutes

with its integral J. P(u)du, ((t, s) cannot be written in closed form.

Rather, as in [11], it must be expressed as the iterate solution to a matrix
Volterra equation of the second kind, which must be tabulated for discrete
increments of time and read out as required.

In replacing the plant with a time-invariant model, we would be gaining
simplicity in many respects, but especially in that the model fundamental
matrix, say (t, s), can be written immediately as

(5) (t, 8) eA(t-s).

That is, while the process is operating, as opposed to pre-programmed operation.
Here, elapsed computation time can be a vital factor, and in aerospace vehicles, could
conceivably determine weight and power to be allotted to computing devices.
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This can. be expressed either as an infinite series in powers of (t s), or
else as a finite series of n terms in powers of (t s) and ex(t-"), where the
X,: are the eigenvalues of the matrix A. (We refer the reader to [10, Chap.
V].) At any rate, the storage requirements for digital implementation are
now reduced to nominal magnitudes, since functions such as (t s) and
ex(t-8 are very simply generated in an on-line fashion.

The criterion. In order to obtain concrete analytical results, now, we
must be prepared to specify our system criterion of performance rather
precisely. From the viewpoints of mathematical elegance and practical
significance, the following quadratic "cost" or loss function is most suitable
to our work:

PT

(6) [ ]lm(t)lib(t)dt + Ilx(T)Lk
ot

where M(t) and X are p X p positive definite and n X n nonnegative
definite matrices respectively, both symmetric, M(t) being bounded and
integrable in the same sense as the plant coefficient matrices; xe is a desired-
endpoint vector; 11Y lit (yryy)/, the weighted Euclidean norm of any
vector y, r denoting transpose; t is a point in time lying between to and
T, at which the state of the system is checked and at which certain calcu-
lations of optimization or prediction are to be carried out.
The minimization of this functional can be accomplished in a number of

ways, such as, for example [6], via the classical formulation of Bolza in
the calculus of variations. The optimal values for rn and x(T) we denote
by m* and x*(T), and these put into (6) produce the least cost Lk*. More-
over, as is commonly the ease, the optimal control algorithm of "law" pro-
vides m*(t) as a function of state at the sampling times only, i.e., as a
function of x(t).
Thus we can depict the function of the optimally controlled system by

Fig. l(a), and the next definition follows naturally.
DEFINITION l(a). A system optimized via the "exact" plant equations

(2) under the (possibly false) assumption that the environment is disturb-
ance-free, we will denote as an ideal control system, or iust an ideal system.
The associated cost

T

(7) L* f m*(t) x*

we will call the ideal cost, or ideal performance.
The same procedure can be carried through for the set of model equations

and for a cost functional, say L*, written in terms of the barred model
variables. Then Fig. l(b) comes to the fore, and the extremization is per-
formed as though the actual plant never existed.
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m*(t)
PLANT

PLANT
ALGORITHM

x(tk)

(b)

"* (t)
MODEL I>

MODEL I-
IALGOR TH /

COST --_COMPUTER

(c)

--*(m t)
PLANT

OPTIMAL
MODEL
ALGORITHM

x(tk)

FzG. 1

COMPUTER

DEFINITION ] (b). A strictly constant-coefficient model, optimized under
the assumption that the environment is disturbance-free, we will denote as
an ideal model system. The associated cost

T

<8> II *(t>ll

will be known, as the estimated system cost or estimated performance.
This latter term arises because if we were to use the model to predict the

future cost of control, the computations would necessarily be performed
according to the schematic of Fig. 1 (b).

If we now examine part (c) of Fig. 1, we see the last plant-model con-
figuration that will be of interest to us here. In essence, the plant is con-
trolled as though it were the model: Namely, we force the plant with ff*(t)
calculated on the basis of the model equations, rather than with m*(t),
calculated on the basis of the actual plant equations. The plant response



272 WALTER J. CULVER

under these conditions we denote as *(t) it is not optimal, but rather the
best we can do without employing the plant equations.

DEFiNITiON 1(C). A system consisting of the plant (2) driven by the
model control law *(t), which is obtained by optimizing (8) under the
constraint of (3) and under the (possibly false) assumption that the en-
vironment is disturbance-free, we will denote as an ideal model-controlled
system. The associated cost

T

(9) f  *(t)11 m<:> dt / II (T) Xd
dt

will be called the ideal model-controlled cost or performance.

Modeling objectives. So far we have been discussing the model in a
rather abstract light. In any practical circumstance, of course, the coeffi-
cient matrices A and B, or some equivalent parameters, must be evaluated.
In terms of our stated interests, this determination might be performed in
order that the model should accomplish one or more of the following three
tasks"

Taste 1. Of considerable importance can be the estimation of the "upper
limit" on system performance" that is, the ideal performance of the system.
In the context of an aerospace mission, for example, we can visualize the
necessity of determining whether or not a projected mission can be ac-
complished with a given amount of available fuel. (Delivered fuel can be
related to the integral part of the criterion.) If the simpler model calcula-
tions can precisely determine that a certain trajectory endpoint cannot be
attained, even with a control based upon the "exact" plant equations in an
undisturbed environment, then the mission would properly be aborted in
favor of another objective which might still be achievable. In terms of (7)
and (8), the prediction without error of the ideal performance entails setting

(10) Lk*-- Lk* 0.

In terms of Fig. 1, we would be asking (b) to predict the performance of (a)
exactly.

Taslc 2. If we intend to use our model to control the plant, then it is of
obvious importance to estimate the performance of this model-control. It
is of interest, then, to determine a model that can predict without error its
own optimal control of the plant, at least in an ideal environment. This
involves setting

(1.1) * L,,:* O,

whereby the configuration of Fig. l(b) would be able to estimate exactly
the performance of the configuration of Fig. 1(c).
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Taslc 3. Both of the above tasks are concerned primarily with prediction,
i.e., prediction of ideal performance or prediction of ideal model-controlled
performance. In neither case is the associated model required to do a good
job in controlling the plant. Yet it is clear that if we intend to use our
model in a control capacity, then we want it to operate as efficiently as
possible relative to the ideal control. This can be restated mathematically
via (7) and (9):

(12) k* L *
k rain,

which says, in reference to Fig. 1., that we would be choosing a model
wherein (c) operates at as low a cost as possible relative to (a).

3. Basic restrictions and assumptions. In choosing our model analyti-
cally, there are certain constraints which must be met in order that the
model be of maximal utility and practicality.
For example, we do not want the model coefficients to depend upon the

measurements of the "present" state of the system, for if these measure-
ments are in error we do not want our model to be any less valid, even
though it must necessarily propagate these errors in its calculations.

In addition, as we model plants which are more and more nearly con-
stant-coefficient, the general equations of modeling should yield models
which are more and more like an exact representation of the plant, until
finally, in the limit, a constant-coefficient plant should give rise to a model
which matches it in every way.

In summary then, what we require of our model and assume of our
environment is the following:

A. We assume for this paper that the environment is disturbance-free.
B. We assume, except as will be noted, that the weighting matrix X in

(6) is nonnegative definite, but nonzero.
C. We require that the model have coefficient matrices which are state-

independent:i.e., they are not functions of the state variables, past, present,
or future. (These matrices may, however, be functions of the sampling
time tk .)
D. We require that if the plant becomes constant-coefficient over some

interval [tk, T], then our modeling equations should yield a model which
matches the plant exactly, and in every respect, over that interval.

4. The mathematical preliminaries. In the work which is to follow,
certain sets of definitions prevail. The first is a generalization of control-
lability theory in Kalman’s sense [12], [13], which is involved in many
aspects of the modeling problem for minimum-energy systems.
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DEFINITION 2 (Controllability Matrices).
(u) The nonnegative definite symmetric matrix

T

(13a) H(T, tk) ft (T’ s)q(s)M-l(s)Qr(s)r(T, s) ds

will be known as the plant controllability matrix at time t.
(b) The nonnegative definite symmetric magrix

(13b) I(T, tk) ft (T, s)BM-I(s)Brr(T, s) ds

will be known as the model controllability matrix at time tk

(c)

(13c) (T, t) T, s)Q(s)M-l(s)Brr( T, s) ds

will be known as the cross-controllability matrix at time tk
The last part of the definition, (c), is denoted as such because it arises

naturally in the model-control of the plant, involving both the plant vari-
ables (to the left of M-1) and the model variables. Unlike H and/ above,
it is inherently neither nonnegative definite nor symmetric.

Since the concept of controllability--especially in the form of these
matrices--is so fundamental to our work, we will introduce the following
definition.

DEFINITION 3 (See [12]). A state xi is said to controllable at time t if
there exists a control function re(t), depending on x(t) and defined over
the finite closed interval [t, T], such that at time T,

xi( T, xi( t In) x.
where x. is any desired terminal value for that state. If this is true of
every state x(tk), i 1, 2, n, then the plant is completely controllable
at time t if this is true for every t, then the plant is completely controllable.

It is possible to generalize slightly a proposition of Kalman’s [12, p. 107]
and thus state the following assertion (the truth of which follows at once
from Kulman’s proof):

ASSERTION. Given any symmetric positive definite matrix, say M(t), then
the plant (2) is completely controllable at time t if and only if the symmetric
nonnegative definite matrix

T

(14) W(t, T) f (t, s)Q(s)i-(s)Qr(s)r(t, s) ds
et

is positive definite.
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As far as linear systems are concerned, a lack of complete controllability
at any time tk implies that the system is improperly formulated at that
time, either because of redundancy in the state representation or because of
inconsistencies in it. In order for our control algorithm to make sense, then,
we must require the system to be completely controllable at every sampling
instant" i.e., W(tk, T) must be positive definite for each tk.

In comparing (13a) to (14), we observe the identity

(15) H(T, t) (T, t)W(t, T)Cr(T, t),

which, since det (t, s) # 0, implies that H is positive definite if and only
if W is4.

Birta [5], Kalman [12], [13], and Friedland [14] all use the W matrix in
their work; for our purposes, however, the H matrix is more convenient,
and it still has the controllability connotation in its definiteness property.

Since similar arguments apply to the model, we naturally require/ to
be positive definite as well.

DEFINITION 4. The unforced error, i.e., the difference between the desired
endpoint xd and the homogeneous response of the system at T, we de-
note as

(16a) u(T, tk) (T, tk)x(tk) X

for the ideal system; analogously we define

(16b) fi(T, t) (T, t)x(tk) xd

for the model system. Where there is no likelihood of confusion, we denote
these simply as u and fi respectively.
To simplify our future notational problems further, we introduce the

matrices

(17a) U X(I - HX)-1,
(17b) X(I + I:IX)-,
where H and / are short forms for (13a) and (13b), respectively. The
important properties of the above we give in lemma form.
LEMMA 1. Given that X is a symmetric, nonnegative definite matrix, and H

is a symmetric, positive definite matrix, then
(a) U X(I + HX)- exists, is symmetric, and is nonnegative definite;
moreover,
(b) U is positive definite or positive semi-definite with X.

This point depends on the ability to represent a symmetric positive definite
matrix as KTK, where K is some nonsingulur matrix. A formal proof is given for gen-
eral congruence transformations on symmetric matrices in [6, Appendix C].
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Proof. The proof follows [6, Appendix C] once we note that

(18) U (I + HX)-r(X -+- XHX)(I + HX)-1,
and then apply footnote 4 of this paper and a well-known theorem [15,
p. 115].

Precisely the same sort of proof could, of course, be carried out for ,
with/ replacing H everywhere.

5. The primary equations. The accomplishment of one or more of the
Tasks 1 to 3 clearly involves the evaluation of the optimal performance
indices (7), (8), and (9). These, in turn, contain the five quantities,

(19a)

(195)

(20b)

(21)

M-1 Tm (t) (t)Qr(t) (T, t)X(I -t- HX)-lU,
_,

_M-1m (t) (t)Brr(T, t)X(I -t- IrIX)
x (T) (I -t- HX)-lu + Xd,

x (T) (I +/X)-fi + xd,
=,
x (T) ( T, t)x(t) /X(I -t-/X)-’fi,

which are derived from an application of the variational calculus to the
requisite optimizations [6, Appendix A].

For the evaluation of the three performance funetionals we can now begin
by substituting (19a) into the integral part of (7) and (20a) into the
nonintegral part. This produces

which, from the definition of the norm given in connection with (6), re-
duces to

With a similar line of reasonng, we can find L* from (8), (19b), and
(20b)

(23) L* fi

Finally we can evaluate (9) explicitly from the substitutions of (19b)
and (21), from which there evolves

(24) L* fi lloao -t- u //fi IIx.
Now, Task 1 deals with the difference

(25) L* L* u

as (22) and (23) attest.

The notation )--T signifies inverse transpose.
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Task 2 deals with the difference

as (23) and (24) attest.
F-ittally, Task 3 deals with the differ(race

(27) * L *

as (22) and (24) attest.
This puts us in a position to present our main development.

6. Model prediction of ideal performance. In this section we are con-
cerned with the attainment of Task 1, or synonymously, with obtuiniug

((10)) L*-- L* 0.

Thereby we insure that given the "initial" state x(t) of the system, the
model can predict exactly the ideal cost of controlling the plant with the
most accurate equations available.
THEOREM 1. Given that X is a positive definite matrix, then the necessary

and sucient conditions that Task 1 be accomplished are

(29) ((T, t) (I)(T, t),
(30) /(T, t) H(T, t),

Proof. Suciency" To verify that (29) and (30) do actually satisfy (10),
we need only set the right side of (25) to zero. Writing the variables in
terms of their definitions, i.e., (16) and (17), we find that

o ,I,(T, t)x(t) x X I-{-HX)
(31)

Clearly, the substitution of (29) and (30) into the right side of this ex-
pression causes it to vanish as required, thereby establishing the sufficiency.

Necessity" To demonstrate that there are no other solutions than (29) and
(30), let us carry through this part of the proof in local, or in-the-small,
sense. What can be shown to be necessary in-the-small is certainly neces-
sary in-the-large, and therefore necessary in general.
Thus let us seek the necessary conditions for (10) to hold in an arbi-

trarily small (but nonvanishing) neighborhood of a pertinent "operating
point" u, where we define u to be

(32) u =u + Au,
with II/u < a, a being a positive scalar constant sufficiently small.
Similarly, the model has an operating point fi0 and a deviation Aft such that

(33) fi fi0 + Aft,

where the deviation is bounded in norm as
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Now, deviations from the nominal can arise in two ways" due to errors
Ax(tk) in our knowledge of the initial state, and due to changes Axd which
occur in the target locai;ion. Obviously, then,

,u T, t,)x(t) x
and

T, t)x(t) x,
so that when the initial conditions are known with certainty (Ax(t) 0),
we have

(34) Au Aft.

In this special case, therefore, we can put (32) and (33) into (25), set the
result to zero, and obtain

(35) 0

an expression which is to hold for all Au small enough in norm. But such
requirement can be met only if the coefficients of the term in each "power"
of Au are separately zero. That is, it is required that

(3a) 0 -II II,

(365) 0 2Aur(Uu- fi0),

Let us consider the last two of these expressions. Since Au is arbitrary
(although small) and since (as Lemma 1 implies) U is symmetric,
the necessity clearly follows that

(37a) 0 Uu fi0

and

(37b) 0 U- V

hold simultaneously. But according to (17), the second of the above ex-
pressions is simply

0 x[( + HX)-- ( + X)-].
Since X is positive definite (nonsingular), it follows that the bracketed
term must vanish, from which we obtain the necessity of (30).
To show the necessity of (29), we put (37b) into (37a) and draw upon

Lemma 1 (b) to show that

(38) 0 u-
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If we refer to (16) and denote the nominal state-vector quantities there
as x(t) and xe, it is clear that (38) reduces to the condition

(39) 0 [(T, tk) &(T, t,)]x(t).
Although it is superfically true that (39) can be achieved in the small

without the bracketed term being the null matrix--e.g., by having it
singular with eigenvector x(t) corresponding to a zero eigenvalue,
still such solution does not meet Requirement D of 3. For if the plant
is constant-coefficient (or nearly so), then we want to obtain a model
which is effective over many or all of the future checkpoints t+, t+, etc.
That is, we expect to satisfy (or nearly stisfy) (39) when t is replaced
by t+, etc., without having to redetermine our model. But if the bracketed
term in (39) is not set to zero, then a rapidly changing re(t) on [t, t+]
may force x(tk+) to be very much different than x(t), and this will
result in

[(T, t+) &(T, tk+)]X(t+l)]1 0,

even though the plant is constant-coefficient (or nearly so).
Thus it is necessary that (29) be satisfied, and the proof of the theorem

is complete.
Example 1. Consider the plant

(40) +/- x + m
0 --2t 0 e-and the model

(40’) A -- Bff,

where A and B are 2 X 2 matrices, yet to be determined. Since the co-
efficient matrix of the x vector commutes with its integral we immediately
hve

(41) 4)(t, s)
e_(t_,

whereas the fundamental matrix for (40’) is simply

(41’) ((t, s) e(t-’).

Setting (T, t)
specifically,

q)(T, t), we find that A must be diagonal. More

(42) A =I-k/20 -lcO1
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and
e k(t-s)/2 0

(43) (t, s)
e_k(_.0

Here we have employed or will employ the notation

(44) k T -4- tk, k’ T- tk, k" T -4- Tt -4- t.
To find the B matrix, we now have to solve (30). If, for simplicity,

we take M(t) I, relation (13a) for our example becomes explicitly

(45) H(T, tk)=I1/2k’tce-r 0 1
For (13b), now, we obtain

(46) /(T, t)
(bl -F b2) 1 e-’

2(bll b21 -Jl- b12522) 1

(b l -F b 2) 1 e-2*k /
where the mark in the lower left-hand corner of the latter matrix indicates
that the entry there is the same as the entry in the upper right-hand cor-
ner; i.e., the matrix is symmetric.
Equating (46) to (45) and solving for the bi, we find that one possible

set of solutions is

e--T
bn -+-\3( - e-’)]

(47) b b O,

(2k’e-/b, +/-
\i e--i-]

Equations (42) and (47) suffice to specify the model so that L*
L* 0. Note, however, that in the predictive capacity for which the

model is designed, bn and b: can be either + or (-). Thus, it is a ques-
tionable procedure to try to employ this model in a control capacity as
well, for it is possible to satisfy Task 1 with a model whose direction of
control is opposite that of the plant. In other words, an increase of m in
(40) causes an increase in x, whereas, if we pick the (-) signs in (47),
an increase of in (40’) causes a decrease in . So ends the example.
Having obtained a solution for a very simple example, we might wish to

examine the solutions for the general case. Indeed, whether the equution

((29)) e(r-t) ( T, t)
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is satisfied by a real matrix A is a fact not immediately obvious, for it is
well known [10] that certain exponential matrix equations have no real
solutions, whereas others have a continuum of such solutions.
What we must introduce to resolve these questions of existence and

uniqueness are, in fact, certain complicated aspects of the theory of matrices
and of linear transformations. Rather than cloud the framework of our
modeling theory with these more abstract mathematical details, we will
delay their presentation until a forthcoming paper. In the interim, we still
have at our disposal sufficient power to develop many of the fundamental
results of this study.
THEOREM 2 (Fundamental Theorem of Structure). If there exists a unique

real matrix solution A to (29) and if the plant (2) has a state vector x of
dimension n and a control vector m of dimension p, then in (x, m) space
Task 1 can be achieved .for every pair of coejicient matrices P(t) and Q (t)
only if the above vector dimensions are such that

(48) P > n + 1
2

Proof. By hypothesis, the first condition of Theorem 1 is met. To ob-
tain the second condition, (30), we would normally be able to choose
both the elements of A and the elements of B (which appear on the left
of (30)) is order to force the requisite equality. However, if A is uniquely
determined, then we have at our disposal only the elements of B.

Both/-I and H are symmetric, nonnegative definite matrices, which, from
controllability considerations, we require to be positive definite. Thus,
setting/ H involves the solution of n(n + 1)/2 distinct simultaneous
equations. Clearly, then, for arbitrary matrices H, we require a minimum
of n(n 1)/2 free parameters, which, as noted above, must be contrib-
uted by the B matrix of the model. Since this matrix is of dimension
n X p, where p is the dimension of the control vector, B contains np
elements. Thus we require, np >= n(n + 1)/2, and the theorem is proved.
Remark A. Note that the above theorem presents a necessary condition

only if we seek to achieve Task 1 for all P(t) and Q(t) matrices which are
Riemann integrable and bounded in norm. For although the integrals
H and/ are positive definite, and thus of rank n, their respective integrands
are at most of rank p, which is nearly always less than n. Thus, for that
limited class of P(t) and Q (t) matrices which permit the integrand identity

(49) (T, t)BM-I(t)Brr(T, t) =-- (T, t)Q(t)M-l(t)Qr(t)r(T, t)

for all on [6, T], relation (48) no longer presents a necessary condition.
If the plant is time-invariant, (49) can always be met.

7. Model estimation of model-control performance. In this section we
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are concerned with the satisfaction of Task 2. In short, it is desired to
compute a model such that, given the "present" state x(tk), the model can
predict exactly the cost that will be incurred when the model-control law
is applied to the plant.
DEFINITION 5. The matrix difference between the model controllability

matrix //(T, tk) and the cross controllability matrix /(T, tk) we will
denote as

(50) D (T, t) I(T, t).

THEOREM 3. Gilen that X is a positive definite matrix, then the necessary
and su2licient conditions that Tast 2 be accomplished, i.e., that

((11)) * Lk* 0,

are

((29))

(51)

,( T, t) (I)( T, tk),

(I- DX)rX(I- DX) X.

Proof. Suciency" To verify that (29) and (51) do actually satisfy (11 ),
we need only take (26) and set it to zero"

(52) 0

Note that the weighting matrix of the first term is

(53) (][IZI- I] -(I + IX)-rX(I + IX)-1

Moreover, an examination of (16a) and (16b) indicates that (29) pro-
vides us with the result

(54) u,

so that (52) becomes

(55) 0

where

(56) K (I- 7)rX(I- 7) (I

(57) (I + /X)-r{(I- nx)rx(I- DX) X}(I-.{- /X)-1.

Since (51) causes the curly-bracketed term in (57) to vanish, it follows
that (11) is satisfied and the sufficiency is established.

Necessity" To see that no other pair of solutions can obtain (11), let us
attack the problem from its local aspect, as in the proof of Theorem 1.
That is, in the small, (52) becomes



o o i1 u

(s) + u l-o-c + u’( )0

+ u(- )x(u a).
Since if (58) holds a all, i mus hold when u 0, we can remove he
firs wo erms in he equation and rewrite he resul as

(8’) o llulI_,, + u[a x(u a)],
where for simplicity of notation we hve akea

() -() = z .
As argued in he proof of Theorem 1, he only way for (58’) o be sis-

fled for u small enough is for E FrXF o be zero and for he eoeeien
of he second erm o vanish. Tha is, i is necessary ha

(o) o E- FXF,
(1) 0 a X(u a).
Using (60) o replace E wih FrXF, we now find hat, (61) becomes

() o ’x[’a- (u- a)].
Since E is clearly positive definite, i mus beh FrX is nonsingular, and
herefore he bracketed erm iu (62) mus vanish. Vi (59b), hen,

0= u,
and he necessity of (29) follows as in Theorem 1. Moreover, he righ side
of (60) is nohing bu he K matrix defined by (56), whiehas is clear from
(57)ean be zero if and only if

(z- DX)X(Z- DX) X O.

The heorem is hus completely proved.
Taoz 4. Condition (51) of the above theorem s dentical to the par

of conditions

(3) DXD D + D
ad

(63b) DrXD DXDr.
Proof. () Expand (51) into

X- XDrX- XDX + XDrXDX X,
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cancel the free X’s and pre- and post-multiply by X-1 (note that by the
hypothesis of the theorem, X is positive definite). The first expression,
(63a), then follows.

(b) Pre-multiply (51) by (I DX)--’’ and post-multiply by (I DX)-1.
These inverses exist because the right side of (51) is positive definite.
Then we have

X (I- DX)-TX(I- DX)-1,
which we can invert and expand to obtain

0 -XDrX- XDX + XDXDrX.
Cleared of the X’s this expression is

DXDr D + Dr,
which, when subtracted from (63a), leaves us with (63b). The theorem is
therefore substantiated.
LEMMA 2. Given that

((30)) /(T, t) H(T, t),

then the matrix D defined above has diagonal terms d all n of which are
negative, except in the special case when we have on [t T],

(64) Q(t) (t, T)(T, t)B,

in which case D is the null matrix.

Proof. Let us generalize the inner product notation of functional
analysis [17, p. 80] to include square-integrable vectors and matrices as
well. Then we will write

/, T

(Y, Z) Yr(t)Z(t) dt,

no matter whether Y and Z represent scalar, vector, or matrix quantities.
In this notation,

(65) H (G,G), / (G-,(), / (G,(),
where equations (13) identify the G matrices as

(66) Gr(t) (T, t)Q(t)N(t), r(t) (T, t)BN(t),

N(t) being a nonsingular matrix (which must exist) satisfying the relation

M-l(t) N(t)Nr(t).
Let us now express the G matrices in terms of their n column vectors,

e.g.,
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G(t) [gl gn],

whereby the typical ijth elements of (65) become

(67) hi (gi, g-), ]i- (, ), h (g, ).

Introducing the Cauchy-Schwartz inequality [10, p. 255], we see that

(68)

which we can integrate from t to T to obtain

(69) (g, ) 5 (, s),

where

(70) g g}

are integrable scalar functions. To the right side of (69) we can now apply
the Schwartz inequality [16, p. 19],

(s, ) 5 (s, )1(, ),

which, upon resubstitution of (69) and (70), leads to the result

(71) (g, ) 5 (g, g)(, ).

Thus, for i j,

so that (30) yields the condition

h < 0.(73)

But since
follows that (73) holds if and only if

(73’) d f 0.

Moreover, for i j, the equMity sign in (71)and therefore the equality
sign in (73’)holds if and only if

g(t) (t),

where/c, is a scalar constant, i 1, n. In terms of the G matrices,
then,

(74)

where

G(t) (t)K,

K diag {k, ..., k,}.
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But by hypothesis ((, () (G, G), so that it immediately follows that

(74’) K 4-1.

If the sign of (74’) is taken to be (-), then it is clear from (65) and (74)
that

/(T, tk) -/(T, tk),

yielding di -2hii <= O.
If, on the other hand, the (+) sign in (74’) is considered, it is equally

clear that D 0. Invoking (66), we see that (74’) with the (+) sign
yields (64), and the proof of the lemma is complete.
THEOREM 5 (The Interference Theorem). If X is positive definite, then

(64) is a necessary condition for Tasks 1 and 2 to be achieved simultaneously.
In other words, except when (64) can be satisfied, it is not possible to choose
a time-invariant model that can predict exactly both the ideal performance and
the model-control performance.

Proof. To achieve Task 1, Theorem 1 tells us that (30) must hold. Thus
the hypothesis of Lemma 2 is met, and unless (64) is satisfied,

On the other hand, Theorem 4 proves that the second condition for the
accomplishment of Task 2 is identical to the pair of relations given in (63).
The first of these, (a), tells us that the symmetric part of D must be non-
negative definite, since DrXD clearly is. But a necessary condition for
D -[- Dr to be nonnegative definite is that

dii 0,

which is obviously contradicted by Lemma 2, and thus the theorem is
proved.
Thus far, except in the above theorem, no mention has been made of

the circumstances under which we can satisfy conditions (29) and (51)
of Theorem 3. The first of these conditions will be discussed at length,
and rather thoroughly, in a forthcoming paper. The second, (51), introduces
complex considerations which we have not been able to resolve completely
at the time of this writing, for we seek at least one real set of elements
{b.} (a) which satisfies (51), and (b) which yields a controllable model.
To illuminate some of the difficulties involved, here, it might be worth-

while to introduce a simple example.
Example 2. Consider the simple first order plant

1 1(75) x + m,
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to which we want to fit a model

(76)

in order to achieve Task 2. Suppose the performance criterion is
T

(77) L f m dt + (x( T) x),
t

so that M

(t, s) (t, .)(,

or

(78) (t, s) s_
t’

whereas the fundamental solution for (76) is

(79) J(t, 8) e-a(t-s).

With (79) and (78) substituted into (29), it is clear that

log q(80) a lc---.
where

tk /c T-- tk.(Sl) q T’
Referring to (13b), we find that (89) provides

(82) /(T, t) b
k’(q2 1)

2 log q

Also, from (13c),

(83) /(T, t) b
/’(q- 1)
Tlog q

Therefore

(84)
D- --I

lc’(q- 1)[b/T- (b/2)(q -t- 1)]
log q

which, in combination with the fact that X 1, leaves (51) in the implicit
form (1 D)2 1. Thus, D 0 and D 2 are potential solutions.
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The case D 2. Making use of (84) explicitly, now, the case D 2
leaves us with the quadratic in b,

(85)

where

b 2/1b -}- 22 0,

1 log q(86) 2
T(q + 1)’ ]’(q2- 1)"

The solution to (85) is of course

(87) b 1--l- (12 2/2) 1/2.

where the existence of a real b requires the discriminant be nonnegative.
If we take T 1, for example, then equations (86) produce the condi-

tion

ti > O,(88) fll 2fl2 q+ 1

where

1 4 log q(89) t -}-
q + 1 (q 1)2.

From (81) it is clear that we must have 0 _<_ q _<_ 1, over which interval ti
can be shown to be everywhere negative, having, in fact, a stationary
maximum of about -9. Thus relation (88) cannot be maintained, and
D 2 provides no real solution for b.

The case D 0. Employing (84) when D 0 we see that we have the
homogeneous quadratic

(90) b- 21b 0,

where (86) is again used for simplicity. Clearly, we now have the two
real solutions (1) b 0, and (2) b
The first of these is not acceptable since it produces a system which is

decoupled from the control input. In equivalent language, the control
system would be uncontrollable since [13, Theorem 10]

Rank [b] 0.

The second of these will do, however, leaving us with b 2/(T + tk).
So ends the example, wherein we have seen three possible solutions for

the B "matrix". One was acceptable; another was discarded because it
contained an imaginary component; a third was discarded because it led to
uncontrollability, i.e., it led to a model which could predict exactly that it
could do nothing about controlling the system.
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8. Model control of plant. In this section we concern ourselves with
Task 3, wherein we seek to minimize the cost discrepancy between the
ideal control and the model control" namely, we seek to obtain

L*-- Lk*-- min.

THEOREM 6. In a disturbance-free environment,

(91) *-- L* _>_ 0.

Proof. Expression (19a) is the plant input which produces the cost L *k
We see, in fact, that this input satisfies the Euler-Lagrange equations as
well as the remaining necessary and sufficient conditions for a minimum
[6, Appendices A, B]. Thus j* can never be less than L *

j and can equal
it only when

in

Perfect model control. Although one might suspect that the equality
sign in (91) can hold only if plant and model are everywhere identical,
such is not the case, as the following development indicates.
DEFINITION 7.

model-controlled system which yields a performance identical to that ob-
tained when the control is implemented according to the exact plant
equations. That is, in disturbance-free environment, a perfect model
controlled system is one wherein

(92) * Lk* min 0.

THEOREM 7. Given that X is positive definite, then the necessary and
sujcient conditions for a model-controlled system to be perfect are the following"

(93) (T,

((64)) B

ProqL According to Theorem 1, Task 1 can be accomplished if and only
/f (29) nd (30) prevail, in which case

((10)) L* L* 0.

According to Theorem 3, Task 2 can be accomplished if and only if
(29) and (51) prevail, in which case

((11)) *-- Lk* 0.

Note that a sufficient condition, for the satisfaction of (51) is D 0, or,
it other words,

(94) /(T, t) /(T, t,).
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If we now subtract (10) from (11), it becomes evident that (92) is
mintined ( nd only if these two equations re true simultaneously.
But ccording to Lemm 2 nd Theorem 5 which follows it, we cnnot
chieve (10) nd (11) simultaneously unless (64) holds, nd then (94)
is the only possible solution of (51).

Let us now intersect the sets of necessary nd/or sufficient conditions
for (10) nd (11) to be coincidently stisfied. The set (29), (30), nd (51)
is necessary and suffcien. Equation (64) is necessary and implies (but is
not implied by) both (30) and (51). Therefore (29) and (64) are the nee-
essary and sufficient conditions, and the theorem is proved.

Remarlc B. If (64) cannot be attained, then (29) is still necessary for a
global minimum in/,-* L* although that minumum does not equal
zero everywhere in u space.

For let us take (26) and examine it for the ease where u 0. Then

(95) \* L* I]ll
and since / is positive definite, we can employ a resul of Bellman’s
[15, p. 115] to tell us thag the entire weighting matrix is posigive definite.
Clearly then, (95) achieves its minimum value when fi 0, from which we
can eoneludeas in the proof of Theorem lthat (T, t) must equal
(I)( T, t). So ends the remark.

Strengthening the interference theorem. Physically, the satisfaction of
(29) insures us that when the plant decays naturally to xe at T, thereby
requiring no input, the model controller properly supplies it with no input.
That is, if and only if (29) is satisfied will

(9) * L* L,* 0

when the plant homogeneously hits the desired endpoint.
COROlLArY 7.1. If (64), the second of the necessary and sucient condi-

tions for perfect model-control, cannot be met, then the equality

((10)) Lk* ,k* 0

implies

(97) *-- ,k* _-> 0,

with the equality sign holding in the latter only when the system incurs zero
costs, i.e., when (96) holds.

Proof. If perfect model control cannot be obtained, then, according to
Theorem 6,

(98) ,*-- Lk* __> 0,
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with strict inequality prevailing except at isolated points in u-space. Sub-
tracting (10) from (98), we find

*- L* > 0,

except at isolated points such as correspond to

u=fi=O.

In fact, this point is the only poiit at which the equality in (97) can mani-
fest itself. For, given (29), fi is the same as u everywhere in u-space. Thus
(24) is simply

L* u

which is clearly a positive definite quadratic form that describes a hyper-
parboloid symmetric about he range xis and zero at the origin. Since
L* is also such a paraboloid, it follows from analytic geometry that *cannot equal L* (except at the origin) unless ,* is everywhere identical
to Lk i.e., unless we have perfect model-control. This completes the proof.
COROLLARY 7.1 (ALTERNATE STATEMENT). If (64) cannot be achieved,

then, except when the system cost is zero, a model which is chosen to predict
exactly the ideal cost of controlling the system will always underestimate its
own cost of controlling the system.
COROLlaRY 7.2. If (64), the second of the necessary and su.lcient condi-

tions for perfect model-control, cannot be net, then the equality

((11)) Y,-*-- L* 0

implies

(99) Lk* L* =< 0,

with the equality sign holding in the latter only when the system incurs zero
cost, i.e., when (96) holds.

Proof. The subtraction of (98) from (11) yields (99), from which the
proof follows as in the previous corollary.
COnOLhRY 7.2 (ALTERNATE STATEMENT). If (64) cannot be achieved,

then, except when the system cost is zero, a model which is chosen to predict
exactly its own cost of controlling the system will always overestimate the cost
of controlling the system with the most accurate equations available, i.e., (2).

9. Concluding remarks. If (64) can be met, we have shown that plaut
and model may be identical in every performance aspect, even though the
plant is time-varying and the model is not. Essentially, then, we can use
our performance functionals to partition the universe of linear systems



292 WALTER J. CULVER

into equivalence classes [16, p. 12], wherein the equality of the L* norms
defines a class of linear systems (time-varying or not) which are perform-
ance-equivalent. In fact, we can generalize Theorem 7 into the following.
THEOREM 8. Given that X is positive definite, then the necessary and su-

cient conditions for two systems to be performance-equivalent in the large are

(T, t) (T, t),

O(t) (t, T)(T, t)Q(t),

where the system plants are respectively

+/- P(t)x + Q(t)m,

and

P(t) + O(t)n,
and the barred fundamental matrix associates with the last plant.

Moreover, the control laws of the two plants are interchangeable.
Proof. The proof follows as for Theorem 7, except that Requirement D

no longer applies since modeling is not involved here, for the moment.
Thus, (39) need not result in the relation (T, t) (T, t) unless the
initial-condition vector that appears there is arbitrary: i.e., unless we are
trying to obtain Tasks 1 and 2 in the large.
That the optimal control laws are interchangeable, now, follows from

writing (19a) in terms of the variables for each of the above plants and then
substituting the above conditions for performance-equivalence into one of
the two control laws so obtained. It thereby becomes apparent that

r*(t) m*(t),
and the theorem is proved.
Much of the work presented in this paper, like the above, has depended

on the hypothesis that the X matrix in the criterion be positive definite.
When this matrix is positive semi-definite instead--but not zero--and
if x(T) is not fixed a priori, then all the necessary and sucient conditions
of this paper degenerate to sucient ones only.
When X is null and x(T) is completely specified, all of the necessary

and sufficient conditions still hold, with minor modifications appearing
only in the conditions of Theorem 3. For in all the theorems except that
one, the proofs carry through equally well--and, in fact, more simply
if U is H- instead of X(I + HX)-1, and is/-1 instead of X(I +/X)-1.

In Theorem 3, however, the second of the necessary and sufficient con-
ditions, i.e., (51), must be replaced with

As is considered in much of the recent literature" for example, [12], [13], [14].
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(100) /-(T, tk) /( T, tk),
since (52) reduces to

o u

For, if we replace the vectors u and fi with (u + Au) and (rio + An), re-
spectively, we can obtain (100) using the same approach as in the theorem.

In closing, we can say that much of our work should be considered more
from an existence viewpoint thn from a design viewpoint. Certainly, if
we can assume thut a greal deal is known about the plant, as is often the
case with aerospace vehicles, then, with nominal storage requirements,
models can be constructed from our formulas for on-line computation nd
control.
However, the primary purpose of a large portion of our work was to

find out the bsic limitutions on modelingwhat could and could not be
done with a model, independent of the difficulty attached with the finding
of that model. Thus, even when the plant is poorly known, as with many
chemical, metMlurgicl, and biologicul processes, still our results may be
of use in that they tell us wht we should and should not expect of a model
in n ideal environment.
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MINIMUM EFFORT CONTROL OF SEVERAL
TERMINAL COMPONENTS*

J. V. BREAKWELL AND F. TUNG:
Abstract. The stochastic control problem of minimizing the total average velocity

correction with several prescribed terminal variances in the presence of random
injection and measurement errors is considered. It is shown that, for the case of linear
feedback, this can be formulated as an optimization problem for an equivalent deter-
ministic system whose states are the covariances of the predicted miss. However, the
deterministic optimization problem is "degenerate" causing some difficulty in the
computation of the feedback gain. It is shown that the optimum linear corrective
strategy is, in general, discontinuous and consists of an initial period of no control,
followed by a period of continuous control and finally a period of no control and pos-
sibly an impulse at the end. Equations are derived from which the variable feedback
gain and the various time intervals can be computed. Two simple examples involving
(1) the control of two terminal position components, and (2) the control of both the
terminal position and the terminal velocity are considered in detail. Numerical re-
sults are given showing the comparison between this solution and that obtained by
using the well known theory for the quadratic loss criterion. In particular, the com-
putation includes, for the two position case, a gap in the information.

1. Introduction. The stochastic control problem of guiding a vehicle
from its injection to prescribed rms terminal conditions in the presence of
random injection and measurement errors with a minimum amount of
fuel is of considerable interest in the field of interplanetary navigation [1],
[2], [3]. It is often assumed that the vehicle dynamics are governed by known
laws and that the departures of velocities and positions from the nominal
trajectories are sufficiently small so that a linearized model evaluated along
this nominal path may be used. One way of dealing with this kind of sto-
chastic optimization, problem is to define a meaningful average quantity
and then formulate the problem in terms of an equivalent deterministic
optimization problem using the average quantities as the states. This
technique was used by Breakwell and Striebel [4] who recently developed
a minimum effort theory when the variance of a single terminal component
is specified. It was assumed that the control is linear and that the mechani-
zation errors are negligible. The effort to be minimized is the expected
value of the integral of the absolute value of the command acceleration and
hence is simply related to the amount of fuel required in the case of chemi-

* Received by the editors February 16, 1964, and in revised form September 19,
1964.

Lockheed Missiles and Space Company, Palo Air,o, California, and Department
of Aeronautics and Astrouautics, Stanford University, Stanford, California.

: Research Laboratories, Lockheed Missiles and Space Company, 3251 Hanover
Street, Palo Alto, California.
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cal propulsion systems. An ingenious application of Green’s Theorem [5]
was used in obtaining the solution. The purpose of this paper is to extend
the theory of Breakwell and Striebel to the case when the variances of
more than one terminal component are specified. This arises, for instances,
in interplanetary guidance when both the in-plane and the out-of-plane
terminal positions are to be independently controlled and in problems of
rendezvous when both the position and the velocity at the terminal time
are specified. The novelty of the extension in this paper lies in the solution
of the optimization problem by direct application of the maximum prin-
ciple [5] since Green’s Theorem cannot be readily applied in the multi-
dimensional case. Also, a slightly modified criterion for the effort is used.
This is because the expected amount of total velocity correction in the
multi-dimensional case is expressible only in the form of an infinite series
[6]. A reasonable criterion which we have adopted in this paper is the in-
tegral of the square root of the variance of the command acceleration. This
loss function has the properties that (1) it reduces to the exact amount of
total velocity requirements in the absence of random disturbances, (2)
it reduces (except for an unimportant factor %//r) to the same criterion
as that used by Breakwell and Striebel in the case of controlling only one
terminal miss, and (3) it sets an upper bound to the expected total velocity
correction. The last statement can be easily verified by application of
Schwarz’s inequality.
The statement of the mathematical problem and the transformation to

an equivalent optimization problem for a deterministic system are given
in 2. It will be seen that the states of the equivalent deterministic system
are the covariances of the predicted miss. Section 3 gives the necessary
conditions for the optimal linear control and the forms of the optimal feed-
back coefficients. It is shown that, in general, the optimum linear corrective
strategy consists of an initial, period of no control while the information
catches up. This is followed by a period of continuous control and finally a
period of no control and possibly an impulse at the end. The section con-
cludes with an outline of a computation procedure with which the optimal
corrective strategy can be obtained. Two simple examples illustrating the
techniques developed in this paper are considered in detail in 4. Numeri-
cal results are given and in order to get the "feel" of the solution, the re-
sults are compared with that obtained by using the well known theory of
the quadratic loss criterion [7]. We include in this paper an appendix which
specializes the results to the case when only one of the terminal variances
is specified. It is included here for the purpose of establishing an equivalence
between the results of this paper ad that of Breakwell and Striebel [4].

Notation. Capital letters A, B, deIote matrices and small letters
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a, b, denote vectors. The elements of the matrix A are denoted by a-
and the elements of the vector a are denoted by a.x.

2A. Statement of the problem. Given"
(1) The linearized equations of motion,

(2.1) 2(t) F(t)x(t) q-G(t)(u(t) q--v(t)),

and the *observations

(2.2) y(t) M(t)x(t) q-(t),

where x(t) is a state n-vector, u(t) a control m-vector, y(t) an observable
r-vector (r _<_ n), v (t) a random m-vector accounting for the mechanization
error (it will be assumed in this paper that the mechanization error is
negligible), e(t) a random r-vector accounting for the measurement error.
It is assumed that e(t) is normally distributed with zero mean and co-
variance

(2.3) coy (e(t), e(s)) R(t)8(t s),

where t(. is the Dirac delta function.
(2) The covariance of the initial state

(2.4) coy (x(0)) V(0).

We shall assume that E(x(O) O.
(3) A p X n matrix H, where p -< n.

Find" The control u(t), (0, T), as a linear functional of y(s), 0 <=
s =< t, that minimizes

T

(2.5) fo %/E u(t) dt

for specified values of coy (Hx(T)),, i 1, 2, ..., p, where u
-’U.

2B. Transformation to a deterministic optimization problem. We shall
now show that by properly defining some average quantities, the solutioa
of the stochastic optimization problem posed above can be obtuined from
solving deterministic optimizutio problem using these average quantities
as the states. Let 2(t) be the estimute of x(t) given by

(2.6) 2(t) E(x(t) y(s) 0 <= s <= t),

Equations (2.1) and (2.2) are the perturbation equations along nominal traiec-
tory which is assumed to hve been pre.computed. The elements of the mtrices are
therefore the partial derivatives evaluated along this nominal pth.
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and let V(t) be the covariance of the estimation error

(2.7) V(t) coy (x(t) 2,(t)).

It has been shown by Kahnan [8] that

coy ((t), x(t) (t)) o,
(t) F(t)2(t) + G(t)u(t) + t3(t), 2(0) O,

(.8)

(2.9)

and

(2.10)

where

(2.11)

(t) F(t)V(t) + V(t)F’(t) V(t)i(t)V(t),

i(t) M’(t)R-l(t)M(t)
is the information rate matrix relative to the state x(t), and

(2.12) (t) V(t)M’(t)R-l(t)(y(t) M(t)2(t)),

which may be considered as a white noise with covariance matrix

(2.13) coy (/(t), (s)) V(t)i(t)V(t)(t s).

Let (T, t) be the transition matrix satisfying the matrix differential
equation

(2.14) (T, t) -p(T, t)F(t), (T, T) I,

and let

(2.15) 2( T, t) ( T, t)2(t),

which is the predicted miss of the state at the final time based on all the
data up to time under the assumption that no additional control is applied
over the interval (t, T). Using (2.9) and (2.14), it is seen that those pre-
dicted miss components whose terminal rms values are prescribed satisfy
the differential equation

(2.16) H(T, t) H(T, t)G(t)u(t) -t- H(T, t)(t).

It has been shown by Striebel [9] that the optimal linear corrective
strategy (i.e., the class of controls which is restricted to be a linear func-
tional of the past observations and which is the class to be considered in
this paper) depends only linearly on H2(T, t). Hence, without loss of
generality, we may let the optimal linear control be given by

(2.17) u(t) --S(t)H(T, t),

where S(t) is an m X p matrix whose elements are to be determined such
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that (2.5) is minimized for specified values of cov(Hx(T)), i 1, 2,
p. One method of doing this is to formulate this stochastic optimiza-

tion problem in terms of an optimization problem for a deterministic system
using the elements of the covariance matrix of H2( T, t) as the states. To do
this, we define

(2.18) r(t) E(H2(T,t)’(T,t)H’),
which is equivalent to cov (H2(T, t) since 2(T, t) is a zero mean process.
Using (2.7), (2.8), (2.13), (2.16) nd (2.17), it is seen that

(2.20)

and

P(t) --Hq(T, t)G(t)S(t)P(t) P(t)S’(t)G’(t)’(T, t)H’- Hq(T, t)V(t)(t)V(t)!P’(T, t)H’,
coy (Hx( T) P( T) + HV( T)H’,

Eli u<tD Ell-S(t)H2(T, t)112 tr P(t)S’(t)S(t).

Since the last term of (2.20) is independent of the control, it follows that
specification of cov(Hx(T)) is the same as specifying P(T) and the
determination of S(t) is equivalent to solving the following deterministic
optimization problem"

Given: the dynamic system (2.19) with P(O) O. Find S(t) which mini-
mizes

"1’

(2.22) fo %/tr P(t)S’(t)S(t) dt

for specified values of P(T), i 1, 2, p.
Inspection of (2.19) and (2.22) shows that both are linear in S in so

far as the magnitude is concerned. This is a "degenerate" (or singular)
problem in the calculus of variations and special techniques are usually
necessary for the method of solution. In general, the optimal solution will
consist of different subarcs connected at a finite number of points, called
the corner points. At the corner points, the adjoint variables (to be defined
in the next section) must be continuous. We shall obtain the solution by
application of the maximum principle. This is done in the next section.

3. Equations for optimality and computation procedure. To put in evi-
dence the "singular" nature of the problem, we define*

(3.1) (t) /tr PS’S, (t) >= O,

* For convenience, we shll, hereafter, omit the argument t.



300 Jo V. BREAKWELL AND F. TUNG

and let the matrix of feedback gains be written

(3.2) S 4(t)B,

where B is an undetermined m X p matrix (undefined when 0) such
that

(3.3) tr PB’B 1.

Substituting (3.2) into (2.19) shows

(3.4) --(t)(HGBP + PB’G’’H’) + Q,

where

(3.5) Q

is a known function of time. The problem now reduces to that of finding B
T

and (t) _-> 0 which minimizes dt subject to the constraint (3.3) and

specified values of Pii(T).
Let the Hamiltonian be given by

(3.6) 2(t)

(3.9) h (t) AZA
"V/- PAZA

where Z H’aGG’,’H’ and is a given function of time. The transversality
conditions areX.(T) 0, i j;X(T) c,i 1,2, ,p, where
are to be adjusted such that P(T) meet the prescribed values.
The Hamiltonian now becomes linear in (t) and can be written as

(3.10) 2(t)(1 //r PAZA) -t- tr AQ.

This substitution essentially converts a control problem potentially singular in
m X p variables into a problem which is singular in only one variable,

(3.8) p _4)(t)(ZAP + PAZ) + Q,

where the elements of the p p symmetric matrix A are the adjoint vari-
ables. For a given 4(t) 0, minimizing this Hamiltonian with respect to B
subject to the constraint (3.3) is a simple nondegenerate problem in cal-
culus of variation. The necessary equations for optimality are

G’( HA(3.7) B
%/-r PAZA
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It only remains to miimize this Hamiltonian with respect to (t). Since
(t) 0, it follows that 0 if tr PAZA < 1, is undetermined if tr PAZA

1, and is infinite if tr PAZA > 1. The last case cannot occur over any
T

finite interval since otherwise .]o (t) dt will diverge. Now tr PAZA 0

at 0 and can be shown to be continuous for any (t) => 0 including
impulses (i.e., (t) are Dirac delta functions). Hence the case tr PAZA > 1
cannot occur and we are left with either 0 (when tr PAZA < 1), or

0, in which case tr PAZA 1.
It turns out that the optimal gain S consists of (in general, but, not al-

ways) three portions; an initial period of no control where S 0, followed
by a period of continuous control, and finally a period of no control and
possibly an impulse at the end. Let us now consider the two cases.

(1) (t) 0. Equations (3.8) and (3.9) reduce to

(3.11) 0

and

(3.12) /5 Q,

which show that the adjoint variables remain unchanged during this period.
(2) (t) 0. Then

(3.13) tr PAZA 1.

This defines a surface which must contain the solution whenever 0.
We now note that in order to integrate the set of equations (3.8) and (3.9)
along this surface, it is necessary to express (t) in terms of P and A.
This is done by twice differentiating (3.13). It is of interest to note that
along this surface, (t) is also given by

(3.14) (t) tr P.,
which can be verified by combining (3.9) and (3.13). It is a measure of the
average "acceleration" and vanishes only when S 0, or equivalently,
A constant.

Differentiating (3.13) once, using (3.8), (3.9) and the commutative
properties of the trace operations, we find

(3.15) tr (P2_ + Q.Z) O.

Differentiating (3.15) once more yields a relation between P, A, and (t)
which after suitable reduction can be written as

-tr 2Q2 + QhZh +(3.16) (t)=
2 tr (QAZAZA)
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We now have the necessary equations, namely (3.8), (3.9), (3.13), (3.15)
and (3.16), for colnputing the optimal feedback gains. It is noted that the
denominator in (3.16) is the trace of the product of two positive semi-
definite symmetric matrices and hence is always .>= O. It will be assumed to
be > 0 in this paper. In other words, the matrix QAZAZA is not identically
zero.

Since P(0) 0, it follows that (3.13) cannot be satisfied at 0.
Hence, (0) 0 and there will be an initial period of no control. The
time at which the control is first; turned on. depends on (1) the informa-
tion rate which is imbedded in Q, and (2) the initial values of A. Mathema-
tically, the exact time of turning on is determined by simultaneously
satisfying (3.13) and (3.15). It should be noted that satisfaction of (3.15)
determines the time. The common multiplicative constant of the adioint
variables is determined by the normalizing equation (3.13).
Computation starts by guessing an initial set of A(0) and integrating

the dynamic equation (3.12) forward until (3.15) is satisfied. This de-
termines ton. Use is then made of (3.13) to compute the normalizing con-
stant which determines the adjoint variables at the time of turning on.
We are now on the surface such that # 0. To proceed along this surface,
we use (3.16) to find (t). This is then used in (3.8) and (3.9) to integrate
the equations for P and A forward. The optimal feedback gain can be
obtained by using and (3.7). Assume that the control is turned off at
some time t, say to = ton. Then S(t) 0 for > to. The total average
velocity correction required is given by

(3.17) 4( t) dt,
d ton

and

(a.lS) A(T) A(toff),
PT

(3.19) P(T) P(toff) + ] Q(t) dt.
.Itoff

The computational procedure we have proposed gives a parametric study
of p(p + 1)/2 elements consisting of the ratio of the initial adjoint vari-
ables and toff as functions of the p(p + 1)/2 elements of P(T). Let

(3.20) A(t) P(t) + H(T, t)Y(t)’(T, t)H’.
Then A (t) is the covariance of the actual terminal miss when the con-
trol is turned off at t. Hence, without loss of generality, we may consider
that the parametric study is between the p(p + 1)/2 elements consisting
of the ratio of the initial adjoint variables and toff and the p(p + 1)/2
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elements of A (toll). If A,(tof) for all to (to., T) do not meet the specified
values, the computation is repeated again with an improved estimate
of _4(0).

It should be noted that the computation procedure we have outlined
assumes that the computed (t) > 0. In the event that (t) becomes nega-
tive for some (ton, toff), then there exist periods of no control in the
interval (to,, toll). Physically, this implies that it is not possible to follow
the critical surface defined by (3.13). Assume tl is the first time such that
(tl) < 0; then the control must be turned off at some time before
The problem here is to determine the exact times of leaving the surface
and intercepting the surface again. This can be done by using the criterion
that the adjoint variables must remain constant during the time that the
control is off. It is equivalent to the searching of a normalization constant
which must remain the same at the two points. An iterative scheme taking
care of this can be easily implemented on the digital computer. This is
illustrated in one of the numerical examples given in the next section.

So far, we have avoided the possibility of impulsive corrections, i.e.,
S or (t) are impulses. Impulsive corrections give rise to discontinuities
in P and A. Let de be the incremental effort. Then

(3.21) de (t) dt,

so that the effort due to this impulsive correction is
+P

(3.22) e Jr- 4,(t) dt.

Using the effort as the independent variable, (3.8) and (3.9) can be written
as

dA(3.23)
de

AZA

dP(3.24) (ZAP -t- PAZ).
de

The relation between the amount of the impulsive effort and the jump (or
drop) in A (or P) can therefore be obtained by directly integrating (3.23)
and (3.24) with respect to the effort. Using (3.23) and (3.24), we find

3.25
d tr (PAZA)

de
0,

which implies that impulsive corrections leave tr (PAZA) invariant. In
fact, (3.25) is true for any initial values of tr (PAZA). This, incidently, is
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necessary for establishing the fact that tr (PAZA) is continuous. We shall
now show that impulsive corrections can be applied at to if and only if
Q(t) is discontinuous at to.
Assume that an impulse is applied at to and Q(t) is continuous at to.

The time derivative of tr (PAZA) is tr (PA2A + QAZA) which, immediately
after the impulse of area E, is given by

f0dtr (PA_ + QAZA)
de.(3.26) tr (PA2A + QAZA

t-
-t-

de

Now, the first term in (3.26) is zero since we were on the singular surface at
to-. Using (3.23) and (3.24), we see that the second term in (3.26) can be
written as

2 f0 tr (QAZAZA) de,

which is greater than 0 in view of our assumption that QAZAZA is not
identically zero. This implies that tr PAZA will be greater than 1 for
> to, which is not permissible. Hence, impulsive corrections cannot be

applied at any time when Q(t) is continuous. (This is the same as requiring
that the Hamiltonian be continuous.) On the other hand, assume Q (t) is dis-
continuous at to. Inspection of (3.15) shows that it can be satisfied only
if P and A are discontinuous at to. Hence, impulsive corrections are allowed
to occur when Q(t) is discontinuous or at the final time since our argument
does not apply there.

Remarlc 1. In most cases, the optimal corrective strategy consists of an
initial period of no control, followed by a period of continuous control, and
finally a period of no control and possibly an impulse at the end. Cor-
responding to that A(0), the possibility of periods of no control between
ton and tof when (t) > 0 for all (ton, tof) can be established easily
by computing the quantity (tr P(t’)A(t)Z(t’)A(t) 1) for all t’ > t,

(ton, tof). If it differs from zero, then it can be concluded that there do
not exist periods of no control between ton and to.
Remark 2. It is not clear whether or not there exist different initial

values of the adjoint variables which will give rise to the same terminal
conditions. This is a problem involving the uniqueness of our solution
and as such has not been solved.
Remark 3. It is shown in the appendix that in the case of controlling

only one terminal component, the solution we have obtained is unique and
that there exist no periods of no control between to, and toff if (t) is posi-
tive over this period. This was first solved by Brekwell and Striebcl
[4] using Green’s Theorem.
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SPEED v TARGET

FIG. 4.1. The one dimensional model

4. Two simple examples and the computer results.
4.1. Controlling the position and the velocity of a one-dimensional model.

Consider a space ship which is "homing" with constant velocity v/ on a
massless planet. Let xi and x2 be the transverse position and velocity devia-
tions from a nominal orbit (see Fig. 4.1), and let

(4.1) 21 x2,

(4.2) 22 u,

so that the free motion is uniform. It will be assumed that the variances of
both the position and the velocity at the final time are specified. The
initial error is to be only in velocity. However, for computational purposes,
a small positional error is included. Hence

(.) (0)
v(O)

where vii (0) << T2v2(O). It is assumed that the information rate is purely
positional and that the estimates of the transverse position are obtained
by angle measurements at frequent intervals At with constant accuracy
q. Hence

(4.4) yl 0 xl + e(t),
vs(T t)

and the information rate matrix is

(4.5) i(t)- v?qAt(T- t)
0 0

The product v2r2At may be related to a dimensionless information rate
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parameter k defined for this problem by

10
Vf2At(ye

This parameter compares the incoming information with the a priori in-
formation (v.2(0))-1 about the initial velocity error. For the exampm
used in this paper, we have let (v22(0))1/ 100 m/sec., T 106 sec. ano
k 1. Realistic values of ] would be much higher and lead to earlier
reduction of the predicted miss. For example, if vf 3 kin/see, and At

1 hour, then k 1 implies z 0.32 degree.
Using the information rate matrix given by (4.5), it is found that an.

analytical expression may be obtained for the covariance matrix V(t).

det W

It can be readily verified that

(4.6) (t)

where

(4.7)

1 atwn(t)
(0) T(’- t)’

at T--w(t)
vtl(0)

}- +alg T

1 at T-w(t)
v(O) + vn(O) + 2at- - + 2a(T- t) log- T

1
a

and

(4.8)

Moreover,

(4.9)

and

det W wn(t)w:(t)

V(T) O,

(T- t) T--t](4.0) z(t)
T-t 1

Computation procedure and the numerical results. It can be shown that
the adjoint variables are monotonically increasing functions of time if

h > 0. ( and :2 are always positive.) Since Xl.(T) 0, we must let
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12(0) < 0 so that 12 is negative at the time of turning on the control.
Moreover, the control must be turned off at the time when 1. reaches zero
and not turned on again until possibly at the terminal time. It was shown
in the previous section that an impulse may be applied at the final time if
(3.13) is satisfied. In our case, this implies

(4.11) 1.),( T)p( T)

It should be noted that an impulse at T brings down p.(T) and cannot
change the values of 12, 11, and p11. Using (3.23) and (3.24), we find,

dX(4.13)
de

where de is the incremental effort due to the impulse. Using (4.12), (4.13)
and the fact that (4.11) must be satisfied before and after application of
the impulse, we find

1((4.14) effor due go ghe impulse 1
’P/

where p and p+ denote the values of (z. (T)) immediately before and
after the impulse respectively. Hence, if p+ 0 (corresponding to perfect
velocity control), then the a,dditional effort required is %/p(T). We shall
assume that the desired p22(T) 0.
The actual computation proceeds as follows"
(1) Let X12(0) -1 and guess Xll(0) and
(2) Integrate (.12) until (3.15) is satisfied. This determines o.
(3) Use (3.13) to determine the value of A at to..
(4) Integrate along the surface by using (3.8), (3.9), and (3.16) until

2 0.
(5) Turn off the control until T. This determines P(T) and is a possible

solution. But p.(T), in general, will not be zero. Note that A(T) remains
the same as at the time that the control was turned off.

(6) If (4.11) is satisfied, an impulse is applied at T to bring p2.(T)
to zero. The additional velocity required is /p-(T).

(7) ]if (4.1.1.) is no satisfied, we repeat the procedure again, with a dif-
ferent guess of 11(0) and 22(0).
The results are given in Figs. 4.2-4.4 with the corresponding curves

identified by the symbol ME2. Fig. 4.2 gives the plot of %,/ply(T) (which is

(4.12) dp22 2p2 )22
de

at time T,
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FIG. 4.2. RMS terminal position error vs. total effort: position and velocity control

the same as /al(T) since V(T) 0) versus the total effort. It is seen
that most of the expended effort appears near the beginning of the trip
and near the end of the trip when very high terminal accuracy is required.
A typical plot of the history of /a22(t) versus time to go is given in Fig.
4.3 for the case where %//all(T) 1530 kin. Note the period of no control
and the impulse at the end. The corresponding total velocity required as a
function of the time to go is shown in Fig. 4.4. The jump at T is due to the
impulsive correction.

In order to get a "feeling" for these numbers, we include, in the same
graph, some typical values obtained from other solutions. The two solu-
tions we have used are the quadratic loss (to be denoted by QL) and the
minimum effort for controlling only the final position (to be denoted by
ME1).
QL: This is the problem of minimizing

T T

(4.15) E f u(t) ]12dr f trPS’Sdt
Jo Jo
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Fz. 4.3. History of remaining velocity error vs. time to go; position and velocity control

for a specified P(T). The solution of this problem is well known (for ex-
ample, see [7]). Let the solution be denoted by *. Then
(4.16) S* G’’A*,
(4.17) *= A*ZA*,
(4.18) /* --(ZA*P* + P*A*Z) + Q.

With the exception of (t), we see that this set of equations is the same as
that given by (3.7)-(3.9) with tr PAZA 1. However, here the problem
is not singular. The solution can be obtained easily by integrating the
adjoint equations backwards with an estimated value of A*(T). The off
diagonal elements of A*(T) are zero and the diagonal elements of A*(T) are
to be adjusted so that the prescribed values of Pii(T) are satisfied. To ob-
tain the solution corresponding to the case that p*2(T) 0, we let
X2*(T) . The results are also plotted in Figs. 4.2-4.4. The numerical
values indicate that the difference between this solution and the optimal
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FIG, 4.4. Cumulative effort vs. normalized time to go; position and velocity control

solution developed in this paper in the total velocity requirement is about
10%.
ME1: This is he problem of minimizing the effort when only p(T) is

specified. It corresponds to the case of letting (0) :(0) 0. In other
words, we control the position to the specified rms value and turn off the
control until T. An impulse is then added to bring p(T) down to zero. In
Fig. 4.2 we plot the results of /(T) versus the total effort with or with-
out the final impulse. The amount of the additional velocity correction due
to the impulse is, of course, %/p(T). Similar plots re given in Figs. 4.3
and 4.4. As expected, for the same terminal rms values, this design requires
a little more effort than that required by controlling both components
starting t 0.

4.2. Controlling the two positions of two one-dimensional models. This ex-
ample considers the terminal phase of an interplanetary trip where both
the in-plane and the out-of-plane terminal position components are to be
independently controlled. It is assumed that the perturbed motions are de-
coupled and that each one moves in a uniform motion. We shall use the
same information rate matrix as that used in the previous example and it
will be further assumed that the information rate with respect to the two
positions are independent.
The differential equations governing the adjoint variables are

(4.19) X11(t) (T- t)X(t)b(t),
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two position control

kz(t) (T t)’h.(t)(t),

(4.21) k12(t) ply(t) O.

Equations (4.19) and (4.20) do not imply that the equations are decoupled.
The coupling is introduced by the function 4(t). By letting Xz(0) 1, a
family of solutions can be obtained for different values of X1(0). A typical
one corresponding to X(0) 1.01 is given in Fig. 4.5. It shows the plot
of the history of %/al(T), %lazy(T) and the effort versus the time to go.
It is seen that the solution consists of an initial period of no control, followed
by a period of continuous control and finally a period of no control at the
end. The last stalement is true since the control may be turned off when
sufficient terminal accuracies have been obtained.

Case involving a gap in information rate. It was stated in the previous
section that in the evenl hat the eompul)ed 4(t) < 0, (to,, toff), then
there will exist int.ervals within (to., tof) such that the control is turned
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2 T

FIG. 4.6 Uncertainty improvement rate with information gap

off. This occurs, for instance, when the information rate suddenly increases.
A computation procedure was described in the previous section by which
the intervals of no control can be found. For purpose of illustration, we
assume that the information vanishes over the interval (tl, t) and suddenly
increases at t. In particular, we choose ti 0.27T and t. 0.45T.
Now the two elements of Q (qll and q) are equal and have the general

shape as shown in Fig. 4.6. It is clear that the control can not follow the
sharp rise of qii at t, i.e., (t) < 0. Therefore, the control must be turned
off before or immediately after tl. Numerical solution from a trial run indi-
cates that the control is to be turned off immediately after t. Since Q is
discontinuous at tl, it follows from the reasoning given in the previous
section that an impulse may be applied at tl. This is indeed the case. The
amount of the impulse (which is not a full correction) is determined by the
condition that the adjoint variables after the correction must be the same
as at the time when the control is turned on again. The amount of the drop
(or jump) in P (or A) can be determined by integrating with respect to the
effort at t using (3.23) and (3.24) which in our case can be written as

(4.22) dpii 2(T t)Xp,
de

d)ii(4.23)
de

(T tl) , i 1, 2.

Let the superscripts and + denote the times immediately before and
after the impulse respectively. Direct integration of (4.23) yields

(4.24) efforg due go ghe impulse
(T ) X. X
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Dividing (4.23) and (4.22) shows

dpii(4.25)
2p Xi--

which can be integrated to give

X2 +(4.26) (p,X) p )

Equation (4.26) shows, as expected, that (3.13) is satisfied during the
impulse.

Prior to tl, the computation remains the same as before. At tl, we proceed

as follows. Let d 1___.
22

(1) Assume an effort due to the impulse and compute M+I, 2+, and
g(t+) from (4.24).

(2) Use (4.26) to determine p+l and p2+.
(3) Integrate the equations for p with S 0 until (3.15) is satisfied.

klt (0)=1.01, k22 (0)=1

2 INFORMATION GAP
n 250

0104m 200

z 5 150o..0_ POSITION 2
,=’FORT 100 >_.

-J 50
z POSITION

103 0

P" RMS INITIAL VELOCITY
(n 5 ERRORS 100 M/SEC
n." ANGULAR INFORMATION RATE

PARAMETER k=l
2 T= 106 SEC

102 0.85 0.7 Q55 04 025 0.1 0
NORMALIZED TIME TO GO

FI(]. 4.7. History of remaining position errors and cumulative effort vs. time to go;
two position control
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This determines tl’. Use is then made of (3.13) to determine Xi and d
at tl’.

(4) If d(tl+) d(tl’), we repeat the procedure again by assuming a
different effort.
The results are given in Fig. 4.7 for the case Xn(0) 1.01. The discon-

tinuities at tl correspond to the impulsive correction. It is seen that h’ is
greater than t2 which agrees with the intuitive reasoning that it is necessary
to let the information catch up after an interval of no observation.

It is of interest to note that the quadratic loss solution corresponding to
this particular example is completely decoupled. In other words, speeifica-
tion of the variance of the terminal in-plane position does not effect the
solution of the out-of-plane component and vice versa. The coupling, in our
case, is introduced by the loss function.

Acknowledgement. The authors wish to thank Dr. Y. C. Ho for his
many helpful suggestions. The work was supported by NASA under con-
tract NAS-1-3777 and in part by the Lockheed Independent Research
Program.

Appendix. This section specializes the results derived in 3 to the control
of only one terminal miss. Without loss of generality, it will be assumed
that the particular terminal miss we wish to control is the final uncertainty
in the position. It will be shown that the solution in this case is unique.
This result was first obtained by Breakwell and Striebel [4] by applying
Green’s Theorem.

For the case of one terminal miss, p 1 and H is a row matrix of 1 X n.
Let the scalar H,GG’’H’ be denoted by D2, which is the sensitivity of the
miss distance to a change of velocity in the direction of the correction.
Equations (3.13) and (3.15) become

(A.1) pnX.D,, 1

and

(A.2) Xx(2D,[)vpn + qnD,) O,

respectively. It follows from (A.2) that ton is determined by the equation
toil.

(A.3) fo (t) dt p](to),

where

(A.4) p* (t) D qn

This is the critical curve defined in [4].
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Also, for a given pll(f/’), off iS determined by

(A.5) pl(to) nt- I q(t) dt pn(T).
Jtoff

Moreover, the optimal solution must follow the critical curve defined by
(A.3) if

(A.6) 4,(t) *"plX11 > 0, (to,, tof).

This can be seen as follows. Assume (A.6) is true. It can be easily verified
that this implies

(A.7) 16 < q.u, (to., to,).

Suppose for some t’ where ton < t’ < toff, we leave the critical curve. Then
the control must be turned off and for > t’,

(A.8) pn(t) p(t’) nt- q(s)

which by (A.7) is greater than p[(t). Hence, the given terminal pn(T) can
not be satisfied. In other words, we cannot come back to the critical curve
after leaving it. This establishes our assertion.

Suppose (A.6) is not satisfied. Then there exists an interval within
(to,, to) such that the control must be turned off. This corresponds to the
case of an unusual increase in the information rate considered in [4]. Let
ta and t be the times of turning off and on respectively. Since the adjoint
variable must remain constant during the time that the control is off, we see
from (A.1) that

(A.9) pl.(t,)D2(ta) pl(t)D(t).

Moreover,

(A.10) al(ta) a(tb),

which is obvious since a(t) is the ctuM terminal miss if no control is
pplied fter t. Equations (A.9) nd (A.10) provide sufficient conditions
for determining the times t nd t. It is of interest to note that in the cse
of the control of only the terminM velocity, the optimM solution, ccording
to our theory, is n impulse t the final time. This solution is reasonable
since the effort necessary to nullify the velocity error remains constant in
(0, T) nd hence the optimal solution is the one in which ll the informa-
tion is collected before pplying the control.
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SOME MATHEMATICAL THEORY OF THE PENALTY METHOD
FOR SOLVING OPTIMUM CONTROL PROBLEMS*

KIYOHISA OKAMURA?
Abstract. The penalty method is a powerful technique for solving the optimum

control problems involving systems subject to holonomic side constraints. In the
usual clculus of variations, the above problems are formulated in consideration
of the Weierstrass-Erdmnn corner conditions which add considerable complexity
in practice. In the penalty method, however, the side constraints are eliminated by
introducing a sequence of approximate formulations. Thus the Weierstrass-Erdmann
corner conditions need not be checked.
When the penalty method is applied in the ordinary calculus the sequence of

proximate formulations is proved to be equivalent to the original formulation in the
limiting cse. However, no mathematical rigor has been claimed when the penalty
method is pplied to the variational problems.

The uthor establishes, in this pper, some mathematical bsis for the penalty
method pplied in the culculus of variations, particularly optimum control problems.

Introduction. The state of a physical system in control problems may be
represented by a real n-dimensional vector x(t) =- (xl(t), ...,
called the state vector. This vector can also be considered as a point in the
Euclidean n-space, called the state space, at the time t. As this point moves
from one point to another, during the time interval 0 _-< _-< T, it moves
according to the following differential equations"

dx(1)
d

f(x, u), i 1, n,

where u(t) (u(t), ur(t)). The plot of this moving point is called
the trajectory of the system. Here, the r-dimensional real vector u(t) is
called the control vector, or simply the control. The control u can be con-
sidered as a point in the Euclidean r-space, called the control space. The
function u(t) is a well-defined piecewise continuous function of (Ap-
pendix 1). Each fi is a real function of x and u, and f Lip(x, u). The
initial and final point of the trajectory, respectively denoted by x and
Tx generally lie on the specified manifolds, called the initial and final

manifolds, and designated as So and St. The time T may be either speci-
fied or unspecified. The set of all controls which enable the state to move

* Received by the editors August 10, 1964, and in revised form October 21, 1964.
Allison Division, General Motors Corporation, Indianapolis, Indiana.
Non-autonomous cses re included in this representation [1, p. 59].
This means thatf satisfies the Lipschitz conditions with respect to the arguments

in the parenthesis in the domain under consideration.
A problem with the specified final time my be formulated as problem with

unspecified final time [2].

317
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from the initial point to the final point is called the admissible control set
in wide sense and designated by ft. A control u such that

(2) u a

is called an admissible control. Throughout this paper the existence of an
admissible control is assumed and only an admissible control is considered.
If T is not specified, then the time when some condition x Sr is attained
determines T itself. The system is considered to be subject to the following
constraints, called the side constraints:

(3) g(x, u) <- O, lc 1,..., m,

where the functions g are real functions of x and u, and g Lip(x, u).
The set of all admissible controls, which always enable the system to satisfy
the above constraints, is called the admissible control set in narrow sense
and denoted by *, i.e.,

(4) * lu" g(x, u) <= O, 1,..., m}.

It is assumed that the set t* is not empty.
The problem of the optimum control treated in this pper is to minimize
cost functional described by

T

(5) J f h(x, u) dt, for u 2",

where h(x, u) is bounded rel function of x nd u, nd h Lip(x, u).
This type of problem was extensively treated by Berkovitz [3]. Some

special cses were treated by Pontrygin et l. [1] nd Chang [4]. From the
viewpoint of pplictions of the theory to practical problems however,
these formulations and solutions are too complicated, since the logic in
programming these theories is quite involved. Special mthemticl diffi-
culties in these methods lie in the fct that the Weierstmss-Erdmnn
corner conditions must be stisfied when the tmiectory reches or leaves
the boundary of the constraint inequalities.

Recently n pproximtion method, the penalty method, hs been found
which ullevites the bove diffi.culty. In this method the original problem
is replaced by n pproximte one which eliminates n explicit evaluation
of the constmb.ts (3). Thus, the Weierstrss-Erdmnn corner conditions
need not be checked. One my tici.pte that pproximte solution my
be obtained s close to the exact solution s desired.
The origil formultio of the penalty method is due to Coumnt [5].

Moser [5] gve mthemticl bsis to this method s pplied to the mini-
miztion problem in the ordinary clculus. Extes[ons of the penalty
method to the field of the clculus of vritions hve Mso been mde.
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Among them are the works of Kelley [6], Ostrovskii [7], and others. How-
ever, none of them guarantee the mathematical rigor in the penalty method
when applied to the calculus of variations problems.

In this paper the mathematical rigor necessary to establish the penalty
method applied to the calculus of variations is developed, with special
emphasis being placed on the convergence problem.

2. The penalty method in the ordinary calculus. The penalty method in
the ordinary calculus was introduced by Courant [5]. This method is briefly
explained below.
Let the problem A be defined as follows:
Find a point P at which a given real function of P, designated by (P),

is minimum consistent with the side constraints

(6) (P) 0,

with ,I,. (P) a given nonnegative real function of P.
Let the problem A be defined as follows"
Find a point P at which the fuuctiou q)(P), represented by the relation

(7) q)(P) q)(P) -t- k,I,(P),

where/c is a real positive quantity, is minimum. The penalty method is
based on the following theorem.

THE APPROXIMATION THEOREM IN THE PENALTY METHOD4.
(8) A -- A as lc ---- .The proof is given by 5/Ioser [5]. Here, only the intuitive explanation will
be presented.
The second term on the right hand side of (7) is an index of the violation

to constraint (6), since lc,I(P) is zero when (6) holds and is positive
when (6) does not hold. As the constant/ increases the index of violation
also increases without bound. Hence the effort to minimize the function
q)(P) is primarily focused on minimization of this index. Having mini-
mized this function, the first term is minimized. As k becomes greater the
function I,(P) must approach zero so that the term k,I,(P) might be
finite. Thus it is seen, in the solution of the problem A, that as ]c tends
to infinity constraint (6) is satisfied and the function q)(P) is minimized,
i.e., the problem A is equivalent to the problem A in the limiting case.

3. Reformulation of the original problem in terms of the penalty method.
In this section, the original problem is reformulated by employing and ex-

Actually several assumptions are made for this theorem but not listed here for
the sake of brevity. The reader is referred to [5] for details.
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tending the penalty method explained in the previous section. The penalty
functions, pk(g), k 1,... m, are defined by the following"
(a) pk(g) is a real, continous and nondecreasing function and defined for

g(x, u) (- , );

po(g)f> 0 for g(x, u) > O,(b) 0 for g(x,u) O.

From properties (a) and (b) together with (5) the following property is
derived"

(c) p(g) 0 if and only if u *.
An example of such function is"

(a) p(g) (g) for g(x,u)> O,
(9)

(b) p(g) 0 for g(x, u) O.

The above example is the one used by Kelley [6]. As seen above, if u is
determined for 0, then x(t), g(x, u), and p(g) are successively deter-
mined. For this reason the penalty functions sometimes are written as
p(x, u), p(u), or p(t). Real nonnegative constants a, k 1, m,
called the penalty weighting coecients are introduced. The inner product
of the two vectors a (1, ) and p (pl, p) is defined by

(10) r(a, u) zp(u).
kl

This representation is called the penalty. We consider a sequence {a} for
1, 2, 3, ..., such that

for < , k 1,-.. m,(11) <
with

(12) s , lc 1,...,m;

nd a sequence of functionls

(13) I. f h(x, u) + z"p(u) dt
kl

T

(14) J(u) + f "p(u) dt, , 1, 2, 3, ..-,
o

where constraints (3) have been eliminated. We call I the charged cost

functional. The revised optimum control problem is stated

Minimize the charged cost functional I, for u
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In the succeeding sections we prove that the revised optimum control
problem is, under some conditions, equivalent to the original one as

4. Preliminary remarks and the first convergence theorem. In this sec-
tion we discuss the mathematical properties of the control, the penalty
functions and the charged cost functional. First, mtation and several defi-
nitions will be introduced.

(15) J* J(u*) inf J(u).
uE2*

(16) I* I(u*) inf I(u), 1, 2, 3,

The existence of u*, u"*, J*, I* and the corresponding final times T* and
T,* is always assumed. As seen above, an asterisk (*) stands for optimal.
Next, the norm in the control space is given by

(17) u(t) r sup uj(t) dt.
3"E [1," .,r]

LEMMA 1. {I*} i8 a nondecreasing sequence, i.e.,

(18) I* <- I* for t < .
Proof. The proof is accomplished by contradiction. Suppose the con-

trary to the lemma; then there exist positive integers t and such that

(19) I* > I* for t < .
Substituting (14) and (16) into the right hand side of the above inequality
we obtain

(20) I* > J u* z7 ] kpk U* dt,
o

where T* is the final time determined by the control u*. Equation (11)
and the property (b) of the penalty function yield

(21) _, / ak’p,(u*) dt < ., / apk(u’) dr.
k----1 JO k=l

Substituting this inequality into (19) results in

,T

(22) I,* > J(u*) - / z’p(u*) dt.
Jo

From the definition of I, (u), the right hand side of (22) is I, (u*), i.e.,

(23) I,* > I u*
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However, this result violates the definition of I* represented by (16).
Thus the lemma has been proved. As before, it is sufficient to consider only
the case where the final time is unspecified.
LEMMA 2.

(24) I* --<_ J*, 1, 2, 3,

Proof. From the property (c) of the penalty function and (14) and (16),
the following equation is obtained.

(25) J* J(u*) -t- f rkp(u*) dt, 1,2,3,....
kl Jo

The right hand side of (25) is, by definition, I(u*). Hence it follows that

(26) J*= I u* >-I,*, 1, 2, 3,...,

where the equal sign is taken when u* - u*. Thus the lemma has been
proved.
From the above lemma the following is derived.
COROLLARY 1.

(27) J* >= J(u*) for 1,2,3,....

Proof. By definition,
T*

+ E fk=l J0
ak’p u* dr,

Since the summation in the above relation is nonnegative it follows that

(28) I,* => J(u"*), 1, 2, 3,

Inequalities (24) and (28) yield the corollary.
By Lemmas 1 and 2 the following theorem directly follows.
THE FIRST CONVERGENCE THEOREM.

(29) I * converges as -- .We denote this limit by I*, i.e.,

(30) I* lira I,*.

In the next section we prove that the charged cost functional, as well as
the cost functional, approaches the optimum functional for the original
problem in the ]imitig case.

5. The second convergence theorem and the optimal control. In the last
section it was proved that the limit of the sequence of the optimum charged



PENALTY METHOD 323

cost functionals exists. In this section we shall further investigate the
problem of this convergence. Here we adopt the following hypothesis.

Hypothesis. There exist a control u* 2, an initial state x*(0) So,
and the corresponding final time T* satisfying the following conditions"

For an arbitrary e > 0 an N > 0 exists such that

(a) x"*(o) x*(0) < ,
(3)

(b) IT,*- T*I < e,

and

for M1 > N.
Remark 1. The first prt of the hypothesis represented by (31) means

that the initiM state x’*(0) S0 nd the final time
For the cse where the initial state is completely specified, (31) is not re-
quired. Similarly, (31b) is not necessary when the final time is specified.
The meaning of the second prt of the hypothesis represented by (32) is
explained below with the help of Fig. 1. An example of ui (t) is shown by
Ao’A’A’ A’ Ar’ in Fig. 1() and n example of u (t) by BoBB2

B2 + Br in Fig. l(b). The domain [0, T,*] of u (t) is mapped into the
domain [0, T*] by a linear transformation * *T, /T t. By this transfor-
marion the control u (t) becomes u*(T,*t/T*) which is plotted as
AoAAa Aa + A in Fig. l(b). Thus we can compare the controls u
and u in the same domain. The number and locations of discontinuities

T t/T do necessarily coincide. The shaded areaforu (t) and u not
in Fig. 1 (b) is given by

u kt (t)

Therefore, by definition, the norm represented by the left hand side of (32)
is the maximum of the shaded area. Hence (32) means that the shaded
area for each j approaches zero as
Remar 2. The relationships between the introduced quantities, u*(t)

and x*(0), and the charged cost functional I* have not been stated. These
relationships shall be investigated in this section.
Remar 3. In the following, u"* stands for u’*(t), not for u*( T*t/T*).
First, we prove that the control u* is admissible in narrow sense.
LEMMA 3.

(33) u
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A’T

0 tI t2 t3 TC
(b) t-

FIG. 1. A linear transformation of the control

Proof. Since the function h(x, u) is bounded and the time T,* is finite,
J(u*) is bounded. Hence, referring to Lemma 2, we find that the corre-
sponding integrated penalty is bounded, i.e.,

(34) 0 <= f ’p *, u* dt <- M, 1, 2, 3,
k:l +0

with M a positive constant. Since for each 1 the integrand in (34) is non-
negative the inequalities (34) reduce to
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(35) 0 < r p x*, u* dt <- M,
0

] 1, ...,m; 1,2,3, ....
Dividing all sides of the inequalities (35) by zk" and using the definitions
(64) and (65) under the linear transformation in Appendix 2, we can
rewrite (35) as

v) dt
M(36) 0 < p(w,
"

lc 1, ..., m; 1, 2, 3,

Since the penalty functions are noImegative there exist some constants
p such that

T

(37) p(x*, u* dt p O, lc 1, m.

From (36) and (37) it follows that

(3s) M+ {p(x u p,(w", v") dt, 1 m.

Strengthening each of the above inequalities by taking the absolute value
of the integrand and changing the order of two terms in the integrand, we
have

(39) p M+ [p(w",v) --p(x u dt, lc 1 m.
ff Jo

Substituting (73) of Appendix 3 in the above integral we obtain

(40) 0 N < M +Ke, ]c 1, ...,m,

where the quantities nd e re the sme s specified in the hypothesis.
Since the bove inequalities re vMid for ll > N consider a such that

1(41) < e, lc 1, m.

The existence of such " is guaranteed by the definition of . Substituting
(41) into (40) we obtain

(4) 0 < (M + K), ]c 1,..., m.

Since the constants M and K are positive finite and the positive quantity
is arbitrarily chosen, (42) holds if and only if

(43) p, 0, lc 1, ..., m.



Substituting (43) into (37) we hve

(44) p(x )dt= O, k, 1, m.

* * nd since u is aSince p re continuous with respect to x nd u
well-defined piecewise continuous function of t, p re lso well-defined
piecewise continuous functions of t. Hence (44) implies that

(45) p(x ,u 0, 0t T*, = 1,. ,m.

This further implies (33) because of the property (c) for the penalty
functions.
Color,Any 2.

(46) I,(u J ), u 1,2,3,....

Proof. The definition of I, nd (44) directly yield this corollary.
Next we prove the convergence of the cost functional from the control

that optimizes the charged cost functional.

(47) J(u’*) J(u*) as u .
Proof. The proof is similar to that for Lemm 3. Using the definition of

cost functional we obtain

h (x’*, u* dt h(x*, u dt
z0

nd gin pplying the linear transformation in Appendix 2,

J(u"*) J(u*) h(w’, h(x )dt

=< h(w, ") h(x*, u*) dt.

Employing the Hypothesis, and the notations used in it, nd referring to
(5), we find that

(49) J(u*) J(u*) < Ke.
Thus we have shown that for an e > 0 there exists N > 0 such that (49)
holds. Since K is a finite positive constant the above inequality is enough
to prove the lemma.
THE SECOND CONVERGENCE THEOREM.

(o) J(u*) - J*,
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and

(51) I* -- J*

as--- .
Proof. We prove (50) first. Consider the following"

(52) J(u*) J*- {J(u"*) J(u*)} + (J(u*) J*}.
By Lemma 3 and the definition of J* the difference in the second brace in
(52) is nonnegative. On the other hand, employing the Hypothesis at the
beginning of 5 and using (49), we find that the value in the first brace is
greater than -K4e. Hence it follows that

(53) J(u*) J* > -K4e,

where the quantities u and e are specified in the Hypothesis. By Corollary 1
we have

(54) J(u*) J* <= 0 < K4e.

The above two inequalities yield

(55) J*l <
Thus we have shown that for an e > 0 there exists an N > 0 such that
(55) holds. Since the positive constant K that is given by (76) in Ap-
pendix 3 is finite, (55) is enough to prove (50).
Next we prove (51). By definition,

f0(56) I,* J(u"*) - r(a’, )dr,

where the integrand r(a", u’*) is the penalty, previously defined, cor-
responding to an and u’*. From (56) and Lemma 2 it follows that

J* >= J(u’*) -t- v(a’, )dr,

Or

(57) J* J(u*) >_ f r(a, u*) dr.
0

By (50), the left hand side of (57) approaches zero as t -- . This im-
plies thatthe right hand side alsoapproaches zero as t -- , since thepenalty
r is nonnegative. Thus we have proved that the first term in the right hand
side of (56) approaches J* n.d that the secod term approaches zero. This
is equivalent to (51).



328 KIYOHISA OKAMURA

6. Practical considerations and suboptimal control problems. In the pre-
ceding sections it was proved that a sequence of approximate formulations
employing the penalty functions solves the original problem under the
Hypothesis. If the optimal control which minimizes the charged cost.
functional, in any finite sequence of formulations developed by the penalty
method, belongs to the admissible set in narrow sense, then this control
itself is the optimal control for the original problem. Generally speaking,
however, the admissible control in narrow sense will not be found in the
process of minimizing a sequence of the charged cost functionals. After
solving a finite number of the above sequential problems one may ask how
far the solutions obtained differ from the exact one. This problem often
arises in practice. Another practical consideration arises when the side
constraints must be strictly satisfied from the physical viewpoint (the satis-
faction of the side constraints needs to precede the minimization of the
cost functional).

In this section we shall give consideration to the above situations from
the viewpoint of applications.

Consider the following side constraints instead of (3):

(58) g(x, u) + d <- 0, ] 1,... m,

with positive real numbers d. If these inequalities are satisfied, then (3)
is also satisfied. However, the converse does not always hold. Thus (58)
restricts the system more strongly than does (3). We apply the penalty
method to the system using constraints (58). As we solve the sequential
problems in the penalty method there may exist some large penalty weight-
ing coefficients such that (3) holds even though (58) is violated. If this
occurs, then let the corresponding control and cost functional be respec-
tively and J. We call the admissible suboptinal control in narrow sense
or simply the suboptimal control, and J the suboptimal cost functional.
From the definitions of , ] and J* it follows that

(59) Y J() __> J*.
This relation together with Corollary 1 yields

(60) J((t) >= J* >= J(u’*).
Now we can estimate the difference between the optimal cost functional
and the suboptimal cost functional as

(61) 0 <= J(’t) J* <__ J() J(u’*),
where the value of the right hand side of the above inequality is known.
Oe may anticipate that this differew.e will decrease as each d decreases
and increases.
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Presented above is a technique to find the admissible control in narrow
sense which yields an approximate optimal cost functional. The method of
estimating the deviation of the approximate cost functional from the
optimal one has also been eon.sidered.

Conclusion. A mathematical basis has been established for the penalty
method applied to the optimum control problems subject to holonomie side
constraints. The penalty method simplifies the logic involved in an optimum
control problem from the standpoint of programming--since the corner
conditions need not be checked. It was proved that the optimal solution of
a sequence of problems employing the penalty method is equivalent to the
optimal solution of the original problem in the limiting ease. Since an infi-
nite sequence is not physically realizable, the finite sequence of problems
leading to a suboptimal control was considered. For brevity, only the mini-
mization problems were treated. However, the theory is directly applicable
to the maximization problems.

Acknowledgment. The author wishes to thank Professor R. A. Gambill
of Purdue University for his reviewing this paper and Mr. D. E. Lovelaee
for his assistance during the preparation of this paper.
The constructive advice of the referee is also acknowledged.

Appendix 1. A well-defined pieeewise continuous function u(t) is a function
of such that each element ui(t) is

(a) pieeewise continuous in the ordinary mathematical sense, and
(b) defined everywhere in the time domain considered and, for e > 0,

either

(62) ui(t) lim u(t -t- e),
e-0

or

(63) u(t) lim u(t- e).

Thus a piecewise continuous function u(t) with an element u(t), which
has a singular point represented by A in Fig. 2, is not a well-defined piece-
wise continuous function mentioned above.

Appendix 2. As seen in the Introduction the definition of ft assumes the
existence of the corresponding trajectory x(t). Thus x"*(t) and x*(t)
may be found corresponding to x"* (0) and &*(t), and x*(0) and u*(t)
respectively.

Let

(64) v"(t) { T.* t’]u"* I.-- 0 <-_ <- T*,
/
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A

0 to t ---FG. 2. A piecewise continuous, but not "well-defined" function of time. A" (to ui(to)

(65) w’ (t)
a x’* (resT’* t/ O<__t<= T*.

We consider the variations

(66) u v(t) uO*(t),
(7) vo(t) x*(t).
Modifying Rozonoer’s technique [8], we obtain the inequalities

(6s)

+ lx’* * i 1 n,(o)-x, (o)
i=l

where K is a positive constant which has been introduced in considering
the Lipschitz conditions and does not depend on u(t). Using the Hypothesis
in 5 and the definition of the norm of control we have

(9) u(t) dt <

From (69) together with (31), inequulities (68) reduce to

(70) Sx(t)[ K( r + 1)
pendi 8. By he properties of p(g) and g(,

(71) p(z, ) Lip (z, ).

j 1,...,r.
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Hence it follows that
T*

f0 x
(72)

<= gl f u(t) + , xi(t) dr,

where K is the maximum of the Lipschitz constants for p. The existence
of such a maximum constant can readily be assured. From (68) and (70),
the above relation reduces to

(73)

where

(74) K2 KI{1 + KTo*(n + r)} > 0.

Similarly we can show that

V(75) h(w, h(x >1 dt < Ke,

where

(76) K4 K{1 -{- KTo*(n + r)} > 0

and K2 is the maximum of the Lipschitz constants for h(x, u).
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OPTIMAL CONTROL OF APERIODIC DISCRETE-TIME SYSTEMS*

B. W. JORDAN AND E. POLAK:I:
1. Introduction. Much of previous work on the optimal control of discrete-

time processes was concerned with sampled-data systems in which the
sampling instants are fixed and equi-spaced [1]-[6] and in which the optimi-
zation is carried out over the amplitudes of the piecewise constant controls.

This paper is devoted to establishing necessary conditions for optimal
control of a class of fixed duration, discrete-time processes with aperiodically
modulated inputs, which are suggested by engineering considerations. The
plants of the systems under consideration are described by nonlinear
differential equations and the inputs are piecewise constant, suitably re-
stricted in amplitude, and required to have K or fewer discontinuities whose
position is not restricted. (K is a fixed, positive integer.) Using techniques
analogous to the ones used in establishing the Pontryagin maximum
principle, it is shown that for an admissible control to be optimal, it is
necessary that a Hamiltonian-like functional be either locally maximum or
stationary with respect to the admissible controls, and that a set of trans-
versality conditions be satisfied.

Computational and engineering aspects of this problem are dealt with in a
separate paper to be published soon.

2. Formulation of the optimal control problem.
a. System equations. We shall consider a system described by he vector

differential equation

(1) +/- f(x, u),

where x (Xl, Xn) E describes the state of the system, u
(Ul, Ur) U c E is the control (or input), and f (fl, f),
where fi C on E X U, i 1, 2, n. The set U will be defined below.

b. Admissible controls. Let U be a subset of E with the following prop-
erties.

(i) For every v U there exists at least one ivC Er, tiv 0, and
a constant el(V, tiv) > 0 such that (v -}- div) U for all e with 0 =< e

* Received by the editors March 19, 1964, and in final revised form November 9,
1964. This research has been made possible through support received from the De-
partments of Army, Nvy, and Air Force under grant AF-AFOSR-139-63; and the
Ntional Aeronarics n.d Space Administration grant NSG 354.

Aerospace Corporation, P. O. Box 95085, Los Angeles, California.
:[: Department of Electrical Engineering, University of California, Berkeley,

California.
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(ii) For a given v U, let the set of all 6v that possess the property (i)
be de.oted by t(v). Then it is also assumed that n(v) is convex. (It is
clear that A(v) is a cone.)

Let K be a fixed positive ilitegor, and lot _/kl be the sot of all vectors
V (v0, vl, vK_l) E’ such that v U, i 0, 1, K 1.
Let I (t0, tK), to t, be a fixed open interval. Iet W be the set of

vectors (tl, ..., t_l) E/- such that to t. =< t _<_... _-< t_t
tK.
For any (t.t, t_) IV and V (v0, ..., V_l) M, let

u(t; , V) be the function from [t0, t] to E defined by

u(t; , ,)= v, for t <= < t,i+l,
(2)

u(t , V) v_.

i 0, 1,..., K 1,

All such controls will be referred to as admissible controls. When convenient,
we shall simply write u (t) for u (t; e, t*).

c. Constraints on lhe terminal state. If u(. is any piecewise continuous
function from [t’, to Er, let x(t; x’, t’, u) denote the solution of (1) which
corresponds to the "control" u(t) and which satisfies the initial condition
x(t’) x’. When there is no possibility of confusion, x(t; x, to, u) will
simply be denoted by x(t).
The terminal state x(t) will be required to belong to a set S En. Two

distinct cases for the set S will be considered.
Case (i). The set S is an (n /)-dimensional manifold described by a set

of scalar equations; i.e.,

(3) {xlgi(x 0, X En, i 1, 2, ---, < n},

where the g, i 1, 2, l, are continuously differentiable functions from
some region in E to E, and the vectors Vg(x), i 1, 2 l, are assumed
to be linearly independent for each x S.

Case (ii). The set S is a closed convex subset of En. If S is a proper subset
of E consisting of more than one point, it will be assumed that at each
boundary point of S there exists a unique support hyperplane. Clearly, S
may also consist of a single point or be the entire space En.

d. Cost functional. If for an admissible control u, x(t" x, t,u)’ x",we
shall say that the cost of the transition from the state x’ to the state x m
the interval [t’, t"], caused by the control u(t), is

t"

Xfo(x(t; ,t,u),u(t)) dr,

where f0 is a given function in C on E X U. Let the cost of a transition
from the initial state x to the terminal state x caused by a control u (t) in
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the interval [to, t] be denoted by J(u, x). Then el.early, J(u, x)
Xx0(tK to, u) where

(4)
o(; x, to, u) fo(x(t; x, to, u), u(t)),

xo(to,x,to,u) 0.

to<t<lK

e. Augmented system equations. Now, for convenience, the system equa-
tions will be augmented to include the cost variable by defining the (n + 1 )-
dimensional vector (xo, x), and the (n q- 1)-dimensional vector func-
tion (fo, f). From (1) and (4), the differential equation of the aug-
mented system is

(5) (x, u).

We shall also denote (xo(t; x, to, u), x(t; x, to, u) by (t; x, to, u).
f. Statement of the problem. The optimal control problem for the systems

under consideration can be stated as follows. (P)" Given the initial time to,
the final time t, the initial state x, and the terminal state constraint set
S, for the system described by (5), find an admissible control u*(t)

u(t; t’*), (t< i [to, t:], (6", t:_) W, t’
*(v0 ,..-, v_) M), such that (i) x(t: ;x, to, u* S, (ii) for all

admissible controls u(t) u(t; , t’) such that x(t x, to, u) S,

xo(t: ;x, to, u*) -<_ xo(t: ;x, to, u).

An admissible control u* which satisfies (i) and (ii) above will be called an
optimal control and the corresponding trajectory *(t) (Xo*(t), x*(t))

(t; x, to, u*) (xo(t; x, to, u*), x(t; x, to, u*)), to -<_ _<- t, will be
called an optimal trajectory.

3. Necessary conditions for an optimal control.
a. The adjoint system. For a given admissible control u, let

P (p0, p, p) be a solution of the differential equation

(6) (t) [O(x(t;x’t’u)’u(t))l-i7 (t), to _-< <- t:,

where the superscript T denotes transposition, and (0/0) is the
(n + 1) X (n + 1) matrix whose i, jth element is Of/Ox, (i, j O, 1,

b. The Hamiltonian. Let the "Hamiltonian", H, be defined by

x t’,(7) H(p,x’,v,t,’ t") P’t’ (x(t; v), v) dt

for E+, x’ E", v U, t0 t’ t" t. Note that, in this formula-
tion, v is used to denote both a vector and the constant function that takes
on the value v for all t, t’ t".
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THEOREM 1. /f u*(t) u(t; , V ), (* (tl*, "’’, tK--1),
(Vo * $VK--1) ), is an optimal control, and *(t) (t; x, to, u ),

to <- <- tK the corresponding optimal trajectory for (P ), then there exists a
nonzero function, *(t), to <= <- t:, satisfying (6) with u (t) u* (t) for
lo <- <= t: such that
(i) for each tc 1, 2, K, lhe function H(*(tk*), x*(t_l), v, tk*-l, tk*)
of the variable v U has either a local maxinum or a stationary value at the
point v v*_;
(ii) (p*(t*), (x*(tl*), v*)) (p*(t*), (x*(t*), *v-l)), ] 1, 2,
...,K--l;
(iii) p0*(t) =< 0.

Discussion. This theorem is basic and holds regardless of the form of the
terminal constraint set S.
The problem (P) has been reduced to a two point boundary value prob-

lem. There are (n -t- 1 + rK + K 1 unknowns in the problem" the com-
ponents of the vectors , and iS(t) for some t, to =< =< t. Condition (i) of
Theorem 1 gives rK necessary conditions, while condition (ii) gives K 1
necessary conditions for an optimal control for (P). There remain n - 1
necessary conditions to be found. These n + 1 necessary conditions will be
the transversality conditions which *(t) must satisfy and which depend
on the form of the constraint set, S.

Since conditions (i) and (ii) of Theorem 1 are only necessary conditions,
they may not uniquely determine the optimal control. Indeed, (P) may
not have a unique solution.
Theorem 1 will be proven by examining each type of terminal constraint

set in turn and establishing the transversality conditions for each case.
These transversality conditions are developed in Theorems 2-3. It will be
shown that for each type of terminal constraint, the conditions of Theorem 1
are necessary.
The basic technique to be used will be to assume that the optimal control

and trajectory are known. The control will then be perturbed so as to affect
the trajectory only slightly. The necessary conditions which the optimal
control must satisfy will then arise from the realization that any trajectory
resulting from an admissible perturbed control and satisfying the constraints
on the terminal state must not give a lower cost.
The first item, then, to be considered is the effect upon the trajectory of

small perturbations in the control. Since (t0) is given, no perturbations of
its value need be considered. Only perturbations in the vectors and e de-
fining the control must be considered. It is at this point that the basic
differece between this discrete time problem and the similar one for con-
tinuous time problems occurs. It is required that any perturbation must be

The exact meaning of this condition is given later in (22), 3d.
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such that the perturbed control is admissible, and that it affect the tra-
jectory only slightly. In the continuous time problem, the control is only
assumed to be measurable. Consequently, the perturbed control can vary
from the original control by any finite amount, provided the length of time,
over which the perturbations are large, is made arbitrarily small. Such
perturbations will affect the trajectory only slightly. This allows one to
search out all of the control space, at each time, and leads to the require-
ment that the Hamiltonian be an absolute maximum at each instant of
time.

In our problem, however, the admissible controls are piecewise constant.
Thus, the only perturbations of the control which will affect the trajectory
only slightly are small perturbations of 0 and . Consequently, only local
conditions can be obtained.

c. Variation of the control and the trajectory. Let an optimal control,
u*(t) u(t; e*, ,*), to -< =< tK, together with its resulting optimal tra-
jectory, *(t), to <_- <__ tK, be given.
We now consider perturbations of the optimal control u*(t) defined as

follows. Let iti (i 1, K 1) be real numbers such that/its. it if
t.* tk*, but otherwise arbitrary. Let v,i (i 0, 1, K 1 be vectors
in E such that tivi h(v*) for each i. Let t (8t1,..., ittK--1) and
it* (tiVo, tv_l). Then if > 0 is sufficiently small, (* + di) W,
and (* + dit,) M. We denote the control u(t; -[- dt, t’ +dit,) by
u(t; e). Let (t; e) (t; x, to,u(t; e)) and (t; e) (t; e) *(t).

First, suppose that tie O, tiv O, i O, 1, K 1, i 1. Then
Ou t; e) /Oe exists and

0e
to _-< < t-, t* -_< =< tK,

Further, .(t) (O(t; e)/Oe)=o, for to =< =< t, exists and satisfies the
differential equation

d. O:(x*(t), u*(t)) _- O(x*(t), u*(t)) (Ou(t; e))(8)
dt Of

y,-t-
\ b- =o’ .(to) O,

where 0(x, u)/0 is the (n + 1 X (n + 1 matrix whose j, kth element is
Of(x, u)/Oxk and 0(x, u)/0u is the (n + 1) X r matrix whose j, kth ele-
merit is 0f. (x, u /Ou.
The solution, of (8) is given by

(t) a,(t, s) -d o o=o
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where o(t, s) is the (n + 1) X (n -f- 1) matrix function satisfying the
homogeneous differential equation

(9) Oo(t, s) 0(x*(t), u*(t)) o(t,s) o(s,s) I, to < t, s < tK.Ot Of

Therefore, since O(tl, t2)O(t2, t3) O(tl, t3),
tv*

(t) ,(t,, t*)
:_1

v_
tiv- dt,O(t*, t) 0(x*(t), *

0u

(t;e) e(O:(t;e)) + () (t) + ().

The vector 5(e) (o0(e), o,(e)), where lim_0oi(e)/e 0, i 0,

Now suppose that tit, 0, titi 0, i # , i 1, K 1, and that
tit _-< 0. Then

(t.*; e) :*(t.*) +f e), v,,*) ’(x*(t), *v-)] dr.
tv*q-et

It is easily seen that [0(t; e)/0]=o exists for t* < -< tK in this case, and
that, if we again introduce the notation (t) for this derivative, then

.(t*+) =(,0(t*+; e)) [(x*(t*), * x*v_) ( (t*) v*)]t

(t) O(t, t,*)(t,*+), t,* <__ <= t,
so that, in particular,

.(t) O(tK, t, *)[(x*(t.*), *v._) i(x*(t.*), v.*)]at..
If tit, _-> 0, an identical formula can be derived. It can be shown that for

arbitrary tiC, tit*, the effects due to the titi and tiv are additive so that, in
general,

where

(10)
K--1

q- O(tg,ti*)[J(x*(ti*), * X* * *Yi--1) ( (ti ), Yi )]titi.
i=l

Let 3 { + *(t)] y of the form (10), tivi A(v*), i 0, K 1,
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:FIG. 1. Illustration for Theorem

titi arbitrary real numbers except that if t tj, t tj, i, j 1,
K 1}. Since A(v) is a covex cone for each v U, is a convex cone.

d. Case 1. Right end constrained to lie on a smooth surface. Let the terminal
constraint set S be an (n /)-dimensional manifold as given by (3). Be-
cause of the assumptions on the g., there is an (n /)-dimensional plane,
T, tangent to S at each x’ S described by

T {x"[ (x" x’),
0x ]

0, j 1,2,...,

Let S denote the (n + 1 /)-dimensional cylinder in En+l defined by

S {1 (, x), x S, an arbitrary real number}

(see Fig. 1). Since *(t) S by hypothesis, there is an (n + 1 1)-
dimensional plane, T1, tangent to S at *(t) which is given by

T {] (/, x), x T*, /an arbitrary real number},

where T* is the tangent plane to S at x*(t).
Let C be the n-dimensional hyperplane passing through f*(t:) and

perpendicular to the x0-axis, i.e.,
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*(c={= (x0,x,...,x)lx0=x0 t)}

The hyperplane C divides the plane T into two semi-infinite planes

(11) T1+ {: T1, Xo _>- x0*(tr) },

(12) T- {] T, Xo Xo*(t)},
with the common boundary

(13) T’ C T.
The hyperplane C also divides S into two semi-infinite cylinders

S+= { S,x0 x0*(t)},

with the common boundary

S’ C S.
Let [ (, ,... ) be n arbitrary n-dimensionM vector lying in

T*. Then for this case, the following theorem holds;
THEOREM 2. Consider the problem (P) when the constraint set S is an

(n 1)-dimensional smooth manifold defined by (3). Then, necessary con-
ditions for u*(t) u (t; ), to t to be an optimal control are that
conditions (i), (ii) and iii of Theorem 1 be satisfied and, in addition, that
for every vector lying in T*,
(iv) (p*(t), ) 0,

where
p (t) (po*(t), (t)).

Proof. Since u*(t) u(t; V*) is an optimal control, it is necessary
that any admissible perturbed control whose corresponding trajectory saris-
ties the terminal conditions not give a lower cost. For this requirement to
be fulfilled, it is necessary tha there exist hyperplane separating and
T1-. This is shown by establishing Lemma 1.
LEMMA 1. Let *( t), to t be an optimal trajectory corresponding to

an optimal control u* (t) u (t; *, ), to t. Let G be an 1-dimensional
(1 n) smooth manifold with an edge, G in E+, such that *(t) G
Let L be the halfplane tangent to G at *(t).

If the cones, and L, having a common vertex at *(t), are not
separated, then there exists an admissible control u(t)= u(t; , ),

Two convex cones M and M in E+ with a common vertex are separated if
there exists hyperplane such that M is entirely contained in one closed hulfspace
defined by this hyperplane, and M is entirely contained in the other. Also, see [7,
p. 94].
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to <= <= tK, with a corresponding trajectory, (t; x, to, u), to <= <= t:,
such that f t) G but Y: t) Ge

Proof of Lemma 1. The proof of this lemma is very similar to the one
given for [7, Lemma 10] and is therefore omitted.

Proof of Theorem 2. It follows from Lemma 1 that if the cones and
T1-, having the common vertex *(t), are not separated, then there exists
an admissible control u(t) u(t; , ,), to -<_ _<_ t, such that
(t x, to, u) lies in S1- but not on the edge of S1-, and consequently will
satisfy the constraints on the terminal state and have a lower cost. This is a
contradiction. Therefore, for the admissible control u* (t) u (t; *, ,*),
to _-< _-< tK, and the corresponding trajectory f*(t), to -< <__ t, to be
optimal, it is necessary that there exist an n-dimensional hyperplane sepa-
rating and T-. We shall denote this hyperplane by A.

Let the (n + 1)-dimensional vector (a0, a, a+) be a normal
to A directed so that

(14)
((R-- R*(t/)),.) =< 0 if R< X,

and ((R- R*(I)),.) >_- 0 if R< T1-.

Clearly, the hyperplane A contains *(t) and T1’. Let

be any vector lying in T*. Then (0, ) will be parallel to T1’. Since
T1’ A, (, [) 0. But (o 0. Therefore

(,[>= +=o.
i=1

Also, from the definition of T-, it is clear that the vector [*(tK)
(--1, 0, 0, 0)] V1-. Hence, by virtue of (14) a0 =< 0.
Since N it follows from the necessary condition (14) that

(15) (g, ) -< 0.

Le *(t) be he solution of (6), with u u*, tha satisfies he boundary
condition p*(l) g. Then (15) becomes

(16) (P*(br), Y) _-< O.

Consider the element of 3C for which it 0 for each i, tv 0 for
(v_).i 1, and iV,_l is an arbitrary element of *

Then,

V--I)
dt(I)(t.* t) O(x*(t), *

0u
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ft
tv*

(* (tz), ) O’r( t t* *(t:),
*-,
0 t*, t)

(lr)
0(x*(t), * )0u

v-i)
dt 6v,_,

It is well known that the general solution of (6), with u u*, is
p(t) O’(t, t), where is an arbitrary vector in En+i. Consequently,

(18) O(&, t,*)p*(t) p*(t,*).

Using (17) and (18) in. (16), the necessary condition (16) becomes

(19) p*(t2). :_ (t.*. t) -Now the "Hamiltonian" (7) becomes for t’ t,-1,* t" t,*,

H(*(t.*) x*( * * *t-) t*)t.-,Vu--1

(x(t; x*( t.) * * *t._ v._) dt *(t.*)

(20)

where

V.H(p*(t.*) x*( * * *t._), v_,, t._, t2)

i(x( t; x* dt t,.*t.*-l) * * * p*tv-1 Vv--1V--I
tv-1

01,,*pt

Jr. (x(t; X*( * * * *t,-, dtt,-1 Vv--IVv--i

is an (n -F 1) X r matrix whose i, jth element is

a fi"f(x(t;x,(,t,_), t-i u), u) dt .=_
Oj t._l

Above, as in the remainder of the proof of this theoem, u denotes a vector
in U (as well as the constant function that takes on the value u). Clearly,

-) u(; (-1), u) ( )+ ;_ ,-1 u

_
(x( x*(*-1, d,
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Let
t_l), for *t,- u)z(t) 0(t; *( * *

t_l < < t.Ou =v*_

Then it is well-known LhL Z() satisfies the differenLiM equation

dZ(t) 0(x*(t) * 0(x*(t) *W--l) ,v-Oz+ z( 0.t-Idt Of: Ou

Therefore, using the variation of parameters formula for solutions of this
equation,

0 [t. (x(t;x*( * * * *tv-1), Vv-1) dtZ(t*)
t_

t-
(21)

o(x*(t) *
O(t.*, t) v.-0 dt._

Ou

Using (20) nd (21), the necessary condition (19) becomes

(22) (V.H(i*(t.*) x*( * * * t.*) 6v._-,)< 0.t-x), Vv--i t-I

Since itv_l is an arbitrary member of A( *v.-), (22) states that the function
* * *H(}*(t*), x (l-), v, t-, t of the variable v U has either a local,

maximum or a stationary value at the point v v-. Since the choice of
v, 0 _-< v =< K 1, was arbitrary, this must be true for each v, 0 _-< v

=< K 1. Thus, condition (i) of Theorem 1 has been shown to be necessary.
Consider the element of where iv 0 for each i, it 0 for i # v, and

it is arbitrary.
Then

y O(tK t,,*)[(x*(t,,*), * *), *W--l) (X*(tP Vv )](tvl

so that (16) implies that

(23) (*(t), y) (*(t*), [(x*(t*), * *v_) i(x*(a ), v*)])a _-< o.
But it can be positive or negative. Hence (22) is satisfied only when

(24) (*(t.*), [(x*(t.), * x*Vu--1) ( (tv*), Vv*)]) 0.

Again, the choice of v, 1 __< v __< K 1, was arbitrary. Therefore (24) must
hold for all v, 1 =< v __< K 1. Thus, condition (ii) of Theorem 1 has been
shown to be necessary. Recall that }*(tK) , ao <-_ 0 and ’=1
when (1, n) lies in T*. Consequently, condition (iii) of Theorem 1
and condition (iv) of Theorem 2 have also been proven.

e. Case 2. Right end constrained to lie at a point. Next, consider the prob-
lem when S is a point. For this case, the following special case of Theorem 2
holds.
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SI+
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Y’_ (t)

S =TI-

:FIG. 2. Illustration for proof of Theorem 2a

THEOREM 2a. Consider the problem (P) when the constraint set S is a point
in E. Then, necessary conditions for u*(t) u(t; *, *) to be an optimal
control are that conditions (i), (it) and iii of Theorem 1 be satisfied.

Remark. (See Fig. 2.) Since S is a point, S is a line parallel to the x0 axis
and passing through f*(tK). We define S1- and T1- as before. Clearly,
T1- S-. It follows from Lemma 1 that 34 and S1- must be separated by a
hyperplane A. Let a normal to A be defined as in (14). Then, as was
shown in Theorem 2, a0 _-< 0. However, since T1’ consists of a point, no
transversality conditions are imposed on . By proceeding as in Theorem 2,
it is found by letting p*(tK) , that conditions (i), (it) and (iii) of
Theorem 1 are necessary for u*(t) u(t; *. *) to be an optimal control.
This completes the proof of Theorem 2a.

f. Case 3. Free right end. Consider the problem where S is the entire space
E. For this terminal condition, the following special case of Theorem 2
holds.
THEOREM 2b. Consider the problem (P) when S E. Then, necessary

conditions for u*(t) u (t; v*, ,*) to be an optimal control are that conditions
(i), (it) and iii of Theorem 1 be satisfied, and in addition that

(iv) pi*(ti) O, i 1, 2, ..., n.

Remark. (See Fig. 3.) We define C and S- as before. Clearly, S- is now
a closed halfspace. By a simple extension of Lemma 1, it can be shown that
for u*(t) u(t; *, ,*) to be an optimal control, 34 must be separated from
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xo

/ ,,(t

_’1

FIG. 3. Illustration for proof of Theorem 2b

1-. Since t.1- is a closed halfspace, the only hyperplane which can separate
from S1- is C. Let a normal , to C be defined by

(25) , (1, 0, 0, ..., 0).

By proceeding as in Theorem 2, and letting p*(t) -,, the conditions of
Theorem 1 as well as the transversality conditions (iv) of Theorem 2b can
be shown to be necessary. This completes the proof of Theorem 2b.

g. Case 4. Right end constrained to lie in an n-dimensional subset of En.
The problems where S is a point, a manifold of dimension (n l) < n, and
the entire space E have been considered. The only problem left is that
where S is a closed, convex, n-dimensional proper subset of E.

Let S1, S1-, S1+ and C be defined as before. Two possibilities can occur.
(See Fig. 4.
Case 4a. The point 2*(t) is on the boundary of S. Clearly, 2*(t) E C.
The following definitions will be used. Let T be the supporting hyperplane

to S at *(t). Let T+, T1- and T’ be defined as in (11), (12) and (13).
Let be a normal to T directed away from the interior of S1. Then

(0, h, h). Let , be the normal to C given by , (1, 0, 0).
Let be an arbitrary vector parallel to T1’ and let

(26) D /212- *(t) a --/5 -1- , a =< 0, f -< 0}.

Case 4b. Suppose that *(t) is in the interior of S. The point *(t) is,
of course, also in C. In this case, a hyperplane analogous to T above cannot
be defined, and h will be assumed to be the zero vector.
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x X" ,se 4b

case 4a
SI +

KI T+

xi
\

S

F:[G. 4. Illustration for proof of Theorem

Then, in either case the following theorem holds.
THEOREM 3. Consider the problem (P) when the constraint set S is a closed,

convex, n-dimensional proper subsel of E. Then, necessary conditions for
u*(t) u(t; *, t’*) to be an optimal control are that conditions (i), (it) and
(iii) of Theorem 1 be satisfied, and, in addition, that

(iv) P* (tK) XI 4- t.,

where ),, p, are nonpositive constants.
Proof. (See Fig. 4.) Consider Case 4b. This case is virtually identical to

that of the free right end, and Theorem 2b holds. Since h 0 in this case,

#*(tK) tt (/, 0, 0, 0).

But from Theorem 2b it is seen that t _-< 0. Therefore, Theorem 3 is true
for Case 4b.

Consider Case 4a. Again, by a simple extension of Lemma 1, it can be
shown that for u*(t) u(t; *, t*) to be an optimal control, % must be
separated from D by a hyperplane A. Let a normal to A be defined as in
(14). Then, by virtue of (26),

Xh4-#5, X,# =< 0.

By proceeding as in Theorem 2, and letting p*(t) , the conditions of
Theorem i as well as condition (iv) of Theorem 3 can be shown to be neces-
sary. This completes the proof of Theorem 3.
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The conditions of Theorem 1 have been shown to be necessary for each
terminal constraint set under consideration. Therefore, the proof of
Theorem 1 is completed.

4. Conclusion. Although all the results in this paper were developed for
discrete time systems in which the sampling instants (i.e., the components
of W) are not fixed, most of these results Mso remain valid when the
sampling instants are fixed. In this case, condition (ii) of Theorem 1 no
longer applies but conditions (i) and (iii) of Theorem 1 and the trans-
versality conditions stated in Theorems 2, 2a, 2b and 3 are still necessary.

For Case 3, the free right end case, it appears that one of the restrictions
on the control constraint set U may be relaxed: it does not seem necessary
that the sets A(v) for v U be convex. This is because S- in this case is a
halfspace in En+, and the separating hyperplane is uniquely defined. Conse-
quently, the proofs no longer depend on the convexity of .
The results for all of the cases considered here carry over when the control

constraint set is different for each v, i.e., when v must belong to U, pro-
ided that the sets U, / 0, 1, K 1, satisfy the restrictions of
2b.

It is hoped that the results of this paper will be useful in developing
optimal control systems which are more readily engineered than those
operating in a continuous time mode.

Acknowledgment. The authors wish to thank Dr. L. W. Neustadt for
pointing out some inconsistencies and inadequacies in the original manu-
script.
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SOME APPLICATIONS OF STOCHASTIC DIFFERENTIAL
EQUATIONS TO OPTIMAL NONLINEAR FILTERING*

W. M. WONHAM

1. Introduction. A current problem in control theory is that of estimat-
ing the dynamical sate of a physical system, on the basis of data perturbed
by noise. Solution of the estimation problem is usuully immediate if one
knows the probability distribution of the system state at each instant of
time, eondiLionM on the data available up o that instant. It is therefore
of interest o ask how this posterior probability distribution evolves with
time, and if possible to specify the dynamical structure of a filter (i.e.,
analog device) which generates the posterior distribution when is input
is the time function actually observed.

In the present paper, filters of this type ure defined by means of stochastic
differential equations for the posterior distribution in which the observed
time function appears as a forcing term. Differential equations for this
purpose were introduced in 1960 by Stratonovi5 [1], who also indicated
their application to stochastic control problems [2]. When the dynamical
system under observation is linear and the noise is white Gaussian it hs
been shown [3] that StratonoviS’s equation cn be solved formally to yield
the sLoehusLic differential equation of the optimal (linear) filter. When
the function o be estimated is a Markov step process and the noise is
while Gaussia the optimal (non,linear) filter equations were stated in
[4]. The latter equations are discussed in more detail in 3, below; they
differ from those of SLratonovi5 in a sense to be noted in the sequel. For
one example, discussed in 3, performance of the optimal nonlinear filter
is evaluated numerically and is found to be somewhat better than that of
the simpler Wiener filter, particularly when the noise intensity is low.

In 4, the equations of 3 are generalized heuristically to the ease where
the state space of the step process is continuous, and iu 5 some tentative
remarks are made on the form of the solutions.
Some parallel work on noisy observation of a diffusion process has been

reported by Kushner in recent pper [5].

* Received by the editors April 30, 1964, and in revised form November 3, 1964.
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A brief review of stochastic differential equations is given in Appendix 1.
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2. Noisy measurement of an unknown constant. The basic idea of a
"functional" filter is illustrated by the following simple estimation problem.
Let x be a discrete, real-valued random variable with range of values a,
.-, a and a priori probability distribution {p.(0), j 1, -.., K} at

0. Suppose that one observes the function

(1) y(t) xt A- fo (s) dw(s), >= O,

where the function is known to the observer, and w(t), _>- 01 is a Wiener
process which is independent of x, with P{w(0) 0/ 1. The process
y(t) defined by (1) can also be written as the solution of the stochastic
differential equation

(2) dy(t) x dt -f- (t) dw(t), y(O) O.

Dividing formally by dt one obtains the possibly more familiar version

(3) ?)(t) x A- (t)(t), y(O) O,

where W represents Gaussian white noise. Since w is not differentiable in the
ordinary sense we shall use instead the differential notation of (2) and
interpret (2) to mean the integral representation (1) (see Appendix 1).

Let us now introduce the posterior distribution

(4) p(t) P{x al y(s), 0 <= s <-_ t}, j 1,..., K.

Evaluation of p(t) is straightforward (see Appendix 2); the result is

p(O) exp a. ()- @() a. ()- d
(5) p(t) :

p(O) exp a ()_ @() 1
_

= - a s ds

The stochastic integral in (5) is well-defined [6, Chap. IX, 2]. Now write
p(t) [pl(t), p(t)] and consider the joint process {x, p(t), > 0},
where we regard x as a fixed random variable with distribution {p.(0),
j 1, ..., K}. Since almost every w(t) sample function is continuous,
the same is true of the p(t) sample functions (by [6, Chap. IX, Theorem

We shall assume that f is continuously differentible, and bounded away from
0 for > 0.

It is assumed that an underlying probability space with elementary events is
given. Probability measure on this space is denoted by P. To simplify notation,
c0-dependence of random variables will not be indicated. In the Appendices "Borel
field" means "Borel field of -sets".

The qualification "with probability 1" on equalities between conditional prob-
abilities is to be understood.
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5.2]). Moreover, it is easily seen (Appendix 3) that the {x, p(t)} process
is Markov.
Our aim is to describe the evolution in time of the ps’s by means of a

system of stochastic differential equations. Having verified the existence
of the limits (7) and (8) written below, one can apply to the Markov proc-
ess {x, p(t)} a representation theorem of Doob [6, Chap. VI, Theorem 3.3].
Alternatively, since the ps(t) are known explicitly, it is more direct to
apply a result of Dynkin (Appendix 1 or [7, Theorem 7.2]), and this gives

(6) dp(t) ms[t, x, p(t)] dt -+- as[t, x, p(t)] dw(t), j 1, K.

The functions m. and s in (6) have the probabilistie meaning

(7)

(s)

m.(t, , v) lim E fps(t + h) ps(t)
-o \ h

x , p(t) t
(t, , -)r.(t, ,, -)

lira E ([p(t -- h) p(t)][ps(t -[- h) ps(t)]
--o \ h

x=,p(t)

i,j= 1,...,K.

computed from (5),In Appendix 3 the limits (7) and (8) are
using Dynkin’s formulas; the results are

(9) ms(t, x, p) (t)-2(x "2)(as-

(10) as(t, x, p) (t)-l(as
j 1, ..., K, where

K

(11) "2 ap
k=l

Writing out (6) in full and noting (2), we obtain finally

dps(t) -(t)-2"2(t)[as "2(t)]ps(t) dt
(12)

-[- (t)-:[a- 2(t)]ps(t) dy(t), j 1,..., K.

The system of stochastic differential equations (12) is the desired result.
It can be interpreted as specifying the dynamical structure of a filter (or
analog device) which cotimously generates the posterior distribution
p(t) when the input is the observed function y(t). From a practical view-
point this interpretation might be useful when the functi.on actually ob-
served is ot y, but rather some approximatio to the "function"
dicated in (3). In that case formal division by dt in (12) yields a system of
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nonlinear differential equations for the p/s, in which $ appears as a forcing
term. This system of equations can be simulated by an analog device with
input and output p, and thus represents the filter.
The Ito equation (12) is solved (Appendix 1) by replacing (12) by an

integral equation and constructing the solution q by successive approxi-
mations. It is plausible that the structure of the analog feedback device
should be chosen to model that of the successive approximation scheme.
However, it is not yet known precisely in what sense a physical process
must approximate a i) "process" in order that the filter output be a useful
approximation to the desired posterior distribution. Experimental work
along these lines would be of considerable interest.
Example. It is worth emphasizing that the ordinary rules of integration

cannot be applied to the stochastic equation (12) in an attempt to regain
the explicit solution (5). To illustrate this fact let x have possible values
al q- 1, a2 1 and let pl (0) p. (0) 1/2, ---- 1. Since pl (t) q- p2 (t)---- 1, it is sufficient to consider

(13) q(t) pl(t) p2(t).

From (11), 2(t) q(t) and from (12) the filter is defined by

(14) dq -q(1 q) dt-t- (1 q) dy.

On the other hand (5) yields the evaluation

(15) q(t) tanh [y(t)],

and formal differentiation of (15) gives

(16) dq (1 q) dy.

We observe that the first term on the right side of (14) is absent from
(16). The point is simply that stochastic differential equations of Ito
type cannot be manipulated by the usual formal rules (cf. [6, Chap. IX,
5]); also, it is plausible that an analog device for generating q should be
set up according to the Ito equation (14), and not according to the "for-
mal" equation (16).

It must be noted finally that StratonoviS’s procedure [1] applied to this
example leads to (16) and not to (14) (cf. [2, (9)]). In general it appears
that the coefficient of dt in StratonoviS’s equations (when these are written
in differential notation) cannot be given the interpretation indicated in
(7).

3. Noisy observations of a Markov step process. Let {x(t), >= 0} be a
stationary Markov step process with a finite number of states (distinct,

For a discussion of the process see [6, Chap.-V[, 1], where our o" are denoted
by q, qi.
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step levels) al, ..., aK. Denote the transition probabilities by

Vj(h) P{x(t + h) al x(t) a}.

We assume that

I1 ,ih + o(h), j i (h-- O)
(17) p(h)

,ih + o(h), j i (h 0),

where the ,,,:i >= 0 are constants and
K

(18) vii, i 1, K.

Let the distribution of x(0) be {p.(0), j 1, K}. To avoid triviality
we assume that {p.(0)} is not concentrated on any absorbing state among
the a/s.
As in 2, suppose that the process observed is {y(t), _>- 0} defined by

(19) dy(t) x(t) dt + (t) dw(t), O,

where P{y(0) 0} 1 and the Wiener process {w(t), => 0} is independent
of the x(t) process. Introduce the posterior probabilities

(20) pi(t) P{x(t) =ail y(s), 0 <- s <= t}, j 1,..., K.

We now seek a system of stochastic differential equations for the p(t).
In contrast to the situation in 2, a representation of the p(t) process
as an explicit functional of the y(t) process (cf. (5)) is apparently no longer
available. However, the appropriate generalization of (12) can be ob-
rained by an application of Doob’s theorem [6, Chap. VI, Theorem 3.3].
The equations, derived in Appendix 4, are

K

dpi(t) [- 3.p3.(t) -t- ,ip(t)]dt- (t)-2(t)[ai- 2(t)]p(t)dt
(21)

+ (t)-[a 2(t)]pi(t)dy(t), j 1,..., K.

Equation (21) is the main result of this paper. The previous remarks on
the interpretation of (12) apply also to (21): the equation defines the
structure of an ideal analog device for generating the p.’s from the data, y.
Comparison of (21) with (12) shows that the only new term in (21) is the
first term on the right side. This term is of the form 2+[p] dt where + is
the forward operator of the x(t) process, and thus represents a change in
p due to the observer’s a priori knowledge of how the x(t) process evolves.
We shall now discuss a simple special case of (21) in detail.
Example. Let =-- const, and suppose that x is a "random telegraph sig-
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F, (q) IFUNF’(

IGENERATOR
F (q) FUNCTION

GENERATOR

FG. 1. Optimal nonlinear filter: Example, 3.

El(q) 2q - -2q(1 q2)

F(q) -(1 q)

q(t)

[11]; that, is,

a q-l, a. --1,

vi vj v, i,j 1,2.

The parameter v is the expected number of jumps of x(.) in unit time.
Let

(23) q(t) pi(t) p2(t).

From (21) and (22),

(24) dq 2 vq dt #- q -2q(1 dt -t- (1 q2) dy

or equivalently

(25) dq [-2uq #-(1 q)(q x)] dt -k -(1 q:) dw.

A block diagram of the optimal filter is shown in Fig. 1.
We shall evaluate the filter performance in terms of mean square estima-

tion error. Thus the optimal estimate of x(t) is

2(t) E{x(t)l y(s), 0 <- s <-_ t}

(26) apl(t) -t- a:p:(t)

q(t).

In Appendix 4 it is shown that the joint process {x(t), q(t), >= 0} is Mar-
kov. It will be assumed that this process has stationary densities r=(q),
-1 _-< q -<_ 1, defined by

(27) -(q) dq P{x(t) +/-1, q(t) (q, q + dq)}.

Then the mean square estimation error is
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(28) 0. J_ (1 q)r+(q) dq -t-" .-I (1 -t- q)2r-(q)dq.

It remains to calculate the densities d:. From (25), the stationary Kolmo-
gorov forward equation [6, Chap. VII of the {x, q} process is

--2[(1 q)d:(q)]" [-(4-1 q)(1 q)r+(q)
(29)

2uq(q)]’ =t= u[-(q) +(q)] 0,

where’ denotes d/dq. With the symmetry condition r-(q) +(-q),
(29) has the unique solution

(30)

where

r+(q) c(1 q)(1 q)- exp [--2,(1 q.)-l],

(31) c= 2

and

(32)

From (28), (30) the stationary error variance is then

(33)

z-/(z + 1 )-l/2e-2t’z dz

The result (33) will be compared with the error variance of a Wiener
filter which is optimal for the same input. For the Wiener filter a standard
computation yields

.--1)1/22.[(1 -- 1]

(35) f 2.I + o (t/’) as t -- 0,
\ (4,)- + o(,-) as , --,

Numerical results are given in Fig. 2. Since the nonlinear filter generates
the estimate 2(t) defined by (26) it is necessarily optimal (with respect to
error variance) in the class of all filters which operate on the present and
past of the data y. Thus 0. =< 0. in fact, 0./0. is substantially less than
unity when the noise intensity is low.
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FIG. 2. Numerical results for example, 3.

4. Heuristic generalization of (21) to a continuous state space. The
differential equations (12), (21) were derived on the assumption that the
state space of the x(t) process is a finite set. The following is a heuristic
generalization to a continuous state space. Let {x(t), => 0} be a real-valued
Markov step process with state space X, where X is a closed finite interval.
Let (), v(, A) be defined for in X and A a Borel subset of X; the func-
tions v(.), v(., are assumed to be a "standard pair" in the sense of
Doob [6, Chap. VI, 2]. In addition, (. is assumed to be bounded on X;
the x(t) sample functions are then almost all step functions [6]. In analogy
to (17) one has

(36)

p(h, , A) PIx(t - h) A lx(t) }

1 () A {}.

As in 3, suppose next that

(37) dy(t) x(t) dt + (t) dw(t), >= O,

and introduce the posterior probability

(3S) p(t, A) P{x(t) A ly(s), 0 <= s <= t}.
The functions are denoted in [6] by q.
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Then inspection of (21) suggests the generalization

dp(t, A) I-f (, X- A)p(t, d) -p fx-
(39) --[[(t)-2(t) f’[ 2(t)]p(t, d) 1
I. (39),

(,A)p(t,d) 1 dt

dt

t) -" f [ (t)]p(t, d) 1 dy(t).

(40) 2(t) fx p(t, d),

and A is an arbitrary Borel subset of X.
Just as in the case of a (finite-dimensional) Ito equation, (39) might

plausibly be interpreted by starting from the corresponding integral equa-
tion, obtained by integrating both sides of (39) with respect to t, and seek-
ing the solution as the limit of successive approximations. Unlike (12)
and (21), however, the general equation (39) cannot readily be interpreted
as specifying the dynamics of a practically realizable filter for generating
p from the data y.

5. Sufficient statistics. We have seen in 4 that the stochastic differen-
tial equation for the posterior distribution of x(t) cannot be used directly,
in general, to design an optimal filter. In practice, construction of the
posterior distribution must be reduced to the evaluation of a "small"
number of functionals (sufficient statistics) on the observed function y.
For example, inspection of (5) shows that the K-dimensional stochastic
system (12) can be replaced by the 1-dimensional system

(41) dz(t) (t)-2 dy(t), z(O) O,

which generates the sufficient statistic

(42) z(t) ]o" (s)-2 dy(s).

On the other hand the writer knows of no similar reduction of the system
(21) or of (39).
Even if a nontrivial sufficient statistic z(t) for the determination of p

exists, it may be impossible to write z as an explicit functional of y. It would
be enough to know, however, that z satisfies a stochastic differential equa-
tion

(43) dz (t, z)dt - .(t, z) dy,
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where the functions fl, f2 are known; then in principle z could be obtained
as the output of an analog device set up according to (43). Thus the "solu-
tion" of an equation of type (21), (39) might take the form of a (known)
function of a statistic z which satisfies a (known) equation of type (43).
The investigation of solutions of this type (if they exist) would be of con-
siderable interest.

Acknowledgment. The author is indebted to H. J. Kushner (RIAS) and
to J. Ternan (Cambridge University) for helpful discussions.

Appendix 1. Stochastic differential equations.
1. Since stochastic differential equations are not yet widely used in

engineering applications we mention here some definitions and known re-
sults. For a detailed account the reader is referred to Doob [6, Chap. VI,
3] and Dynkin [7, Chaps. 7, 11].
Let {z(t), _-> 0} be a stochastic process in K-dimensional Euclidean

space R; we write z (zl, zK), where the z are real-valued, and put
11Z I1 (Ef Zi2) 1/2" Let {w(t), _--> 0} bea Wiener process (Brownian mo-
tion process) in R; that is, w(t) [w(t), ..., wz(t)] where the w(t)
are independent Wiener processes in R and, for _-> s => 0,

ft-s,j=i,(44) E{[w(t) w(s)][wi(t) w.(s)]} 0, j i.

(See [6, Chap. II, 9] for the definition of the Wiener process in R.)
The stochastic differential equation of interest here is written

(45) dz(t) m[t, z(t)] dt + z[t, z(t)] dw(t), >= O,

where m is a K-vector and a is a K X J matrix. Loosely interpreted, (45)
states that in a small time interval (t, -[- dt) the vector z(t) suffers a
"dynamical" displacement re[t, z(t)] dt plus random displacement a[t,
z(t)] dw(t), where the latter is a Gaussian random vector with mean 0
and covariance matrix z[t, z(t)]a’[t, z(t)] dt (’ denotes transpose).

Dividing both sides of (45) formally by dt one obtains

(46) i m(t, z) - (r(t, z)(v (. d/dt),

where is a J-vector whose components are independent "Gaussian white
noise processes". The notation of (46) has been more common in the engi-
neering literature than that of (45) but it is objectionable for two reasons"

(a) almost all w(t) sample functions are nondifferentiable almost every-
where, a fact which is intuitively plausible if we note that E dw(t) is
proportional to (dt)i/2;
(b) when applied to (46) the usual formal rules of integration lead in
general to results which are definitely incorrect. This statement will be
illustrated later.
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2. The stochastic differential equation (45) does not specify the value of
a derivative. According to Gihman [9], such an equation can be defined
by giving an explicit procedure for constructing the solution, but then has
meaning only insofar as this construction can be carried out. An alterna-
tive interpretation of (45) due to Ito I8] is the following. Replace (45) by
the stochastic integral equation

(47) z(t) z(O) q- fo m[s,z(s)] ds q-- Jo" r[s, z(s)] dw(s).

The stochastic integrals on the right side of (47) are defined [6, Chap. IX,
2, 5] under suitable restrictions on the (random) functions m[-, z(-)]
and z[., z(. )]. Ito’s construction of a z(t) process which satisfies (47) is
carried out by successive approximation; one sets z() (t) 0 and

(48)
n-0,1,2,....

Conditions which guarantee that the sequence {z(n)} converges for in a
finite interval [0, T] are given by Doob [6, IX, 3] and are, mainly, that
the functions m(t, z), z(t, z) satisfy a uniform Lipschitz condition in z,
and are bounded in norm by C(1 + z 112) 1/2 where C is some constant.
Then there exists a process lz(t), 0 <= <= T} with the following properties.
(i) limn z(n)(t) z(t) uniformly in with probability 1; and the z(t)
process is unique, in the sense that the difference of two solutions is zero,
with probability 1, for each t.
(ii) The z(t) sample functions are, with probability 1, continuous in
[0, T].
(iii) For each [0, T], (47) is true with probability 1.
(iv) If the initial value z(0) is a random variable which is independent of
the increments {w(t) w(6), 6, t2 [0, T]}, then Iz(t), 0 <= <= T} is
a Markov process.

In addition, the z(t) process has the following local properties, which
make precise the interpretation of (45) given earlier"

(49) (v) limE{z(t q- h) z(t)
-o h

z(t) re(t, ),

lira E[z(t q- h) z(t)][z(t q- h) z(t)] z(t)(v)
h-->0 h

J

(50) r(t, ’)r.(t, .’)
r-l

by(t,), say; i,j 1, ,K.

Doob’s treatment for K J 1 cn be generulized fter replacing m by
and [o-[ by o-II (2:.Z.’o-) (cf. [7, Chap. 7]).
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3. Assume for the moment that the Markov process {z(t), 0 <= <-_ T}
constructed above has a transition probability density p p(s, z; t, ),
defined for 0 _-< s < __< T and z, i" R. It would be convenient if the
hypotheses made on m and (strengthened to include the differentiability
needed below) guaranteed that the density p exists and satisfies the Kol-
mogorov equations

K K K

(51) Op 1 _, _, b(s,z)
Op -- m(s,z) Op

Os 2 = = Ozi Oz = Oz

Op 1-, ;-, 0
Ot 2 00

[b(t, )p] 0 Imp(t, )p]()

Unfortunately it does not seem possible to establish (51) and (52) without
mking priori ssumptions on the smoothness of p (see the discussion in
[6, Chp. VI, 3]). Nevertheless, if the z(t) process obtained by solving
the Ito equation (45) hs transition density which stisfies the Kolmo-
gorov equations, then the coecients which pper in the ltter re related
to the functions m and z of the Ito equation ccording to (49)-(52) bove.
Used heuristically, this correspondence between (45) nd (51), (52) is
convenient in engineering pplictions (see, e.g., [10]).

4. The following example shows that Ito equations cnnot be mnipu-
lated by the ordinary rules of integration (of. lso [6, p. 443]). Let [w(t),

0} be Wiener process in R with P{w(0) 0} 1. Let

(53) z(t) e(), O.

It can be shown that the z(t) process can be represented as the solution
of an Ito equation (45). From (49), (50) we find

(54) m() , () ,
so that

(55) dz(t) z(t) dt + z(t) dw(t), O,

with initial conditi.o P[z(O) 1} 1. On the other ha.d if (55) is re-
placed by

(56) z + ze, z(0) 1,

and the last equation integrated formally, the result is

(7) z(t) e+().

5. It is useful to know under what conditions a given process [(t), 0}
can be represe,ted s the solutio of a lto equtio (45) or equivaletly

Suggested to the writer by H. J. Kushner.



OPTIMAL NONLINEAR FILTERING 359

of the integral equation (47). One such representation theorem is given
by Doob [6, Chap. VI, Theorem 3.3]. We will state here a slightly special-
ized version of a theorem of Dynkin [7, Theorem 7.2].
THEOaEM. Let the process {z(t), _-> 0} satisfy an integral equation of

form (47) (in particular we can have z(t) =- w(t) and let (t, ’) be a
nunerical function, twice continuously differentiable in (t, ) for ->- 0 and

in RI. Put (t) [t, z (t) ]. Then the process (t), >= 0} satisfies the
integral equation

(58) (t) (0) + j0
"t J

I[8, Z(8)] d8 + fo r=lE ’r[8, Z(8)] dwr(8).

The functions and rr are given by

(59)

O(t, ) O t, )(t, ) + )__2 mi(t, )

1 02b(t, ") b(t, ),

where
J

(60) b,(t, ) ,(t, ),.(t, ),
rl

and

’ o(t,)(61) 6-r(t, ’) O’er(t, ’), r 1, J.

Equation (58) is (by definition) equivalent to the stochastic differential
equation

(62) de(t) [t, z(t)] dt + r[t, z(t)] dwr(t).
il

Equation (62) is more general than (45) in the sense that NJ ad the r
may not be expressible as functions of (t, ); however, by adjoining (62)
to (45) we obtain a new system of the same type as before.

Finally, it is seen that (62) can also be written

(62’)
d(t) {04[t_(t)] 1 O[t, z(t)]+

=1 =. 0.0
bi[t, z( t)]}

Equation (62’) exhibits the "chain rule" explicitly.

dt

K

+ oo[t, z(t)] dz,(t).
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Appendix 2. Derivation of (5). Let > 0 be fixed and put 8rn rt/n,
r 0, 1, n. It will be verified that i.(t), defined by

(63) p.(t) 1.i.m. PIx aj y(sr,), r O, 1,... n},

is given by the expression on the right side of (5); and then that/.(t) is
actually the conditional probability p.(t) defined by (4). Put
rn y(Srn) y(Sr-l,n), (r 1, n; n 1, 2, ...). Then from (1),

xt f(rt/n(6) + (s) dw(s).
Tb r--1)t/n

Thus for each n the random variables /rn xt/n, r 1,
dependent and Gaussian with mean 0 and variance

frtln )2(65) v (s ds.
d(r--1)t/n

Defining

(66) j(n)(t) P{x aj]y(Srn), r O, 1,

we have

j(n)(t) Plx aj I]rn r 1, n}

(67)

n, are in-

n},

pj(O) exp I-- (rn (2Vrn)--I1_, p,(O) exp ,r, ak
k----1 r-=l

E rnYr--ln a (2Vrn) -1
r--I

7 pk (0) exp ak
k-----1

-1 (2Yrn)--irn Urn ak

f0(69) lira E - )-2v (s ds.

From (67)-(69) it follows that iS(t) coincides with the expression given
by (5). It is clear that the same result is obtained with any sequence

and

(68) 1.i.m. ]rn Vr--ln (s)-2 dy (s)
nO r=l

By definition of the stochastic integral ([6, Chap. IX, 2]) and the con-
tinuity of (s) -2, 0 =< s _-< t, there follows
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{Srn} such that 0 Son < 81n < < 8nn (n 1, 2,...), and

max (s s_,) -- 0 s n .
lrn

Let ff be the smallest Borel field with respect to which the random
variables y(s), 0 N s N t, are measurable. To see that i(t) pi(t),
note first that pi(t) is certainly measurable relative to ff. Now suppose
that 0 N s N and that A, is a Borel subset of R, 1, N. If h
is the event [y(s) A, , 1, N] then by adjoining the s’s to each
of the sets (Sly, s), n 1, 2, .-., and including the y(s,) as con-
ditioning variables in (66), we can write

70) ()(t) dR P{A[x a]}, n 1, 2,

Since y() y(t) in the mean we obtain, on letting n ,
f (t) dP P{A[x(71)

Since (71) holds for every A of the form described, it holds for every A
in the Borel field t (cf. [6, Chap. I, 7]). That is, we have verified that
(t) has the defining properties of the conditional probability p(t).

Appendix 3. Properties of the p(t) process (5). A simple computation
from (5) shows that, for 0 r t,

1 -2p() exp a (s)- dy(s) a ()
(72) p() . p(r) exp a (s gy(s) a (s)- ds

Consider the joint process x, p(t), 0} where x is regarded as a fixed
random variable with distribution {pi(0)}. From (72), the vector p(t)
depends only on x, p(r), and the w(s) increments for r < s < t. The
latter increments are independent of p(r), and of x and the w(s) incre-
ments for 0 < s < r, on which p(r) depends. It follows that the condi-
tional distribution of x, p(t) given x, p(s), 0 s r, is a function of
x, p(r) alone; that is, the process {x, p(t), 0} is Markov.
The stochastic differential equation (7) for the p(t) process can be

established by applying either a representation theorem of Doob [6, Chap.
VI, Theorem 3.3] or a related theorem of Dynkin [7, Theorem 7.2]. In
either case the theorem mentioned must be extended slightly to take
account of the fact that only the p(t)-component of the joint {x, p(t)}

See footnote 3 in 2.
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process is of diffusion type (alternatively the constant component x cn
be regarded s trivial diffusion process). We shall apply Dynkin’s the-
orem, extended to the present case. From (5) we see that pj(t) is of the
form

(73) p(t) [t, z(t)],

where

(74)
z(t) (s)- dy(s)

,.t

(s)- dzo(s)

1 )-.p" (0) exp as z - as s ds
(75) (t, z)

p(0) exp a z a s ds

Since (t, z) is twice continuously differentiable in (t, z), there follows
(by Appendix 1 or [7, Theorem 7.2])

(76) p(t) p(O) Jo m[s,x,p(s)] ds + Jo z[s, x, p(s)] dw(s).

The functions m, are given by

O(77) m(t,x,p) t(,) +
and

0(78) z(t, x, p) fl(t)- (t, z).

The probabilistic meaning of m, a is expressed by (7) and (8). The
expressions (9) and (10) are computed directly from (75), (77) and (78).
Finally, the stochastic differential equation (12) is equivalent (by defini-
tion) to the integral equation (76).

Appendix 4. Derivation of (21).
1. We first evaluate p(t). To simplify the writing of certain conditional

expectations it is convenient to adjoin to the probability space of the
{x(t), w(t)} process, a "dummy" step process {2(t), 0}, defined to have
the same range, initial distribution and transition probabilities as the x(t)
process, but independent of {x(t)} and {w(t)}.
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Now let sr rt/n (r 0, 1,

(79)

n; n 1, 2, ...) and put

rn y(Srn) y(Sr--l,n),
rt[n

x(s)rn , (r--l) tin

rt/n

() ds.
,] (r--l) t/n

By (19),
rt/n

?qrn rn +
.(r--1)t/n

()

and for each fixed n the random variables w r (r 1,
independent and Gaussian with mean 0 and variance

rt[n

(8o) Vr (S)
’(r--1) t/n

Using this fact we can write

pj()(t) Plx(t) ajly(s),r O, 1, ..., n}

n) are

(81)

P{x(t) ajl?rn,r 1, ..., n}
K

pi(O)pij(t)
i=l

E exp -- (cr rn)2(2Vrn)-1 Xo ai xt aJcrn_r
K K

p(O)p(t)
k=l il

] Xo ai xt aktcrnYrn
In (81) the c are arbitrary real numbers and the conditional expecta-

tion is regarded as a function of the Cn evaluated at the (random) argu-
ment Cn Vr (r 1,... n). The last line of (81) follows by Bayes’
rule and the fact that the conditional expectations thus evaluated are
simply conditional densities of the w. From now on a normalizing factor
will be denoted by the generic symbol N. Then

K

p()(t) N p(O)p:(t)
i=l

(82)
1E exp Cr,,V,.--I rV XO a,xt a

r--I Crn-’Vlrn
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By our assumptions on the 2(t) process, (82) can also be written
K

p(n)(t) N pi(O)pi(t)
i=1

(83)
v,-- rnV 20= ai,2t=a,w,... n

r=l rl

Since almost every 2(t) sample function is a step function, the limit

(84) lira E " - fv (s)-(s) ds

exists with probability 1 and hence, by bounded convergence, in mean
square. Further

rn rn --1 --1
Yrn rnrn + rn (8) dw(8) Vr

rl rl d (r--1) t/n

(85)
---+ fo (s)-x(s)(s) ds

+ f0 (s)-’(s) dw(s) (n -+

fo (s)-22(s) dy(s),

where the integral is again a limit in mean square ([6, Chap. IX, 2]).
Let On(t) be the random variable in the brackets in (83) and put

f0 lf0t(86) O(t) fl(s)-22(s) dy(s) (s)-2(s) ds.

From (84) and (85), 1.i.m. On(t) O(t). Furthermore

[ee’(t) cO(t) = 1/210n(t) O(t) [ee(t) -P ee(t)]
-< [0n(t) O(t)]e

for some constants X, > 0; and since

(87) 1.i.m. eo’s(t) ee(t).

Denote by fit" (resp. fit) the smallest Borel field relative to which the
random variables 2(0), 2(t), ln, "’’, Vnn, (resp. 2(0), 2(t), y(s),
0 -< s =< t)are measurable. Now

E{ eOn(t) :tn} E{ee(t) :t}
(88)

E{e,<(t) lt" E{e()lt} + E[e’(t) it} E{e(t) it}"
See footnote 3 in 2.
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Since :t ’fJ:t and since, by inspection of On(t), the random variable
E{en(t) lt is measurable relative to tn, there follows ([6, Chap. I, Theo-
rein (8.1])

(89) E{ e(t) t’} E{ 0n(t) t} 0

with probability 1. Finally, (87) implies

(90) 1.i.m. E{ n(t) t} E{ 0(t) t} 0,

Thus we have shown that
K

1.i.m. p()(t) N p(O)p:(t)
(91) =

E{eO()](0) a,(t) a;y(s),0 s t].

By exactly the same argument as in Appendix 2 the left side of (91) can
be identified with p(t).

2. Next we show that the process {x(t), p(t), 0} is Markov. For
0 twrite

(92) 4(r, ) exp ()-() d() ()-() d

and leg , be ghe smallesg Borel field relagive o which he random vari-
ables (), r N N , are measurable. Thus (r, ) is measurable relative
o he Borel field generated by , and he ()’s for r N N . Wigh
ghis nogagion,

K

NOW

pj(t -t- h)
K

N pk(O)pkj(t - h)E{(0, + h) 12o ak, 2t+, a, ot+h}
K K

(94) N p(O)pi(t + h) P{2t a ]20 a, 2t+ ai}
k=l il

E{(0, t)(t, + h) 12o a, 2t a, 2+ a, ot+}
K K

N p(O)p()pi(h)E{4(O, ) o a, a,
i=1 =1

E{(t, + h) lt a, t+h aj, ttWh},
where we have used the fact that the 2(t) process is Markov and is inde-
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pendent of the y(t) process. Comparing (93) and (94) we obtain

(95)

K

p(t + h) N p(t)p(h)
i.-I

El(t, -t- h)]2t ai, 2t+h aj, _,tt+h}.
Write p(t) [pl(t), p(t)] and consider the joint process

Ix(t), p(t), >- 0}. Equations (92) and (95) show that x(t zc h), p(t -t- h)
are fully determined by x(t), p(t) and the w(s) increments for

<- s __< -F h. Reasoning as in Appendix 2 we conclude that the joint
process/x (t), p (t), >_- 0} is Markov.

3. We now evaluate functions m. and b,. defined by

(96) m(t, x, p) lim EP(t
,-.o h

x(t) x, p(t)

and

bi. (t, x, p) lim E
h-*0

(97) .f[p(t
h t,]

To simplify computation note that the conditional expectation in (95)
is readily evaluated, if it is modified by including the extra condition that
no jump of 2(.) occurs in the interval (t, + h); and the conditional
probability that no jump occurs, given 2t 2tWh ai, is

e(98)
p,(h)

1 + O(h) (h 0).

Also, since fl(s)- is assumed bounded, we have

(99) (t, + h) f(h)ea,
where zy y(t Jr- h) y(t), X > 0 is constant, and f(h) is bounded as
h --0. Put

ft
+ 1 ft+h(100) Oi ai fl(s)- dy(s) ai (s)- ds.

From (92) and (98)-(100),

(101) E I,(t, -- h) 2t a gt-t-h a tt t+h} e + ho(h),

and if j i,

(102) E{(t, - h) t a, t+h ai, 5Ctt+t’} 1 + hw(h),
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where (for a suitable f(.

(103) 0 =< i(h),

Thus

ooij(h) <= f(h)eTM

(104)

pj(t + h) N[p(t)p(h){ej + h2o-(h)}
K

+ pi(t)pij(h){1 + hco.(h)}].
i=l

A simple calculation from (100) yields

(105) lira h-iElOlx(t) x} ax(t)- -aj(t)-,
hO

(106) lira h-E(OOlx(t) x} aiajf(t)-.
h-0

We note that in (104), N- is the sum over j of the terms in brackets.
Writing out (104) explicitly, subtracting p(t) and then using (105),
(106), we can compute the limits (96) and (97). The results are

(107)

nd

(a08)

where

K

m(t, x, p) --p + ijpi + (t)-(x 2,)(aj

b(t, x, p) [(t)-(a- 2)p:][(t)-l(a 2)p],

K

(109) Ea,p,.
i=1

4. Define

(110) r.(t, x, p) fl(t)-l(aj )p j 1,... K.

It will be shown finally that the p(t) process can be represented as the
solution of the stochastic differential system

(111)
dp(t) m[t, x(t), p(t)] dt

+ ([t, x(t), p(t)] dw(t), t>=O,j= 1,...,K,

where {w(t), =>. 0} is the Wiener process introduced in (19). We shall
apply a representation theorem of Doob [6, Chap. VI, Theorem 3.3],
ge,mralized to allow for the fact that oly the p(t) compoert of
the {x(t), p(t)} process is continuous (that almost every p(t) sample func-
tion is continuous follows from (104)).
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The p(t) process is obviously bounded; hence by (107), (110) the con-
ditions usually imposed on m and [6, Chap. VI, 3] are satisfied. Now
let t be the smallest Borel field with respect to which the random vari-
ables x(s), p(s), 0 <- s <= tare measurable. Then, since the Ix, p} process
is 5/[arkov, the evaluations (107), (108) are unchanged if the conditional
expectations in (96), (97) are defined relative to t Reasoning as in the
proofn of [6, Chap. VI, Theorem 3.3], we conclude that each process

(112)
pi(t) p(O) m[s, x(s), p(s)] ds, t >=

j= 1, ...,K,

is a martingale which satisfies the conditions of [6, Chap. IX, Theorem
5.3]. That is, if {/.(t), t; _-> 0} is the martingale defined by (112), if
{g.}-I g.-1 where g. 0, and if {.}-1 0 where12 . 0, then the
equation

(113) (t) f {z.[s, x(s), p(s)]} -1 dp(s)
30

defines a Wiener process v( t) >- O.
It remains to identify each .(t) process with the w(t) process of (19).

Let

(114)
(t) y(t) fo x(s) ds

Jo" (s) dw(s).

Using (104)-(106) and (110) we find that

(115)
limh-lE{[(t + h) (t)][p(t + h) p(t)] t}
h-O

(t)z.[t, x(t), p(t)].

Reasoning as before we conclude that the process l(t), t; >= 0} is
martingale. Since

w(t) f fl(8)-1 d(

it follows by (113) and (115) that

(116) El[w(t) -w(s)][(t) -.(s)] .} t- s, 0 < s < t.

The Borel field t plays the role of the 5:, of Doob’s theorem.
cannot vanish on a t-interval. Otherwise 2(t) is constant on this interval,

which cn be shown to imply that the posterior variance of x(t) vanishes, hence that
all but one p(t) vanishes, in contradiction to (86) and (91).
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Hence for each > 0, @.(t) w(t) with probability 1; by continuity this
implies that the processes @-(t), w(t) are essentially identical. The inte-
grated form of (21) now follows from (113) by inversion.
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THE ASYMPTOTES OF THE TIME LAG ROOT-LOCUS*

ALLAN M. KRALL
In 1961 [2] and 1963 [3] formal proofs of various properties of the root-

locus method appeared. Included in these properties was the existence of
asymptotes which some of the zeros of the root-locus approach as the
parameter becomes large.

Later Berman and Stanton [1] showed that not only does the root-locus
approach these asymptotes, but in addition, the equations of the tangent
lines approach the equations of the asymptotes. (The equation of the line
y mx + b approaches the equation of the line y mox + bo
when m -- m0 and b -- b0.)

Recently [4] the root-locus method has been extended to time lag systems.
This paper shows that the time lag root-locus also has the property that
the equations of the tangent lines approach the equations of the asymptotes.

Let z x + iy, g(z) z + azn-1 + ..., h(z) z + bz"- + ...,
where n >- m. Let K, 0 and r > 0 be real numbers. The time lag root-locus
is the set of all zeros of g(z) Ke*e-*Zh(z) for all real values of .

All points on the root-locus satisfy the equation

F(x, y) cos (0 ry) Im (h(z)g(z))
(1)

+ sin (0 ry) Re (h(z)g(z)) O,

where the bar over g(z) indicates the complex conjugate. Let the positive
root-locus be those zeros for which => 0. The negative root-locus, simi-
larly defined, is the positive root-locus with 0 replaced by r + 0. It has
been shown that as x approaches + , the positive root-locus approaches
the lines,

1(2) y (0 + 2/cr), lc 0, 1, 2, -...
T

As x approaches o, the positive root-locus approaches the lines

1(3) y (0 In m]r + 2k), /c 0, 1, 2,
T

It is well known that if (x, y) is a point on the locus of F(x, y) O,
the tangent to the locus at (x, y) is giveu by

(4) F(x, y)Y + Fx(x, y)X F(x, y)y + Fx(x, y)x,

* Received by the editors May 1, 1964, and in revised form October 14, 1964.
333 McAllister Hll, Department of Mathematics, The Pennsylvani State Uni-

versity, University Park, Pennsylvania.
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where the point (X, Y) is on the tangent line. We now prove that this
equation approaches Y (l/T) (0 2]C) aS X approaches , and ap-
proaches Y
we mean x iy. If O(x)/(x) remains bounded as x approaches
then (x) O((x)).
We see that

F cos (0 --ry) - Im (h(z)-))
(5)

-[- sin (0- ry) - Re (h(z)g--),

Fy =eos (0 ry) Im (h(z)g-) r Re (h(z)’-)
(

-t- sin (0 ry) yRe (h(z)g(z)) -t- r Im (h(z)g(z))

(7) h(z)g(z--
(8) Re (’z") x+’ + O(x’+’-2),
(9) Im (zm) (m n)x+’-y + O(x+’-2).
As x approaches 4- , we see

F cos (0- ry)[O(x+-)]
(o)

-t- sin (0 ry)[(m -t- n)x’+’- -[- O(x+"-)],
and

Fy cos (0 ry) [0 (x"+m-1) TXn+m]
(11)

-t- sin (0 ’y)[O(xn+m-1)].

Since as x approaches -t-o, y approaches (1/r)(O zr- 21cr) or

(1/r) 0 In m]r -t- 21cr), cos 0 ry) approaches 4-1 and sin 0 ry)
approaches 0. Thus

(12) F 4-rx+(1 -t- O(x-l) ).

Since F is ultimately bounded away from zero, we can divide (4) by F.
Thus we find that if (x, y) is a point on the root-locus, the equation of the
tangent line is

(1.3) Y- y M(X- x),

where M F/F, given in (10) and (11.). As x approaches + , y ap-
proaches (l/r) (0 -t- 2/cr), cos (0 ry) approaches 1, and sin (0 ry)
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approaches 0. Since both M and Mx are dominated by x+ in the de-
nominator, both approach 0, and the equation of the tangent line ap-
proaches Y (l/r) (0 21or). Similarly as x approaches . the equa-
tion of the tangent line approaches Y (l/r) (0 [n m] - 2]c).
We have proved
THEOREM. The equations of the tangent lines of the time lag root-locus ap-

proach the equations of the asymptotes of the time lag root-locus as x approaches
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TIME OPTIMAL CONTROL WITH AMPLITUDE AND RATE
LIMITED CONTROLS*

W. W. SCHMAEDEKE AND D. L. RUSSELL,:

Introduction. It has long been recognized that the maximum principle of
Pontrjagin would have to be modified to allow for controls whose switching
rates were finite, due either to inertial or other factors.
The first insight into the form of the resulting theory was provided by

Birch and Jackson in their 1959 paper [2], although they were discussing
quite a different problem.
The first discussion of the problem together with a set of necessary con-

ditions characterizing the optimal controllers was provided by Chang.
Several of the results in this paper were indicated by him in [1]. The aspect
of the problem that is new in the treatment herein is the requirement that
solutions of the augmented adioint equations be differentiable on the whole
interval (0, T) instead of merely piecewise differentiable on so called "pang"
intervals. It is this requirement which allows the "pang" intervals to be
located. To be more specific, it is shown that the optimal control is either at
extreme amplitude or extreme velocity. The subintervals of (0, T) over
which this behavior occurs can be determined if appropriate initial and final
conditions are given.

Preliminaries. We shall consider a dynamical system whose state at any
time is described by an n-dimensional column vector x(t). The law govern-
ing the motion of the state (and the law regarding the action of the controls
on this motion) are expressed in the form of a vector differential equation,

(1) 5c A(t)x ’t-- B(t)u + c(t),

where A(t) is an n X n matrix, B(t) is an n X m matrix, and c(t) is an
n-vector. The elements of A, B, and c are bounded continuous functions of
time on an interval I under consideration. The components of the m-vector
u(t) correspond to the control functions whose values may be regulated in
order to influence or control the motion of the state vector x(t). The control

* Received by the editors February 21, 1964, and in revised form November 10,

1964. Prepared under Contract NASw-563 for the National Aeronautics and Space
Administration.

Minneapolis-Honeywell Regulator Company, Minneapolis, Minnesota. Now at
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problem is to select the real functions uj(t),j 1, m, on an interval of
time 0 =< __< T such that the solution x(t) of (1) moves from a prescribed
initial point x0 in R (n-dimensional real number space) to a prescribed
moving target A(t) in minimum time 7.’. The prescribed target set A(t) is
assumed to be a noneml)ty coni)act subset of R for each fixed in the given
interval [. By considering the collection 2 of all nonempty compact subsets
of R with the distance d(C1, C) between two such subsets C and C de-
fined to be the infimum of all numbers d such that C lies in the d-neighbor-
hood.of C and C lies in the d-neighborhood of C,, 72, becomes a complete
metric space (ef. [3]). It is herein assumed that the target set a(t) varies
continuously with in the sense of the preceding metric (called the Haus-
dorf metric). For example, if A(1) is a point for each t, then the target is a
continuous curve; if A(t) is a constant compact set, then the problem is the
familiar regulator problem where the target is fixed.

It is further supposed that there are no constraints on the state variables
x(t) other than the given initial point x0 and the prescribed target set zX(I),
and that the controls u(t) have components that are bounded in amplitude.
Moreover, some (not necessarily all) of the components of the control vector
are assumed to be differentiable and to satisfy bounds on these rates. Thus,
the class of admissible controls is defined to be all m-vector functions u(t),
defined on various subintervals (of the form [0, r]) in I, whose first k com-
ponents are absolutely continuous functions and whose remaining m lc
components are measurable functions. The following restrictions are itn-
posed on the components of the vectors u(t)"

a,(t) <-_ ui(t) <= a,(t), i 1, ,m,
(2)

b(t) <= t(t) <= b,(t), i 1, ..., ,
where _-< m. The functions a(t), a(t), bl(t), and bi(t) are bounded
continuous functions with the further assumption that ale(t) and a(t) are
absolutely continuous and satisfy

(3)
bli( t) < c2i(t) < b2i( t),

b( t) < d( t) < b,( t),

at all times at which the a’s are differentiable.
It will be convenient to define new controls v(t) with

Y(t) l(t), "’", v(t) t(t), V+l(t) U+l(t), "’", Vm(t) Urn(t),

and new state vectors z(t) with

z,(t) x,(t),..., z(t) x(t), z,,+(t) u,(t),..., z.+(t) u,(t).

One then obtains the system
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(4)

where

(5)

F(t)z + a(t)v(t) + h(t),

ail aln

an1 ann

G= 0 0
1 0.. 0

0
0 1

bll blk-

bnl

0

Lo J
and where A is the original system’s n X n coefficient matrix, B0 is an
n /c matrix whose/c columns are the first/c columns of the original control
coefficient matrix B, B1 is an n X (m /c) matrix whose columns are the
remaining (m k) columns of B, and I is a k k identity matrix. The
zero matrices are blocks of zeros of the appropriate dimension to make F
have dimension (n -t- k) (n -t- k) and G have dimension (n + k) m;
the number of zeros in h is/c so that h is an (n -t- k)-vector.
The system (4) is now in a bounded phase setting, that is,

(6) ali Zn+i(t) <= a2i, i 1,’’’, k,

(this is the bounded phase constraint); furthermore, the bounds on the
amplitude of the new control vector v(t) are given by

bi,i <- Yi(t) -- b2i, i 1,’’’, k,
(7)

aU <= vj(t) <--_ a2., j ]c -- 1,...
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Necessary conditions for optimal controls. For each time - with [0, r]
contained in I, the set of all admissible controls on [0, r] together with the
set of their corresponding responses is considered. The set of attainability
K(r) is the set of all points z(r) in. Rn+k which are terminal points of these
response trajectories, i.e., if z(t) is the response to the admissible control
function v(t) defined on_ the interval [0, ], then the point z(r) is to be
included in the set K(r). By virtue of the conditions (2) imposed upon
the controls u(t) and the definition of the control function v(t), it can be
shown (see Appendix) that K(r) is closed, bounded, and convex. More-
over, K(r) is continuous in in the sense of the Hausdorff metric previously
mentioned. This follows from the easily established fact that given 0,
there exists a i 0 such that z(r + i) z(r)l < e for all responses z(t)
with z(r) in K(r).

Next, let A*(t) be that subset of Rn+k obtained by the simple imbedding
of A(t) in Rn+, i.e., if z belongs to the set/*(t), then the firstn components
of z constitute the components of a point x contained in 4(t) and the re-
maining/ components of z are unrestricted. The geometrical significance of
this imbedding is simply that A*(t) is a slab in Rn+ for each t. Thus, as-
suming the existence of an optimal control, if z(0) is not in 4*(0) (i.e., if
x(0) is not in A(0)), then as increases from 0, there is a first time T at
which the convex set K(T) comes into contact with the slab A*(T). This,
by virtue of the continuity, can be shown to imply that the optimal response
z(t) has its terminal point z(T) in the boundary of K(T).

Properties of controls v(t) on an interval [0, tl] whose responses hit the
boundary set of K(t) will be examined. It will be convenient to treat (4)
and the control v(t) when investigating these properties because of the
simple geometric nature of the problem. The necessary conditions for op-
timal controls, however, will be phrased in terms of (1) and the controls
u(t). To this end, the following definition is made.

DEFINITION 1. The linear control process (4) subject to (6) and (7) is
considered. An admissible control v(t) on the interval [0, T] is called an
extremal control O(t) in case there exists a nontrivial solution (t) of the ad-
joint equations (a prime on a vector or matrix means the transpose of that
vector or matrix)

--F’,
such that

where the maximum is taken over all admissible controllers v(s).
LE 1. A control ( t) on [0, T] is extremal if and only if the corresponding

response 2(t) has its terminal point 2( T) in the boundary set of K(T).
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Proof. Assume O(t) is such that 2(T) lies in the boundary of K(T). Then
let r be a support plane to K(T) at the point 2(T), and let be an outward
normal to K(T) at the point 2(T). Then

(8) v’[2(T) z(T)] __> 0

for any point z(T) belonging to K(T). Now let A(t, s) be a fundamental
solution of the homogeneous equation corresponding to (4) with A(s, s) I,
the (n + k) X (n -t-/c) identity, and consider the variation of parameters
formula for a solution of (4):

(T) A(T, 0)Zo -4-- fr
(9)

Hence

A( T, 0)A-1(8, O)
0

T

-t- J0" A( T, 0)A-l(s, O)h(s) ds.

fo [ B(s) 1 [o(s)- v(s)] ds>O.(10) n’i2(T) z(T)] n’ A(T, s)
0

Let k(s) be a particular solution of the adjoint equations by defining

’(s) n’A(T, s).

Then

fo" [0I Bl(s)l [(s) v(s)] ds >= O,(11) (s)
0

i.e., is an extremal control.
The other case is proven by beginning with (11) and proceeding back-

wards through the proof of the first case. This completes the proof.
According to Lemma 1, these extremal controls are the only candidates

for the optimal controls since previous remarks have established that an
optimal control has a response whose terminal point lies on the boundary
of K(T).

It will be convenient to decompose the adjoint vector ’(s) as follows"

(12) k’(s) (O’(s), ’(s)),

where O(s) is an n-vector and (s) is a/c-vector. Then (11) becomes
T

(13) f0 [’(s)’ O’(s)B(s)][(s) v(s)] ds >-- O.

v(s) is decomposed by defining

(14) v(s) [_((s) 1s)
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where (s) is a k-vector whose components are

(s) =- .(s), () =- v(s),

and where u(s) is an (m k)-vector whose components are

u(s) =- u+(s), u(,_)(s) u,(s).

Also, for later use, (s) is defined as a k-vector whose components are

1(8) U1(8),*’’, k(8) UI(8).

Then (13) may be written as
T T

(15) f0 ’(s)[(s) (s)] ds + fo e’(s)Bl(s)[(s) u(s)] ds >= 0..

It is now possible to refine Lemma 1 as follows"
]EMMA 2. An extremal control ( t) must be such that its first lc components

(represented by (t) satisfy

T

(16) fo ’(s)[(s) (s)] ds O,

for i 1,..., lc, and for all O(s) which are admissible ith components of
admissible controls v(s) furthermore, the remaining m tc components of
(t) (represented by (t) satisfy

T

(17a) f [O’(s)B:(s)][(s) --u(s)] ds O,
oo

or equivalently
T

(17b) fo [O’(s)B(s)][t+(s) u+(s)] ds 0,

for i 1, rn t, and for all admissible control components u+(s).
Proof. Let a particular choice of v(s) be made as follows: v(s) =-- (s)

for j # i and let v(s) be merely admissible. Then (s) v(s) has at most
one nonzero component, namely, a(s) v(s). With this choice for v(s),
the second integral in (15) vanishes and condition (16) of the lemma is
established. Condition (17a) and its equivalent condition (17b) are proved
in a similar manner.

Returning to (8), r is decomposed as follows:

(.s) ,’ (,’, -’),

where }, is an n-vector and " is a k-vector. According to the definition of
(t) in the remarks following (14), z(T) may be written as
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z(T) (T)

and (8) becomes

(9) ’[(T) x()] + ’[(T) (T)] __> 0.

By utilizing the variation of parameters representation of a solution of (1)
(with E(t, s) as a fundamental solution matrix of the homogeneous equa-
tion, where E(s, s) is the n n identity), one obtains

t
(20) x(t) E(t, O)xo -t- fo E(t, s)B(s)u(s) ds -t- Jo E(t, s)c(s) ds.

Now, noting that

(21) O’(t) k’(t)E(t, s)

and substituting this and (20) into (19), there results
T

(22) fo O’(s)g(s)[Ct(s) u(s)] ds q- "[(T) (T)] >= 0,

where u(t) is any admissible control vector.
Lemma 3 is established in a manner identical to that used for Lemma 2.
LEMMA 3. An extremal control v(s) must be such that its first k components

(represented by all(t), t when integrated, yield control componenls
t, (t), t (t) which satisfy

(23) Jo [e’(s)B(s)][(,) u(s)] ds -ff ’[,(T) u(T)] ->- 0,

for i 1, lc, and all admissible components u(t) furthermore, they must
satisfy

T

(2) fo [o’(s)B(s)][(s) u(s)] ds >- O,

for i t -- 1, m, and all admissible components ui(t).
Remark 1. It is observed that the entire matrix B appears in the integrand,

whereas in Lemma 2 the matrix was B1, i.e., the last m ]c columns of B.
Thus (24) is equivalent to (17) because

(25) [O’(s)B(s)]+---- [O’(s)B(s)],
forj 1, ...,m-- k.
Some qualitative properties of extremal controls will now be established.

These are also necessary conditions for an optimal control. These conditions
will be more conveniently phrased in terms of u(t) rather than v(t).
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THEOREM 1. Let t(t) be an extremal control for the syslem (1). If ti(t) is
at its upper limit during an inlerval oj" time, then [O’(s)B(s)]i >= 0 on that
interval. Also, if .i(t) is at its lower limit during an interval of time, then
[0’ s B s <-_ 0 on that interval.

Proof. Let (t) a2(t) on an interval [h, t2] and suppose that
[0 (r)B (r)]i < 0 at some point in [ti, t2]. By continuity, there is an interval
[1, :], containing r in its interior, on which [0’(t)B (t)] < 0. Consider
(23) with u(t) chosen so that

2 outside of [r, "r2],(26) i(t) u(t) (t) > 0 in [rl,r].

Then from (23) (noting u(T) t(T) 0),
’2

(27) [O’(s)B(s)]t(s) ds >= O.

But the integrand is negative on the entire interval and this is a contra-
diction. The remainder of the theorem is proved in a similar manner.
Now consider again the adjoint equations for (4),

(28) --F’,
or, in terms of 0 and ,
(29)

B0’
By performing the indicated matrix multiplication,

(30) 0 --A’O,

(31) --Bo’O
are obtained. Notice that 0 corresponds to the adjoint vector of the original
system (1) whereas , corresponding to the augmented coordinates of the
adjoint vector, is a trivial linear system in that no components of appear
on the right sides.

Given a fundamental solution E(t, t0) to (30), (with E(t0, t0) n n
identity), 0(t) may be represented by

(32) O(t) E(t, to)Oo.

Then (31) yields

(33) (t) (t0) Bo’(s)E(s, to)Oo ds.
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In the following, a technique for utilizing 6(t) in the construction of optimal
trajectories will be developed.

DEFINITION 2. Let u(t) be an admissible component of the control vector
for (1) or (4), and define an interval of type B as a maximal closed sub-
interval of the interval [0, T] whereon u(t) is extremal, i.e., assumes maxi-
mum or minimum amplitude throughout the whole subinterval.

DEFINITION 3. AxI interval of type P for u(t) is defined to be a maximal
closed interval in the interior of which u(t) is not extreme valued, i.e.,
u assumes neither its maximum nor its minimum amplitude at any point
in the interior of the interval. Note that if Pi [0, T], then is extreme at
one end (or both) of P1.

DEFINITION 4. An interval of type P2 for u(t) is defined to be a maximal
subinterval of [0, T] whereon u(t) is not extreme and whereon ii(t) is at
one of its extremes, but not both.
Remark 2. The interval [0, T] can be decomposed into nonoverlapping

intervals of type B or type P whose union is [0, T].
THEOIEM 2. Let the system (1) be normal in the sense of LaSalle cf. [5])

and consider an extremal control vector t(t) for (1). For each i 1, m,
on an interval of type P for i(t), ti(t) is either at its maximum value or ils
minimum value at every at which t(t) is defined.

Proof. Let belong to the interior of P: and assume that d(t) is defined
and is not extreme. Then, since [0’(s)B(s)] is not zero on an interval by
normality, we may assume further that is such a point where [0’(s)B(s)]
is not zero. (This would eliminate a set of in the interior of Pi whose
measure is zero). By continuity, [O’(s)B(s)] is of one sign on an interval
about the point under consideration. For definiteness, assume
[O’(t)B(t)] < 0. Then since (t) is not extreme and since 4i(t) is not
extreme, an admissible control ui(s) is constructed as follows" Let M be
a line through the point (t, :(t) whose slope is b(t). (For simplicity, it is
assumed that bl(S) =< 0 -< b2(s), where both equalities do not hold simul-
taneously. Other cases would be treated similarly.) For a given i > 0, let
m(i) be line through (t, i(t)) whose slope is equal to the minimum of
bi(s) on the interval [t, A- ti] and let m:(ti) be a line through the same
point whose slope is the maximum of bi(s) on the interval [t, -4- tt]. Now
let 0 > 0 be chosen so small that the line ml((0) lies entirely between*
the curve (s) and the line M in the interval [t, + ti0i], and let ti0: > 0
be chosen so small that the lirm m.(ti0) lies between the curve (s) and the
line M: in the interval [t, -t- ti0]. Let ti0 denote the smaller of ti0i and ti02
and, further, be small enough that [O’(s)B(s)]i < 0 in It, -4- 0], and let m
and m2 be the lines corresponding to ti0 see Fig. 1.

According to the previous construction, there is a sgement S of the

ml may coincide with M1 similarly ms may coincide with
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FIG. 1. Construction of admissible varied control to prove extremal

ordinate at -- 80 which is cut out by the line ml and the curve i(s). Since
(t) is not equal to its minimum value al(t), by continuity there is a
point P on the segment S such that the line L through P parallel to nl
will intersect the curve (s) at the point R at a time in (t, -- i0) and
such that it will intersect the line m2 at a point Q at some time for which
this intersection is above the height a(z). Now define u(s) to be equal
to (s) for s -< t, and s >= r. On the interval [t, r] define u(s) to be the
segment of m between the point (t, (t) and Q, and to be the segment of
L between Q and R. Thus u,(s) is an admissible control satisfying the
amplitude and the rate bounds either by construction or because it is
equal to (s) which is assumed admissible.
Now (23) with the particular u(s) just: constructed is considered. It is

seen that

(34) [O’(s)B(s)][ti(s) --ui(s)] ds >- O.

But [O’(s)B(s)] < 0 in [t, r] while (s) ui(s) > 0 in (t, z). This is a
contradiction and hence the velocity of (t) must be extreme. The proof
goes through in the same way if it is assumed that [0’(t)B (t)] > O.

Remarlc 3. It follows from Theorem 2 thai; the interval [0, T] is decom-
posable into subintervals of type B or type I)2, which are nonoverlapping
nd whose union is [0, T]. In other words, the optimal control is either at,

extreme amplitudc or extreme velocity, wheedlevet the velocity is deflated.
THnOREM 3. Let the system 1 be normal and consider an eztremal cont’ol

vector t(t) for (1). For each i 1, ..., m, if there is an interval of type
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P1 for i such that at least one of its endpoints, say t*, is in the interior of
[0, T], then for all in the P1 interval for which u(t) is defined:
() ,(1) > (t*) implies that ’d(t) is at its maximum value;
(i) :(t) < (t*) implies that ,:(t) is at its minimum value.

Proof. Fron Theorem 2, d:(t) is t oe extreme or the other in P
intervals. By hypothesis, siace one of the endpoints of the P interval under
consideration is point t* interior to (0, T), it my be ssumed without loss
of generality that the point t* is the right end of P. Furthermore, it is
assumed without loss of generality that (t*) is minimum. Now let
be point in P t which d(t) is defined nd suppose that O(t) is greter
thn (t*) but d(t) is minimum (i.e., b(t) ). Fig. 2 supplies the details.

u:(s) is chosen so that on [t, + ] it hs mximum slope nd lies bove
(s) while it is pr]lel to ,(s) from + to some point r > t* (choose
so smll that r < T). Then let (s) u(s) from r to T. Now from the

construction of u(s) nd from (23),

f,+ t,[O’(s)B(s)][(s) u(s)] s + [O’(s)B(s)][(s)
t

(3)
()l + [0’()()l[() ()] o.

On It + , *] ghe funegion () () has ghe eonsgang value, say -e.

Thus he middle integral is

(a) - [ [0’()()l .
Noe ghag as approaches ero, ghe ingegral in (6) (ignoring he mul-

/AXIMU/Vl A/vlPL. ITUDE

FiG. 2. Construction of admissible control in proof of necessary conditions for P intervals
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tiplicative factor e) approaches
t* t*

r >0.

Choose 0 so small that for all i < i0,
t*

(38) r f 3r< [O’(s)B(s)]i ds <-.
Now the first integral in (35) can be made small on the order of as
follows" since (s) u(s) =< KI s on [t, -t- i],

t+a

[O’(s)B(s)][Ct(s) ui(s)] d,

(a) t+a

-<- gl ft [Ot(s)B(s)]i s ds.

Letting K maxt,+ol [0’(s)B(s)]i[yields
t+

(40) [O’(s)B(s)][a,(s) u,(s)] ds <= K1K-.
An easier analysis applies to the last integral, namely,

(41) [O’(s)B(s)][Ct,(s) u,(s)] ds <- Kae(r t*).

As a result of (41), (40), (38) and (35),

i r t*(42) KiK - e q- Kae(r >= O.

It is next shown that is bounded above by a constant times e. It is ob-
served that ,Z is greater than d; on [t, q- ]; hence their difference is not
zero on [t, q- ]. Let the minimum of this difference be denoted by cl > O;
then

(43) f+ [i(8) 7i( 8)] d8 Cl ,
or

(44) cti __< fi(t -- 6) u(t -- ti) [(t) u(t) e.

Thus cli -<- or ( =< c2e where c2 > 0. Applying this result to (42) yields

(45) KIK2
r

c -5+K(-t*) >=0,



TIME OPTIMAL CONTROL 385

or

(46) K.c e + K(- >=0.

But (46) is a contradiction because for ti sufficiently small, e and r t*
cn be made rbitrarily small which means the quantity in parentheses is
negative. Thus it has been shown that when (t) > (t*), then 4(t)
is maximum (where it is defined). A similar proof will show that (t)
< 4)(t*) implies 4(t) is minimum.
Remark 4. Note that intervals of type P. coincide with intervals whereon

the sign of (t) (t*) is constant for appropriately chosen points
t*. It will be shown later that there are only a finite number of these points
t* for a given (t) and that it is possible, in those cases where u(t) is
given at the final time as well as the initial time, to construct the family of
extremal controls.
THEOREM 4. Let the system (1) be normal and consider an extremal con-

trol vector t(t) for (1). For each i 1, m, if the entire interval [0, T]
(where T is the minimal time of response) is of type P for ti( t), then there
exists a constant c such that if dpi(t) c > 0 then t(t) is at its maximum
value and if i(t) ci < 0 then 4(t) is at its minimum value (assuming
that ti( t) is defined at t). If there are at least two intervals of type P2 contained
in the interval of type P1, then the value of the constant c is equal to evaluated
at any of the interior endpoints of the type P2 intervals.

Proof.
Case I. If the whole interval [0, T] is of type P2 the theorem is trivially

true as the constant c in this case may be chosen to be the minimum or the
maximum of the function i(t) on [0, T] depending on whether di is maxi-
mum or minimum.

Case II. If there are at least two intervals of type P2 contained in P1
then let t* be an interior endpoint of a P interval. Consider the case where
i(t) is minimum to the left of t* and maximum to the right of t* (the other
case with the maximum and minimum reversed would be treated similarly).
Let t’ be any interior point of [0, T] which is not the endpoint of an in-
terval of type P.. Assume that (t’) (t*) > 0 but that d(t’) is at
its minimum. Let it be supposed that t’ < t*. Then construct u(t) on
[0, T] as follows" let u(t) (t) for _-< t; choose > 0 so small that if
u(t) has maximum velocity on It’, + ti], is parallel to i(t) on [t’ + , t*],
and has minimum slope for a suitable time duration to the right of t*, then
the curve u(t) will intersect the curve (t) at some point r to the right of
t*. (This choice is possible because the slope of i(t) is maximum to the
right of t*.) Finally, let ui(t) (t) on [r, T]. From here on, one proceeds
exactly as in the proof of Theorem 3 beginning with (35).
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A method for computation of extremal trajectories for amplitude and
rate limited controls. The foregoing theorems will now be given a more
useful interpretation. Since the case where all a2i bli b2i i
are constant is of particular interest, as each condition on extremal trajec-
tories is stated its specialization to this case will also be given. Each interval
P1 of type P1 has a unique decomposition,

(47) P1--
into intervals P. of type P2 where /52 f’l /52+ consists of precisely one
point, p 1, 2, r 1. The bar indicates topological closure. Let fii be
the ith component of the optimal control corresponding to the function. In all that follows let P1 be an interval of type P1 for . Theorems 3 and
4 show that corresponding to the interval P1 there is a constant ci such that
the subintervals P2 of P coincide with those subintervals of P whereon
sgn (i(t) ci) is constant. Let

(48) sgn (P) = sgn ((t) c), P.
Then (P) is set equal to the length of P, and several cases are considered.
Let r, be the endpoints of P.
Case I. , r. both belong to (0, T). Then it is clear that (1) and (2)
are both extremal. In fact

(49)

Case II. Either T1 or r, but not both, belong to (0, T). Then if r (0, T),
49(a) holds; if r (0, T), 49(b) holds. In each case the value of at the
other endpoint, i.e., either (0) or (T), must be specified in some
other manner.
Case III. rl 0, r2 T. Then both (0) and i(T) must be specified;
neither 49 (a) nor 49 (b) holds.

It is possible to consider problems wherein neither .(0) nor (T) are
specified. In this case the procedure to be described below is not immediately
applicable. This situation arises in the so-called interception problem. A
remark on this will be made at the end of this paper.
The values which (t) assumes at and r lead to the following condi-

tions merely by applying the fundamental theorem of calculus for absolutely
continuous functions.
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If the bounds on the control velocity are constant then"

Condition la.

/(P2,)] b2i -t-[ l(P2)]bli t(r.)
psgn(P2p)=-l sgn(P2p)----i

The requirement that ui(t) shall not achieve an extreme value in the in-
terior of P leads to"

Condition 2. For each such that 1 =< a < r (this set could be void),_
f b, dt

sgn(P2)--+l

E f, bli(t) dt a2i(T2a.) i(T1)+
,.(,)=_ . > a() ,(),
p

where r is the right endpoint of the interval P. The inequalities (3)
enable this testing procedure to be restricted to points . Again if the
bounds on the control velocity are constant"

Condition 2.

l(P,)]b +[ l(P)]b < (r),

DEFINITION 5. Subintervals of [0, T] on which any control u(t) may be
defined so that Conditions 1 and 2 above are stisfied with (t) replaced
by u(t) (i.e., (t) b,(t) if sgn P +1, and ,(t) b(t) if sgn P:

-1) are called intervals of type Pa.
Thus every interval of type P is also of type Pa by Theorems 3, 4. The

converse need not hold since there may be no extension of u(r) from the
given interval of type Pa into the entire interval [0, T] as an extremal
controller.

DEFINITION 6. A decomposition of I [0, T] into subintervals of types
B and P is called acceptable if the resulting control u(t) is continuous and
satisfies the preceding theorems on extremal controllers. The intervals of
type Pa then become intervals of type P for u(t).
The following theorem is of primary importance in establishing a pro-

cedure for computing extremal controllers.
THEOREM 5. Assume that (O’B)(t) has at most finitely many zeroes on

[0, T] and the functions all(t) and ai(t) are constants. Then there are at most
.finitely many possible intervals of type Pa, provided ui(O) and u.i(T) are
specified in advance.

Proof. For a linear differential system the interval [0, T] may be divided
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FIG. 3. The function i(t), indicating intervals of monotonicily

T

FIG. 4. The inverse functions t(i) of

into finitely many subintervals in which i(t) is monotone. To prove this,
note that the negation implies that (O’B)i(t) has infinitely many zeroes in
[0, T], contrary to assumption. Thus the inverse function t() of the
function (t) consists of finitely many functions t1(1), t(), each a
monotone function defined on some subinterval of

min 4)i(t), max bi(t) ],
E [0,T] E [0,T]
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FIG. 5. Final form of the functions t(4i)

and al < a2 implies that tl(i) < t2(4)i). Without loss of generality, it
may be assumed that t(4)) is decreasing for odd and increasing for even
a (Figs. 3 and 4). The other case is handled similarly. Let t0(4)) --- 0,
ts+l()) T. The domain of definition of each t(,) is extended to all of

rain (t), max (t)]
t [0,T] t [0,]

by setting t() equal to t(*), where * is the closest point to where
t(*) is already defined (Fig. 5). For each of the finitely many pairs of
indices , , 0 < s + 1, g() is defined by

a2 te(o) () (t) dt,

where

[b2i(t) if a is odd,(51) /(t)
[bli(t)if a is even.

Then it is easy to see that each gl2(dpi) is a monotone decreasing function
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of 4i. (If t(i) were increasing for z odd, decreasing for even, then
gl,.() would still be a monotone decreasing function.)

It is clear by comparison of (50) with Condition 1 that an interval of
type P3 can occur only when there exist a pair al, . and a value such
that

(52) g.(cbi) ui(t,.(,f) u(t(b) ),

where u(t) is the control which must be defined on the interval according
to the definition of an interval of type P3. A number of cases are now con-
sidered.

If zl 0, z,. s q- 1, then we required in the hypotheses of this theorem
that u(0) and u(T) be fixed. Thus ui(t,.(rb)) u(to.(i)) is a con-
stant known beforehand.

If zl 0, 2 arbitrary and greater than 0, then u(t(i)) is fixed at
constant value known beforehand while u(t2() a2i(t,.() or

ali(t2 (qb)).
If . s q- 1 while 1 is arbitrary and less than s q- 1, then u(t,.(b))

is fixed at a constant value known beforehand while u(t(rbi))
a(t(b) or ai(to2(rb) ).
If 0 < < < s q- 1, then u(t(rb) u(t(rbi) is one of the four

functions a(t(b)) a(t(rb)), 1, 2; 3’ 1, 2. Thus, since it was
assumed that the functions ai(t), a,.(t) were constants, it has been shown
that there are at most finitely many values which u(to()) u(t (4))
may assume for each Zl, . Since there are finitely many functions
and each of them is monotone, there are but finitely many instances wherein
(52) may hold. This completes the proof of the theorem.
Remark 5. In the case where a(1) and a(t) are not constant but vary

with time, the finitely many values, which we have shown in the proof of
the theorem may be equal to ui(t(rb)) u(t(cb)), must be replaced
by the finitely many functions u(t,.(rb,)) u(tl()) themselves. Then
the conclusion of the theorem remains valid if for each z, 2 the function

(e) u(t,.(e) u(t(e)
has but finitely many zeroes on its domain of definition. It is difficult to
give a reasonably general sufficient condition under which this holds;
so the restriction to the case where a(t) and a(t) are constant was made.
Clearly the likelihood is very small that any of these functions would have
infinitely many zeroes in any given application. Thus it is fairly safe to
assume that there are but finitely many Pa intervals even if a(t) and
a,:(t) are time-varyig but it should be kept in mbd that this has -ot been
established and it may be possible to construct pathological futctions
a(t), axi(t) such that this would not be true.
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Remark 6. Note that the theorem also shows a method for finding the
intervals of type P since the functions g.() and the constants (or
functions u(t()) u(t()) are readily determined. An acceptable
decomposition of [0, T] is into intervals of types B and P. Thus after having
found all possible intervals of type Pa (and the previous theorem assures us
that in many cases this can be done), it remains only to find all acceptable
decompositions of [0, T], and hence all possible controls u(t) which satisfy
the first four theorems. There being only finitely many of these, the con-
trol (t) which satisfies (11) can easily be found. If no values are given
beforehand for u(0) and for u(T), then these values could be varied and
the above results applied to each choice of those values to determine the
best (in the sense of (11)) set of values for u(0) and for u(T).
A short example illustrating the use of the above results is now given.

An example to illustrate the construction of an extremal control. Le the
time interval be [0, 2] and - COS

Then

Suppose thata 1, a -1;requirei(0) 0, fii(2) 0. Theex-
tremal control (t) on [0, 2] will be constructed. The method used will
be graphic und will be special to the constants a, al, b:, bli in this
problem. Its relationship to the immediately preceding discussion should
be clear, as well as generalizations to different constant bounds. An interval
of type P occurs whenever it is possible to draw a level line L through the
graph of sin.(5rt/2) so that the endpoints of L lie on the graph, of sin (5rt/2)
or else meet the lines 0 or 2 and satisfy the following requirements.
(Compare with Conditions 1 and 2 above.)

1. If the endpoints of L are in (0, 2) then. the sum S of the lengths of
those segments of L lying below sin(5rt/2) minus the sum of the lengths
of those segments of L lying above sin (5t/2) must be 2, -2, or O. If L
is any segment of L such that the left endpoints of L and L’ coincide, then
(a) if the first segment of L lies below sin(Srt/2), the sum S of the lengths
of those segments of L’ lying below sin (5t/2) minus the sum of the lengths
of those segments of L’ lying above Sin(5t/2) must be less than 2 and
greater than O; (b) if the first segment of L’ lies above sin(5rt/2) then the
corresponding qumtity must be greater than --2 d less than O.

2. If 0 is an endpoint of L and the right hand endpoint of L belongs
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gRoF.N LIIV$ /R ACTtlALLY AT $,aHE LViEL ,,$ AD.T,a.CENT
OLID LI NE’5

FIG. 6. All possible P3 intervals for the function 4)(t) sin (5t/2) on the interval [0, 2]

FG. 7. Extremal control constructed using results shown on Fig. 6

to (0, 2) then S 1 or 1 and 1 < S’ < i for any L’. A similar situation
occurs if the left hand endpoint of L lies in (0, 2) and the right hand
endpoint is at 2, but here L, L’ are taken to have a common right hand
endpoint.

3. If L stretches from 0tot 2thenS 0and-1 < S’ < lfor
any L’ having an endpoint in common with L.
The graph in Fig. 6 shows all possible intervals of type P3 indicated by

level lines through the graph. The only acceptable sequence of intervals
consists of the single interval P1 of type P which is indicated in the figure.
This is clear by inspection, using the results of the first four theorems. Fig.
7 shows the resulting extremal control u,,:(t).

Appendix. The set of attainability K(,) for (4) is shown to be closed
and bounded as follows" the variation of parameters formula for a solution
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of (4) (with fundmentM solution mtrix A(t, s)) yields the representa-
tion

O)zo + fo + h(s)] ds.

The conditions (2) on the components of u(t) and the definition of v(t)
together with the properties of A and the boundedness of the components
of h(t) clearly imply the boundedness of z(r) and hence the boundedness of
K(r).
To show K(r) is closed, let {z() ()} be ny sequence of points in K(,)

such that lim. z()(r) Q. Then we must show that Q belongs to K(r).
To this end, let {v()(t)} be sequence of dmissible controls whose re-
sponses t time r re {z() (r)}. Denote the intervM [0, ] by I,, nd con-
sider the functions a(t) and a(t), for i + 1, m, s elements in
L(I,). If ,(t) is defined as

re(t) max {[ a(t)[, a:(t)},

and the nonnegative number M is defined as

Ira(t)I tit,M
hen eeh function v<>(t) (for eeh fixed i nd M1 p) is in he sphere
u eonMned in L(L), nd hence here is subsequenee of {v<>(t)}
(sLill lbeled by v<’> (t) for convenience of noion) such h

lira v<> t) " v( t)

for eeh i + 1, ..., m. These funeLions v(t) belong o L(L) nd
furthermore sisfy he conditions (for I,)"

a(t) v(t) a(t), i + 1,..., m.

This follows from the fact that the sequence v()(t) a(t) converges
wekly to the limit v(t) a(t). If the ltter function is ssumed to be
negative on set R of positive mesure, then by considering the limit,

[ dt dt

(where (t) is the characteristic function of the set R), it is observed
that the sequence of numbers on the left is nonnegtive while the number
on the right is strictly negative. This is contradiction, nd thus R must
hve mesure zero. By changing v(t) on this set of mesure zero to con-
form to the inequality v(t) a(t) 0, the fct that v(t) is still the wek
limit of v() (t) is not Mtered, nd the inequMity then holds for M1 L.
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This same technique can be used to establish the fact that a2i(t) vi(t) _>- 0
for all L md each i ]c -t- 1, m; hence, the functions v:(t) are
"admissible components".
We shall consider now the sequence {v(p) (t)} to consist of the intersection

of all of the aforementioned subsequences with the appropriate change in
notation. By applying the previous technique to the component sequences
{v()(t)} for i 1, ], we obtain

v,(t) wk. v(t),

and moreover

b(t) __< v(t) __< b2z(t).

Then, to each sequence /v(P)(t)} there corresponds a sequence
which consists of functions which are absolutely continuous on L. In
particular, since the derivatives of the u()(t) (the v()(t)) re bounded,
then the functions u() (t) re of uniform bounded total variation on
nd by Helly’s theorem (cf. [4]) there exist functions r(t) of bounded
vrition on L for ech i 1, -.., such that u()(t) r(t) for ll
in L. Furthermore, since the functions u()(t) re bsolutely continuous
on L we hve the relation

v() ds u() u() (0).8 t 8

But, by wek convergence, the relation

v((s)(s) ds v(s) ds

holds for all in I,. These last two relations then imply (t) v(t)
almost everywhere in

If the functions r(t) can be shown to be absolutely continuous and
satisfy

al(t) N r(t) a(t),

then the functions v(t) will have been shown to be "admissible" com-
ponents and thus the control v(t) will have been shown to be an admissible
control. Now, the fact that u()(t) r(t) pointwise on L implies that
r(t) does indeed satisfy the pointwise bounds given by a(t) and a(t).
The fact that r(t) is absolutely continuous for each i 1, follows
from the inequality

u(’) () u(’) (a) (’) (s) ds N max :(’) (s) i a [.
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Returning to the sequence {z()(t) }, we know that

z()() (, O)zo + fo (’ s)[G(s)()(s) + h(s)]

Hence, by weak convergence properties of/v(’)(s)},

z(>() - (, 0)z0 + f0 (’ s)[G(s)(s) + h(s)] ds.

In other words, z()(r) approaches a point in the set K(r) and thus K(v)
is closed.
The final step required of this Appendix is the proof that K(r) is convex.

Because of the linearity of (4) in v(t), convexity of K(r) would follow from
the convexity of the class of admissible controls, v(t). Thus, let v’(t) and
v"(t) be ny two admissible controls nd let a, be ny two nonnegtive
numbers such that a -- 1. Then let w(t) av’(t) + "(t) nd con-
sider the following:

aa( t) <__ av’ t) <__ aa( t).
a(t) <__ C’ ( t) <= a,( t).
ali( t) voi( t) <= a( t).

Hence the components of w(t) satisfy the required bounds. Moreover,
if w(t) is one of the differentiable components of w(t), it arises from the
sum av((t) + v{(t), and hence

ab(t) <= a’(t) <- ab. (t).
b(t) <= i" (t) <= b( t).
b( t) <= 2( t) <= b( t).

Thus, w(t) is n dmissible control for (4), nd the Appendix is completed.
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ANALYSIS OF LINEAR SYSTEMS BY MEANS OF
LAGUERRE FUNCTIONS*

JAMES C. I. DOOGE
Abstract. The use of Laguerre functions is proposed for the analysis of heavily

damped linear systems where the input is not subject to experimental control. An
equation is derived which links the corresponding coefficients in the Laguerre func-
tion expansions of the input, the impulse response and the output of a linear system.
This equation enables the third set of Laguerre coefficients to be calculated when the
other two sets of coefficients are known. The connection between the Laguerre func-
tion expansion and the representation of the system response by a series of gamma
distributions is noted and the latter series identified as defining an analog system com-
posed entirely of branches of linear storage elements.

Introduction. The relationship between the input and the output of a
time-invariant linear system can be expressed as

(1) y(t) fo x(r)h(t r) dr,

or

y(t) x(t) ,h(t),

where x(t) is the input function, y(t) is the output function, mid h(t)
is the impulse response function of the system.

This impulse response is the output from the system when the input is a
delta-function (i.e., a unit impulse). Fourier methods have been used in
the analysis of such systems but there is some reason to believe that a
method based on Laguerre functions may be more convenient and physically
more meaningful in the case of heavily damped systems in which the input
is not subject to experimental control. The present paper is an attempt to
outline such a method of Laguerre analysis. The author is primarily in-
terested in the input-output system involved in the conversion of rain-
fall to flood run-off but the approach in this paper should be applicable to
any heavily damped system.

Laguerre polynomials and functions. The ordinary Laguerre polynomial
of degree n may be defined either by

(2)

* Received by the editors May 1, 1964, and in final revised form January 11, 1965.
Department of Civil Engineering, University College, Cork, Ireland.
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or by

(3) L,(x)

where lc nd n are nonn.egative integers. (It should be noted that some
writers use a definition of L.(x) which is n times the quantity defined
above.) The polynomial is orthonormal with respect to the weighting
factor e within the range from zero to plus infinity.

(4) e-L(x)L(x) dx mn.

The polynomials can be readily computed by means of the following
recurrence relationship:

(5) (n + 1)L+l(X) (2n + 1 x)L(x) nLn_(x).

Since the Laguerre polynomials exist for every value of n, it is possible to
express x as a linear function of the first n Lguerre polynomiMs. It can
be shown that

(6) x (--1 L(x)
n] k=O

which corresponds exactly to the form of (2):

(2) L(x) (--1

Thus a table of Laguerre coefficients, such as those of Lanczos [1], can be
used to express x as a function of the first n Laguerre polynomials.
The ordinary Laguerre function is defined as

(7) fn(X) e-%(x).
In view of the orthonormal relationship of (4), the Laguerrc functions are
also an orthonormal set, i.e.,

(s) Jo f(X)fn(X) gX

The expression for the ordinury Laguerre function can be written as

(9) A(x) (-1)
=0

The expression e-X/:x/kiis of interest in the analysis of heavily damped
linear systems since (divided by a scale factor of 2+) it represents the
result of passing a delta-function through + 1 equal storages, each having
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an average delay time of two units and may indeed be considered as a
damped delta-function. It also has the form of a gamma disgribution. It
can be shown that a damped delta-function of degree n can be represenged
as a linear funei.on of the first n Laguerre functions:

(10) (_1) n
n! =o k f(x).

Further properties of the Laguerre polynomials are listed in Erd61yi [2].
Proofs of the properties of Laguerre polynomials and functions can be
found in such standard works as Szeg5 [3] or Sansone [4].
The Laplace transform of the Laguerre polynomial is simple in form. (see

[5]) and is given by

(11) [L(x)] (s- 1)
8n+l

Hence he Lp]gce rgnsform of he ordingry Lgguerre function is given by

( + )+"
If series of Lguerre functions gre o be used o represen he grbirgry

functions in (I), hen e need o kno he resu] of he convolution ofo
Lgguerre functions. In vie of (9) gnd (10), he resu] of convo]uing g

Lguerre function of degree ih Lguerre function of degree mus
iLself be liner combingion of he rs + e + 1 Lgguerre functions.
I cn be shon, however, h MI he coeciens in he resulting
pression re zero ih he exception of he ]gs o. This resu] s
origMly derived by pp]ying combinaoriM g]gebr o he form of he
Lgguerre function bsed on (2) bu he following proof bsed on he Lp]ce
transform is more compact.

If

(13) g(x) f,(x),f,(x),

then
[g(x)] [/(x)][A(x)]

therefore

(4)

(s-) (s-)
(s + 1/2)+ (s + 1/2)+

(s -)+
(s + 1/2)+

( 1/2)m+n (8 lm+n+l

(s + 1/2)++1 (s + 1/2)+n+

g(x) fm+n(X) fm+n+l(X).
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The generalized Laguerre polynomial of degree n is defined as follows:

(15) Lna(z) E -- (-z)
=0 k!

where k and n are nonnegative integers and a is greater than minus 1.
Since they will suffice for the vast majority of applications of the method
suggested in the present paper, only the ordinary Laguerre polynomials
and functions will be discussed in the body of the paper. The corresponding
forms of the equations for the generalized Laguerre polynomials and func-
tions are, however, listed in Appendix A.

Linkage between Laguerre coefficients. O’Donnell [6] has shown that
the harmonic coefficients, an and n, of the impulse response function
h(t) can be found from the harmonic coefficients of the input function
x(t), namely an and bn, and the harmonic coefficients of the output func-
tion y(t), namely A and B, by means of the linkage equations

1 A0(16) a0 T a0

2 aAn + bB,(17) a T an + b

(18) 2 a,Bn bA,
T a, bn

In these equations T is the common base period (not less than the range of
the output function) over which all three functions are harmonically
analyzed. Equation (14) enables us to derive an analogous relationship for
the case where the functions involved are expressed in terms of ordinary
Laguerre functions. The input function, the impulse response function and
the output can each be represented by an infinite series of Laguerre func-
tions.

(19) x(t) anA(t),

(20) h(t)
n--0

(21) y(t) Anfn(t),
nO

where fn(t) is the nth Laguerre function. Since the functions are orthonor-
real, the coefficients i (19), (20) and (21) are given by

P

(22) a, ] x( t)fn t) dr,
o
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(23) am f0 h(t)A(t) dt,

(24) A.n f0 y(t)f(t) dt.

Now if we return to the basic equation linking input and output,

(1) (g) h() ,z(t),
ghis becomes

which we can write as

y(t) amfm(t)* anfn(1)
m--O O

amfm(t)*anL(t),
m=O nO

(25) Apf(t) Cman[fm+n(t) fm+n+l(t)].
pO mO nO

In order to find a linkage equation, it is necessary to identify the coefficient
of an individual Laguerre function fp(t) on both sides of (25). But f can
only appear on the right hand side of the equation when either m + n p
or m -n -- 1 p. Hence

k--.p k=p--1

(26) Af a,a_kf akav__f
k=0 k=0

The required linkage equation can therefore be written as
k=p k=p--1

(27)
k=0 k=0

If two of the sets of coefficients are known, the third set can be deter-
mined by means of the linkage equation (27). It is not necessary to solve
simultaneously for all values of a (or other unknown set of coefficients)
since we can start with p 0 and substitute each value as found. Thus

p k=p--1

k0 k=0

k-p kp--1

Thus, by means of (28), the successive values of , can be readily computed
one by one.

so that
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Equations (19) to (28) are based on Laguerre expansions with an in-
finite number of terms and Laguerre coefficients defined by integration
over an infinite range. In practical applications, the data will be finite in
extent, some form of numerical integration will be involved and the Laguerre
representation of the functions will be a finite series. These limitations will
affect the accuracy of the solution to a varying degree which will depend on
the nature of the input and of the system response. The examples given
later in the paper will illustrate this effect.

Response characteristics of heavily damped systems. For heavily
damped systems, the response to a unit impulse will show no oscillatory
features but will be positive throughout the range from zero to infinity.
In fact, the response approaches zero asymptotically and will become
negligible after a certain time.

In a system consisting of a series of r equal elements of linear storage each
having a delay time k, the response is

--t/k t/]c )r--1(29) h(t) e

/c(r 1)

For a series of r such storages in parallel with a second series of s storages of
equal size the response is given by

-t/k t//k )r-1 -Ik -1

(30) h(t) Cr e
-t- C, e (t/k)

k(r-- 1)! It(s-- 1)!

in which Cr -- C, 1. The determination of an unknown response function
by Laguerre analysis and the application of (9) and (10) derived earlier
enables us to express the response function as a series of terms of the
type given in (30).

If the system under examination actually consists of equal storage ele-
ments arranged both in parallel and series, then analysis by means of
Laguerre functions could be used to determine the size of the storage ele-
merits and the number of elements in each branch. In the more general
case of any heavily damped system the same procedure would give the
parameters of a system of linear storage elements equivalent in its effect to
the system under examination. The gamma distribution series expansion
representing the impulse response function of a heavily damped system
to a given degree of accuracy could be expected to contain less terms than
the corresponding series obtained by harmonic analysis since the individual
terms would be positive throughout the whole range.

Since Laguerre functions are defined in terms of e-t/2 and the gamma-
distribution (or damped delta-function) in terms of e-t/k it is necessary
to multiply the data times by a time factor of 2/l before starting the
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analysis. If the double argument system of Lanczos [1] is used, a time scale
of 1// should be used. For a completely unknown system the appropriate
scale must be found by trial. If the system can be represented by a finite
model system composed of equal storage elements, then translation to the
scale appropriate to the size of these storage elements will lead to a response
function having a finite series of terms each with positive coefficients and
of the damped delta-function type. Where the model system approximating
to the response system under examination contains storages of unequal
size, no single time scale will reduce the series to a finite number of terms.
The solution based on Laguerre analysis has the added advantage that

it automatically provides a model of the system in terms of linear storage
elements, thus allowing the impulse response of the system to be written
directly. Such models are often useful in the comparison of different sys-
tems of unknown constitution and in the formation of theoretical hypotheses
concerning the phenomena being studied.
The results of Laguerre analysis can be represented in the form of a

"storage spectrum" in which the coefficients Cr, C,, etc., of the gamma
distributions are plotted against the corresponding values of r/, s/, etc.
The latter values represent the mean delay of the cascade of storage ele-
ments equivalent to each term. Such a storage spectrum would indicate
immediately whether the system could be readily separated into distinct
parts with appreciably different delay times.

Examples of computation. The use of Laguerre functions to determine
an impulse response function is illustrated below by two simple examples.
In the first of these, all of the functions involved can be represented ex-
actly by a short series of Laguerre functions. Hence the coefficients can be
readily computed by hand and the whole procedure closely followed. In
the second example, the functions involved are zero outside limited ranges
and hence cannot be represented exactly by finite Laguerre expansions.

If we have a system whose impulse response function is given by

(31) h(t)

it can be readily shown by direct convolution that for an input

1((32) x(t) +

the output will be given by

(33) y(t) =- -t- e
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Since all of the terms in these functions consist of gamma distributions,
they can, by virtue of (9) and (10), be written in terms of Laguerre func-
tions as follows"

(34) h(t) fo(t) 3fl(t) -t- 3f(t) -f3(t),

(35) x(t) fo(t) 1.5fl(t) + 0.5f.(t),

y(t) fo(t) 5.5fl(t) + 12.5f(t) 15.0fa(t)
(36)

-+- 10.0f4(t) 3.5fs(t) -[-0.5f6(t).

If we consider the input and output as known and the impulse response
function as unknown, the Laguerre coefficients of the response can be
readily determined by the inversion of the linkage equation.
The given coefficients and calculated coefficients for the impulse response

are given in Table 1. The successive values of ap can be readily calculated
by means of (28). For example, the value of a. is determined as follows"

k----2 k=l

(28) a.ao Ak aka_
k---O k-----O

32 [(1) (5.5) + (12.5)]

--[(1)(0.5) + (--3)(--1.5)] (8) (5) 3.

Empirical input and output data are usually in discrete form and in such
cases the Laguerre coefficients will be estimated by some form of numerical
integ ration. The procedure for discrete data was examined by programming
the problem on an IBM 1620 computer.
A program was developed to do the following: (a) to generate synthetic

values of the input and output at fixed intervals of time; (b) to compute
the Laguerre coefficients of these inputs and outputs by numerical integra-
tion; (c) to use these computed values of the Laguerre coefficients of input
and output to determine the Laguerre coefficients of the impulse response
function; (d) to compare the response function generated by these corn-

TABLE 1

Term Input an (given)

1
-1.5
+o.5

Output An (given)

1
-5.5
+12.5
-15.0
+10.0
-3.5
+0.5

Response an (calculated)

1
-3
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TABLE 2

Term

4
5
6
7
8
9
10

Input an (by integration)

9.999 X 10-1

1. 500
4.999 X 10-1

-8.047 X 10---1.332 X 10-4

1.983 >< 10-4

-2.752 >< 10-4

-3.633 X 10-4

-4.620 >< 10-4

5. 702 >< 10-4

-6.876 >< 10-4

Output An (by integration)

9.999 X 10-1

5.499
1.249 X 10

-1.499 X 10
9. 999
3. 499
4.999 X 10-1

1.560 X 10-4

-4.801 X 10-4

1.174 X 10-3

-2.240 X 10-3

Response an (by inversion)

1.000
3.000
2.999
1.000
8.600 X 10-6

1.226 X 10---2.484 X 10-1.336 X 10-4

--3.427 X 10-4

8.314 X 10-4

-1.396 X 10-3

puted Laguerre coefficients with the original function used to synthesize
the output.
The program was first applied to the functions used in the above ex-

ample. For a time interval of 0.2 and integration up to the time 40,
the computed values of the Laguerre coefficients were as shown in Table 2.
As can be seen by comparing Tables 1 and 2, the Laguerre coefficients ob-
tain.ed by numerical methods closely approximate the exact values. When
the impulse response function generated by the 10 coefficients found from
the linkage equation was compared to the original impulse response, the
root mean square absolute error over the range 0 to 40 was found
to be 2.5 10-4, which is small compared to the maximum ordinate of 1.8.
As a second example, let us consider a system whose response function

cannot be represented exactly by a finite number of Laguerre functions.
The functions chosen are those used by O’Donnell in some of his more recent
work on response analysis via Fourier series [7]. All of the functions are
zero outside the limited ranges indicated below.
The response function is

For an input given by

(es_th(t) -1-6 1), 0<=t_<_8.

x(t) 10t(1 t)e1-, 0 =< _< 1,

the output is in three segments

9--t(i) 0 _<_ <- 1, y(t) e (2-- t)

--[- el-t(t -[-- 3t -k 4) e(4 t);
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(ii) 1 _<

___
8, y(t) e’-

(2t- 1) + (11 3t) e(4 t);
12

(iii) 8 <- <-9, y(t) e
-f [12[" 130t + 335

(t- 8)2(152 14t- t2)] + (11 3t).

Values of the input and output were generated in the computer and used to
calculate the Laguerre coefficients of the response function. These co-
efficient were then used to generate the values of the response functions at
fixed values of t. Because of the form of the exponentials in the functions
used, the analysis was carried out using a time sealing factor of 2.

Table 3 shows the comparison of the ordinates of the impulse response
function originally used to derive the synthetic output with the ordinates
found by Laguerre analysis using various numbers of coefficients and a time
interval of 0.05. The root mean square absolute error over the range 0 to

9.25 is also shown. The very close representation by a series of only two
terms is due to the fact that the response function peaks at 1 and t,hen
decays rapidly.

Neither of the examples reveals any serious difficulty in the numerical
application of Laguerre analysis to noiseless synthetic data. Whether it can
be as easily applied to empirical data is a matter for separate investigation
in the different fields concerned with heavily damped systems. In the two

TABLE 3

Time

0
.5

1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0

RMS
Error

Original function

0.00
90.4
109.5
99.6
80.5
60.9
44.2
21.4
9.5
3.8
1.2
0.00
0.00

N--2

0.40
90.3
109.3
99.5
80.4
61.0
44.4
21.8
10.0
4.4
1.9
0.80
0.33

4.4 X 10-1

Impulse response function

N= 10

0.07
90.4
109.5
99.6
80.5
60.9
44.2
21.5
9.6
3.8
1.2
0.19

-0.07

4.7 X 10-2

N=20

--0.10
90.3
109.5
99.6
80.5
60.9
44.2
21.4
9.5
3.9
1.2
0.12

--0.04

3.0 X 10-"

N 30

--0.37
90.4
109.5
99.6
80.5
60.9
44.2
21.4
9.5
3.9
1.2
0.11

--0.04

4.2 X 10-.2
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examples the time scale was chosen to suit the exponential term of the re-
sponse function involved. The determination of the appropriate scale would
be a necessary part of the Laguerre analysis of a system whose natural time
scale was unknown.

Appendix A. Generalized Laguerre polynomials and functions. A general-
ized Laguerre polynomial can be defined in either of the following forms:

(2’)
=o k!

or

eXX d
(3t) Lna(x) (e--xn+a).

n! dx

These polynomials have the following orthogonal property:

e-X’xaLma(x)Lna(x) dx If F(m + a + 1)F(n + a + 1)(4’)
r(m + 1)r(n + 1) "’

and are connected by the recurrence relationship

(5’) (n q- 1)L,+I(x) (2n q- a q- 1 x)Lna(x) ( - a)L]_(x)

As in the case of the ordinary polynomials, the inverse relationship between
x and L,a(x) is the same as the direct relationship, i.e.,

(6’) (--1 Lk (x).
n! k=O

The generalized Laguerre function is defined by

(7p) fn (X) -x/2 a/2r r__(.n_ + 1) t1/2

e x ,,. (x)
,F(n q- a-t- 1)

and has the following orthonormal property

(8t) Jo" fma(x)fna(x) dx mn.

The Laplace transforms of the generalized polynomials and functions are
given by

r(n + a -+- 1) (s 1)
(11t) [xaLna(x)]

r(n + 1) (S).+a+I

(12’) a[2ea fF(n + a-+ l )}l/ (s 1/2)"
tx j. (x)] r(n -i- 1) (s + 1/2)nTa+l"
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If

(’)
then

g(x)= xa{F(m q--aq-1)F(nq-ar(m+ 1)r(n + 1)q- 1)t/
(14’) I’(n + n + 2a + 1)

fa+’(x)

{ P(mq-n-}-2) )}1/ 2a

r( -t-n + 2a + 2
f+,+(x)

The bove equution can be used to derive a general linkage equation for
the case of the generalized Laguerre functions. Thus, if we have
y(t) x(t).h(t), we can write

(19t) x(t) E a]2a,t f,(l),
0

where
P

(22’) a Jo t--ax( t)f’( t) dt;

and

(20’) h E (:gutJ--a/2’jna
n---O

where

t-h((23’) a. t)f. (t) dt;

and

(2a’) :f (y(l) E A :2a

n--O

where

(24’) An i t--"Y(t)f2a(t) tit.

By proceeding as shown in the body of the paper for the ordinary Laguerre
functions, we can obtain the following expression for the calculation of the
Laguerre coefficients of the response functions"
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(28’)

r(p + + )r( + 1)}1/2

F(p -t- 1)

Appendix B.
a

an
An
Cn

fn(x)
fna(x)
g(x)
h(t)

L(x)
La(x)

8

x(t)
y(t)

Ol

(t)
[]=

r(n + 1)

p

]AfF(p -t- 2a -t- 1 ). 1/2 k=

a0 r(p + 1)

k=-ll,.’(lc+ot+ 1)F(p- / + a + 1)},=o v( + )r(p + )
,a-,.

Notation.
parameter of generMized Lguerre polynomiM
coefficient in Lguerre expansion of input
coefficient in Lguerre expansion of output
coefficient in series of gamm terms
ordinary Lguerre function of degree n
generalized Lguerre function of degree n
result of convolution
impulse response function
ordinary Lguerre polynomial
generalized Laguerre polynomial
vrible in the Lplce transform
input to linear system
output from linear system
coefficient in Lguerre expansion of impulse response
Kronecker delt (mn 1 if m n; mn 0 if m n)
Dirc delt-function or impulse
Lplce transform
n fctoril n

r(n + a + 1) gamma function
operation of convolution
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PENALTY FUNCTIONS AND BOUNDED PHASE COORDINATE
CONTROL*

D. L. RUSSELL
Abstract. This paper studies the use of two different kinds of penalty functions

to obtain approximate and, in the limit, exact solutions to a class of bounded phase
coordinate optimal control problems. The first type of penalty function assumes
small values within the phase constraint and large values outside, while the second
type is defined only within the phase constraints, assuming small values away from
the constraint boundary but increasing to infinity as that boundary is approached.

0. Introduction. Much attention has recently been given to the problem
of bounded, or, more generally, constrained phase optimal control. Several
papers, in particular [1] and [2], have dealt with this problem.
One method of attack on this problem is the following: instead of at-

tempting a direct solution of the constrained phase optimal control prob-
lem, an unconstrained problem is considered wherein the original cost func-
tional is augmented by a nonnegative penalty function which sharply
increases the cost associated with trajectories which violate the phase
constraints. By using sequences of cost functionals involving more and more
severe penalty functions it is to be expected in many cases that the desired
constrained phase solution of the original optimization problem may be ap-
proximated to any desired degree of accuracy by solutions to these uncon-
strained problems.
The purpose of this paper is to study this method of approximation for

rather general sequences of penalty functions. In 1 the optimization prob-
lem is rigorously posed and two different kinds of sequences of penalty
functions are defined. The question of the existence of optimal solutions for
unconstrained problems involving a given penalty function is considered in

2. In 3 we study the convergence of such solutions to a solution of the
original constrained problem. Finally in 4 we relate our work to papers
which have been published by other authors.

I. Statement of the problem. Consider the system of n ordinary differ-
cntial equations

(1.1) 2i gi(t, x) - hi(t, x)u(t), i 1, ..., n.

* Received by the editors February 21, 1964, and in revised form December 15,
1964.
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In vector notation this becomes

(1.2) 2 g(t, x) + H(t, x)u(t).

The dot denotes differentiation with respect to t. In (1.2) the vectors x
and g are n-dimensional and the vector u is m-dimensional while the matrix
H has dimensions n by m.
Throughout this paper I will denote a compact interval of the line E

with nonzero length while G will be a closed subset of E which possesses a
nonempty interior. The symbol 2 will represent a compact, convex subset of
E having a nonempty interior. We will use 0 to indicate an open subset of
E which contains G. T(t) denotes a compact subset of int(G) which varies
continuously with I and x0 is a point of int(G) such that x0 does not lie
in T(t) for any I.
We assume that g(t, x) and H(t, x) are continuous and have continuous

first order partial derivatives with respect to x in I X G. Whenever a
symbol u is used it will denote a measurable vector function whose range
is a subset of t. Such a function u will be assumed to be defined on a sub-
interval I [a, b] of I. Corresponding to such a function u is the unique
solution x of (1.2) which has the property x(a) Xo. Whenever a function
u is distinguished by some marking (e.g., , u*) the corresponding x with
x(a) Xo will be similarly distinguished (e.g., 2, x*, respectively). We
will use the symbol (u, x) to denote a control and trajectory pair.

Let A be the set of all pairs (u, x) such that in each case (i) x(t) G for
a =< -<- b (ii) x(b) T(b) and for all < b, x(t) T(t); (iii)
x(a) Xo.

Let C(u) be defined for each pair (u, x) in A by

(1.3) C(u) {g(t,x(t)) + h(t,x(t))u(t)} dr,
-1

where gO and h., j 1, m, are continuous in I X G and bounded on
bounded subsets of I X G.
The optimization problem is this" determine a pair (, ) A such that

(1.4) C(a) rain C(u).
(u,x) EA

This is the constrained optimization problem. If in the definition of A we
replace G by the open set 0 G and assume the functions g(t, x), H(t, x),
g(t, x), h(t, x), j 1, ..., m, to be defined and bounded in bounded
subsets of 0 and otherwise possessing the properties already specified, then
the resulting optimization problem in the domain 0 will be called uncon-
strained. Moreover, any solution of an uncoustrained problem or any solu-
tion of a constrained problem which is such that x does not meet OG will
be called an unconstrained solution.
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DEFINITION 1.1. The sequence of functions /pi(x)} is said to be a sequence
of penalty functions of the first kind for G in case there is an open set 0 con-
taining G such that pi(x is defined and continuous on 0 and assumes only
nonnegative values therefor i 1, 2, (ii) given a compact set D c int(G)
we have

(1.5) lira (max pi(x)) 0;
i-oo E D

(iii) given any compact set D 0 G,

(1.6) lim (rain p(x) + .
i xE D

DEFINITION 1.2. The sequence of functions {p(x)} is said to be a sequence
of penalty functions of the second kind for G in case" (i) p(x) is defined and
continuous and assumes only nonnegative values in int(G), i 1, 2,
(ii) given a compact set D int(G),

(1.7) lim (mx p(x)) 0;
i E D

(iii) letting B() denote the set of all points x int(G) such that the Euclidean
distance from x to OG is less than we have

(1.8) lim (g.l.b. p(x)) + , i 1, 2,

(iv) for each vector valued function x(s) defined, absolutely continuous, and
possessing a uniformly bounded derivative (where defined) on [0, 1] and such
that for s [0, 1), x(s) int(G), andx(1) OG, we have, for i 1, 2,

(1.9)

DEFINITION 1.3. The sequence of pairs (u, x)} A will be said to
approximate the pair (u, x) A in case" (i) we have

(1.10) lima a, and limbu b
k k

(ii) given any compact subinterval J of I
x (t) z(t) II) 0;

k EJ

(iii) extending the definition of the u and u to I by setting them equal to zero
where previously undefined, the sequence u converges to u in the wea topology
of

2. xistence eorems. The work of E. B. Lee nd L. Mrkus in [4]
provides proof for the following theorem.
THEOREM 2.1. Let the optimization problen, either constrained or uncon-
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strained, be defined as above. Let {(u, xk)} be a sequence of pairs in A such
that for some positive number B,

(2.1) x,(t) <= B, I, t 1,2, ....
Then there are a function u and a function x defined on an interval I and a
subsequence of {(uk, x)}, which we shall still call {(u, x)}, such that

(2.2) lira a a, lira b b

(2.3) lira u u,

in the wea topology of L(I) (defining the functions to be zero where pre-
viously undefined);

(2.4) lira (max x(t) x(t)) 0
k J

on each compact subinterval J I. Moreover, if the optimization problem
is a constrained problem, or if 0 E, or if x lies wholly in O, then

(u, x) ,(2.n)

and

(2.6) lira C(u) C(u).

Lee and Markus do not state the uniform convergence of the xk to x on
J but this is an immediate consequence of the boundedness of g(t, x),
H(t, x) and the u in the domains in question.
COROLLARY 2.1. If there is a number B > 0 such that for all (u, x) A,

(2.7) x(t) < B, I,

and if A is nonempty, the constrained optimization problem has a solution
(a,z).

Proof. Since gO and h., j 1, m, are bounded in G f’l/x x =< B},
there is a real number M such that

(2.8) C(u) > M, u /.

By the same reasoning and since A is nonempty, there is some (u, x) in
A with finite cost C(u). Hence we may assume that M is the largest such
number. Then there is a sequence of (not necessarily distinct)pairs
(u, x) zX such that

(2.9) lira C(u) M.

From Theorem 2.1 there is a pair (, ) A and a subsequence of (u, x,) 1,
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which we still call {(u, x)}, such that {(u, x)} approximates (,
and

(2.10) C(,) lim C(u) M.

Then (,Z, a) is a solution to the constrained optimization problem.
COOLLaY 2.2. Let [p(x)} be a sequence of penalty functions of the

first tcind for G defined in an open set 0 G. If i is suciently large then the
unconstrained optimization problem with C(u) replaced by

(2.11) C(u) C(u) q- p(x(t)) dt

has a solution (u, x) such that x lies wholly in O, provided A satisfies (2.7)
and there is a pair (,, 2) A such that 2 lies in int(G).

Proof. Let D denote the set

(2.12) D 0 {x I11 x -<

Since g(t, x) and h(t, x), j 1, m, are bounded in D and each pi(x)
is nonnegative in D, the nonemptiness of A implies that for each i there is
largest real number Mi such that

(2.13) C(u) >= M, (u, x) A.

Let the pair (, 2) A be such that 2 lies wholly in the interior of G. Let
Do be a compact subset of int(G) such that

(2.14) 2(t) Do,
Let D be a relatively open subset of D containing G gl {x II] x --< B} whose
closure/),, is compact and is contained in D. Let Da be a compact subset of
D whose interior, relative to D, contains/3. Let

(2.15) D1 Da D..

Then D is a compact subset of 0 G.
From Definition 1.1 it is clear that there is a number M such that

(2.16) C() < M, i 1, 2, ....
For each i, let {(u, x )} be a sequence in A such tha

(2.17) lira C(u) M.
k->

Since M < M, i 1, 2, we may assume without loss of generality
that

(2.18) C(u,) < M, i 1,2,... lc 1,2,....
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Let (u*, x*) be any pair in A such that x* meets 0 D3. Since g(t, x),
H(t, x) and u are bounded there are a number t > 0 and at least two
intervals [tl, t2] and [t3, t4], each of length ->_ , such that

(2.19) x*(t) DI, Its, t,.] [J [ta, t4].

Then

C(u*) + + + +
u*

(2.20)
g(t, x*(t)) q- h(t, x*(t))u*(t) q- p(x*(t)) dt.

Since g(t, x) and h(t, x), j 1, m, are bounded in D and p(x) is
nonnegative, there is a real number M > 0 such that for all i,

(2.21) C(u*) >= f p(x*(t)) dt M.
tl,t2] IJ[ t3,t41

But then, from (iii) of Definition 1.1,

(2.22) lira Ci(u*) q-

nd hence, for i sufficiently large,

(2.23) M < C(u*),
and (u*, x*) cannot be a member of the sequence {(uff, xk)}. Thus all
of the members of sequences /(ui, x) }, for i sufficiently large, are such
that xk always lies in Da. Then Theorem 2.1 immediately gives the existence
of the optimal (u, x) for such i with xi(t) O, Iu.
COROLLARY 2.3. Let Pi(X) be a sequence of penalty functions of the second

kind for G. Assmne that the constrained optimization problem is such that
(2.7) is satisfied for (u, x) A and there is a (t, 2,) A such that 2, lies wholly
in int(G). Consider a new constrained optimization problem with C(u)
replaced by

(2.24) C(u) C(u) q- p(x(t) dr.

Then for each i the new constrained optinization problem possesses an un-
constrained optimal solution (u, x) such that x lies wholly in int(G).

Proof. Again there is a lrgest real number M.; such tha,t

(2.25) C,:(u) ->__ M.,: for (u, x) A, i 1, 2, ....
Fix some integer i. Let (ue’:, xe)} be a sequence in A such that

(2.26) lira C(ue M.
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By Theorem 2.1 there is a pair (ui, xi) . A such that for some subsequence,
which we still call (u:, xl:)}, {u":} converges weakly to u", {x":} converges
uniformly to x on compact subsets of I, and

(2.27) lira C(u C(u).

Since (2.26) holds we conclude that

(2.28) lira p(x(t)) dt Z C(u).
k- Kauk

Suppose there were a time t* I. such that x(t*) OG. We may assume
that t* is the smallest such. time. Then from coudition (iv) in the definition
of a penalty function of the second kind we conclude that, given a small
number > 0,

(.) (z()) + ,
since, as is easily verified, x(t) satisfies (1.2) on [au + 6, t*) with u(t)
replaced by u(t) and hence has a uniformly bounded derivative there.
Now since {x} converges uniformly to x on [a + 6, t*] we certainly have

p(x (t)(.o) i p,(x’(t)

for [au + 6, t*). By Fatou’s Lemma, therefore,
t* t*

i+6 i+6
(Z.l)

t*

lira [ p(x(t)) dt M- C(u).
k J.

Hence (2.29) is impossible and x cannot meet OG on the interval I.
Then it is clear that

(z.z) c(u) M,

and hence the pair (u, x) is the desired solution to the constrained op-
timization problem with cost functional C(u) and this solution is clearly
unconstrained.

3. Convergence results. We have demonstrated in the previous section
the existence of an optimal solution for certain problems involving penalty
functions and also the existence of a solution to the constrained optimiza-
tion problem. Our ext task will be to study the question whether, as i
pproaches infinity, the unconstrained optimal solution (u, x) to the
problem with cost; functional
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p(x(t) dt

converges in any sense to a solution of the constrained problem with cost
funeti.onal C(u). Preparatory to this study we introduce the following
definition.
DEFiNiTiON 3.1. Consider the constrained optimization problem. A pair

(u, x) is said to be approximable from the interior of G if there is a se-
quence (u x)} of pairs belonging to A such that in each case x(t) int(G)
for I and the sequence (u x) approximates (u, x).
Then we have the following result.
THEOIE 3.1. Let IP(x) be a sequence of penalty functions of the first

kind for G. Let (u, x) be a solution to the unconstrained optimization prob-
lem with cost functional C(u) given by (2.11) for each natural number i.
Assume for each such i that

(3.1)

where B is a fixed positive number independent of i. If there is any solution
(,, 2) of the constrained optimization problem with cost functional C(u)
such that (,, 2) is approximable from the interior of G, then there is a sub-
sequence of {(u, x)} which approximates a solution ((t, 2) to the constrained
optimization problem with cost functional C(u).

Proof. Let D be a compact set containing G f’l {x III x -< B} in its
interior and such that 0 D D. The proof of Corollary 2.2 allows us to assume
without loss of generality that x(t) D, I, for all i. Then using
Theorem 2.1 it is easy to see that there is a subsequence of {(u, x)},
which we shall contiIme to call {(u, x)}, and a pair (,z, a) k (for the
unconstrained problem) such that the sequence {(u, x)} approximates
(a, ).
We shall show that (,z, aS) zX for the constrained problem, i.e., a?(t) G

for I. Suppose for contradiction this were not so. Let t* I be such
that 2(t*) 0 G. Let Do be a compact subset of 0 G which contains
a neighborhood of a(t*). Then there is an interval [t* , t* q- t], for some
> 0, such that 2(t) Do for [t* i, t* q- ]. Let D1 be a compact

subset of 0 G which contains Do in its interior. Since, if is sufficiently
small, the sequence {x} converges uniformly to 2 on [t* 8, t* q- t],
for sufficiently large i, x(t) D1 for { [t* i, t* q- ]. But then using
(iii) of Definition 1.1 and the boundedness of g0(t, x) and h.(t, x),
j 1, ..., m, on bounded subsets of 0, we see that

(3.2) lim C(u) q- .
We have assumed that (, 2) is a solution to the constrained optimiza-
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tion problem which is pproximable from the interior. Hence there is a
sequence of pairs (4k, 2k) approximating (4, 2) such that 2(t) int(G),

Ia Consider first just the pair (41, 21). From the boundedness of
g(t, x) and hj(t, x), j 1, ..., m, and (ii) of Definition 1.1 there is a
fixed real number M such that

(3.3) Ci(4_) < M, i 1,2, ....
But (3.2) together with (3.3) contradicts the optimality of the pair (ui, xi)
for sufficiently large i. Hence 4(t) G for I and the pair (, 4) A
for the constrained problem.

Finally, we must show that (, 4) is a solution of the constrained op-
timization problem. We have assumed that (4, 2) is such a solution. Hence
if we can show that

(3.) C() C(),

the proof will be complete. Again proof is by contradiction; we assume

(3.5) C() > C(),

and show that this leads to an absurdity.
We know that

(3.)

Therefore

(3.7)

lira C(u) C().

lira inf Ci(u) >= C()

by positivity of pi(x(t)), Iu. Thus if we let d C() C(4), there
is a natural number i0 such that

(3.S) C(u) > C() + , i io.

On the other hnd we know that

(3.9) lira C() C().

Let lc0 be chosen so lrge that for

d(3.10) C() C()[

Now the trajectory of the pair (0, 20) lies entirely within some
compact set D which lies entirely in int(G). Using (ii) of Definition 1.1,
if i is sufficiently large,
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d(3.11) C(o) C(a)i < .
Together with (3.8) this implies

(3.12) C(u) > C(0),
which contradicts the optimality of the pair (u, z) for the unconstrained
optimization problem, which we have assumed. Hence we mus conclude
(3.5) false and (3.4) true and the proof of the theorem is complete.
Next we shall see that we can obtain similar results using a sequence of

penalty functions of the second kind.
THEOREM 3.2. Let the sequence {pi(x)} of penalty functions of the first

kind in Theorem 3.1 be replaced by a sequence {pi(x)l of penalty functions
of the second lcind. Then the theorem remains true.

Proof. Let us use the notation already introduced in the proof of Theorem
3.1. Theorem 2.1 again establishes the existence of a subsequence, which we
shall still call {(u, x)} which approximates a pair (, ) A. Corollary
2.3 assures us that for each i, x(t) int(G) for Iu, so we know that
(t) G for I there is no need to prove it. The rest of the proof is
word for word as in Theorem 3.1 except that we refer to (ii) of Definition
1.2 instead of (ii) of Definition 1.1. Thus we may regard the proof of this
theorem as complete.

In order to show that the condition on approximability from the interior
is necessary, let us consider the familiar system

(3.13) u, -1 __< u =< 1.

The time optimal trajectories of the two-dimensional firs order system

FIG. 1. Time optimal trajectories for u
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FIG. 2. An optimal trajectory not approximable from the interior of G

corresponding to (3.13) are shown in Fig. 1. In Fig. 2 we insist that tra-
jectories be confined to the closed region G represented by the unshaded
portion of the figure. While there is a time optimal trajectory 2(t) from
x0 to 0 there are no nearby traiectories whatsoever lying entirely in int(G)
with which to approximate (t).

In order to make the results of this section complete one should give
conditions on the system (1.2) and the domain G which are sufficient for a
pair (it, 2), wherein 2 lies in part on the boundary of G and otherwise in
the interior of G, to be approximable by pairs (its, 2,), wherein 21 lies
entirely in the interior of G. At present this appears to be a difficult prob-
lem. We shall present here a simple result for linear autonomous systems.
THEO.EM 3.3 Consider the n-dimensional linear autonomous system

(3.14) Ax + Bu,
where A and B are n X n and n X m matrices, respectively. Assume that u
is restricted to a compact convex subset E". We shall suppose the system
(3.14) is proper, i.e., there is a vector v such that the vectors By, ABv,

A-IBv are linearly independent.
Let G be a closed convex subset of E and let the target set T t) be identically

the origin x O. Let (it, 2) be a pair belonging to A such that 2 (possibly)
lies on OG for certain subintervals of Ia and otherwise lies in int(G). If there
is any pair of functions (u*, x*) satisfying (1.2) and such that u*(t)
for Ia with x*(a) xo and x*(t) int(G) for I then the pair
(it, 2) is approximable from the interior of G.

Proof. For each natural number k, let u be defined on Ia by

( ) lu*(t)(3.15) u(t) 1 it(t) - -
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From the variation of parameters formula we have

(3.16)
xk(t) eA(t-a) xo + eA(t-a) e-A(s-a)

.B s) 1 ds,

whence it is easily seen that

(1) 1(3.17) xk (t) 1 ; 2 (t) -t- x* (t)

for Ia. Since x*(t) int(G) for Ia, it is clear by the convexity of
G that xk(t) int(G) for t Ia. Also

x (t)ll) 0,
k

and

(3.19)

In particular, then,

lira (max fi(t) uk (t) II) 0.
k-o EI

(3.20) limx(b) O.

The work of [4] shows that for k sufficiently large there is a pair of functions
(, 2) defined on an interval [b, b + ] satisfying (1.2) and such that
k(t) 2 for [b, b + ], with the properties

(3.21)

Moreover

(3.22)

2k(b xk(b, ), 2(bt A- 1) O.

lim 0.

Since 0 int(G) and 2 is uniformly bounded, if k is sufficiently large,

(3.23) 2k(t) int(G), [b, b -4- ].

Setting I [aa, ba A- k] and

(3.24) x(t) 2(t), u(t) (t), [bt, be, -t- ],

for / sufficiently large, it is clear that the sequence of pairs (u, x) ap-
proximates (, 2) from the interior of G and the proof of our theorem is
complete.

4. Concluding remarks. The use of penalty functions in the calculus of
variations was introduced by R. Courant. Some of this material may be
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found in [5]. In the supplementary notes to Courant’s Calculus of Variations,
[6], the following theorem is proved by Martin Kruskal and Hanan Rubin.
THEOREM. If

(i) q)(p) and (p) are lower semi-continuous real valued functions on a
convergence space S (i.e., any space in which a noion of convergence is de-
fined)
(ii) I,(p) >__ 0 for all p in S and there exist points in S for which (p) 0;
(iii) A denotes the problem" Find a point satisfying the side condition
(p) 0, at which (p) tatces on is least value for all p in S satisfying

he side condition;
(iv) A denotes the problem" Find a poin for which (p) (p) talces on
is least value for all p in S; and
v there exis a sequence of positive real numbers, a sequence P, of

points in S, and a point p in S such that , --+ as n p, solves A
and Pn oc a8 ?

then" p solves A.
A somewhat more general version of this theorem is presented by T.

Butler and A. V. Martin in [7]. The counterpart to their theory is obtained
in this paper by selecting function g(x) which vnishes on G and is posi-
tive outside G and then defining a series of penalty functions of the first
kind by

(4.1) pi(x) ig(x), i 1, 2, ....
This method has been used by S. S. L. Chang in [2] and [3] to obtain
necessary conditions which must be obeyed by a solution (, 4) of the
constrained optimization problem. Chang’s theory is not confined to sys-
terns (1.2) and cost functionals (1.3) which are linear in u. We have con-
fined our work to systems and cost functionals linear in u so that we may
use the work of Lee and Markus [4]. It is interesting to note that when
sequence of penalty functions of the type (4.1) is used, the requirement con-
cerning approximability from the interior is not necessary. One would like
to know for what general class of sequences of penalty functions of the
first kind this is true.

Penalty functions of the second kind do not appear to have received
much attention in the literature. For certain finite dimensional programming
problems a technique similar to this has been used with some success by
A. V. Fiacco and G. P. McCormick in [8]. Apparently such methods offer
certain advantages in numerical computation. We would like to point out
two advantages enjoyed by a procedure which uses penalty functions of the
second kind. First, of all, each of the approximating pairs (ui, xi) is such
that x does not violate the phase constraints even though it is an
constrained solution to the augmented problem. Thus if the boundary is
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truly "hard", i.e., must not be violated at all, and an approximate solution
to the optimization problem is desired, penalty functions of the second kind
provide a suitable method of approximation. Second, it could conceivably
happen that either the system (1.2) or the cost functional (1.3) is undefined
outside of G in which case again interior approximation is mandatory.
An important question is the rate of convergence of the x to 2 in terms

of the given sequence of penalty functions. Such error estimates are what
is needed to provide a rigorous demonstration of the results obtained in
a somewhat formal manner by Chang in [2] and [3]. This is important
because Chant’s results appear to be the most useful yet obtained for the
constrained phase optimization problem.
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OPTIMAL-THRUST TRAJECTORIES IN AN ARBITRARY
GRAVITATIONAL FIELD*

JOSEPH G. GURLEYf
Abstract. The problem of optimal-thrust trajectories is studied using a slight

variation of the usual calculus of variations technique. The results include the usual
first-order criteria for optimality, which are that the direction of thrust must be
everywhere parallel to a solution of the djoint differential equation, and that the
magnitude of the thrust must be zero in regions where the magnitude of is less
than a critical value, and equal to the maximum permissible value in regions where
the magnitude of is greater than the critical value. Singular arcs, on which the
magnitude of is continuously equal to the critical value, are shown to exist in the
case of all except the simplest gravitational fields, and in some cases may form part
of an optimal trajectory. A means of calculating the unique value of thrust required
to sustain a singular arc is described, and a test for the optimality of such arcs is
given. The test shows that a family of singular arcs discovered by D. F. Lawden is
nonoptimal.

Introduction. Optimal trajectories of thrusting vehicles in a gravita-
tional field have been extensively studied in recent years [1]-[5]. This par-
ticular problem, in which the trajectories are characterized by a very high
degree of predictability, is particularly appropriate for the newly developed
theories of optimal control [6], [7]. In this paper, a related theory is de-
veloped which includes second-order variations as well as the usual linear
variations. This makes it possible to exhibit the characteristics of the
singular solutions and to test for their optimality. The test for optimality
is basically similar to one proposed by Kelly [8], modified so as to apply
to an acceleration-controlled system rather than a velocity-controlled
system.

Background. The motion of a vehicle acted on by a gravitational ac-
celeration g(r, t) and by a propulsive force or thrust F whose magnitude is
proportional to the rate of fuel consumption --h, is described by the equa-
tions

f- g- n- 0,
(1)

/ o,
where m is the mass of vehicle plus remaining fuel and c is the characteristic
velocity of the rocket;-type thrusting engine. There generally exists a con-
strainf, on |,he maximum t,hrusI; and on the mininmm weight of vehicle plus
fuel (the lat,l.er can not, be less t,han he weight, n, of the vehicle alone).

I{,eeeived by the editors July 0, 1904, and in revised form October 30, 1964., ttughes Aircraft Company, Post Ottice Box 90919, Airport Station, Los Angeles,
California.
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(2)

We define admissible trajectories as those trajectories satisfying (1) and
(2) which originate at a fixed time tl, with fixed position rl, velocity ,
and mass m, which terminate at a fixed time t2 > h, and which lie entirely
within a closed region S where g is nonsingular. The boundaries of S,
which may be time-dependent, serve to exclude trajectories which en-
counter celestial bodies. Admissible trajectories exist except in cases where
the propulsion limitations (2) make it impossible to remain within S until
the final time t2.
The values of the final mass m2 are bounded; the maximum is less than

ml by the minimum amount of fuel, if any, which must be expended in
order to remain in S until time t2, and the minimum is the larger of the
two quantities my (corresponding to total exhaustion of the fuel supply)
and m (t ti)c-IF,,: (corresponding to continuous consumption of
fuel at the maximum rate c-Fm,, from time h to time t:). Each value of
m between these limits determines a region A (m.) of final position-velocity
space (r, 2) which is accessible with that particular expenditure of fuel.
The accessible region A (m) expands as m decreases, attaining its maxi-
mum extent A* when m: is equal to its minimum value. Within the region
A* there is associated with every point (r, 2) a maximum value of m
and a value

(3) J(r,, i) max c log _1"

A trajectory which terminates at a point (r., t) within A*, and for which
c log (m2/m) assumes its maximum value J(r, t:), is said to be optimal

Conditions for optimality. On subtracting linear integral funetionals of

(1) from

c log m___2 <= J(r2, 2),
ml

one obtains

c log
ml

[’( g n-11) -t- m-4)(cgz -4- IF I)] dt <= J(r2,);

or, after partial integration, assuming that can. be differentiated at least
twice and at least once,
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m2(1 )c log .2 -I- ."r - . .r

() + [(.

+clog +.g-- .r]dt J(r,f)
m2

where subscripts 1 and 2 refer to initial and final conditions, respectively.
Let r(t) be an optimal trajectory generated by the thrust F(t), with

re(t) the resulting mass; and let R(e, t) be the parameterized family of
trajectories generated by the thrust F(t) eF(t), with M(e, t) the re-
sulting mass. We consider the case where the trajectory lies entirely in the
interior of the region S, and where F(t) is such that, for some positive
e0 and 0 e e0, each member of the family R(e, t) is admissible.
In the case of the optimal trajectory r(t), the equality sign applies in

(4), but in the case of the family R(e, t) the weak inequality applies as
shown. On taking the difference, one obtains

1 )c log M .( ) + .(R r)
m2

+ M-.( + )

+ c4 log

or a sueienly small value of eo, he left side of ghis equation can be
approximated arbigrarily closely by a power series in e. For points in A*
which can be reached by opgimal raeegories in ghe neighborhood of r(),
he righ side can also be expanded in powers of e. hese expansions give

e (1 )cm

+

+ [.a

02R2

OR [- V(.g)]
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+ m -o-j- [mc 2.F

OM- 2! F I] 2m---0 [.tiF IF I] m-lFl

dt -t- terms of order ,3 and higher _-< 0,

where it is assumed that IF -t- tiFI can be approximated by an expres-
sion of the form FI -]- til F] + (2/2)ti F + terms of order 3 and
higher. The symbols V, V2, and v’ represent the gradient operators
0/0R, 0/0R2, and 0/0,. respectively. The derivatives of R, M, R, 1.,
and M. with respect to are evaluated for 0.
The terms in (5) which are linear in and proportional to tit(t), tim(t),

tire., tf., and tim can be eliminated by letting and be the solution of the
adjoint differential equations

(6)
,- v(,.g) 0,

mcb /.F -t- ]FI 0,

satisfying the boundary conditions

V2 J,

(7) ’I. VJ,

In this case, (5) becomes

e {m-X[/’tiF [/ ti F I] "-}" m-[I /1 ]til F I} dt

.V + .V’ J += m7 c
(s)

aM- -- .v (.g) dt-- terms of order e and higher <= O.

Since (8) is valid for any variations in thrust which do not violate the
conditions imposed by (2), it is valid for a variation which rotates the
thrust towards , without changing the magnitude of the thrust, in some
region where the thrust is not parallel to . But such a variation makes
the integrand of the first term of (8) positive, and therefore (8) is violated
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for e sufficiently small. Consequently, there can be no region in which the
thrust is not parallel to , in the interval tl _-< =< t2.
Equation (8) is also violated if, assuming F and parallel, the magni-

tude of F can be increased in a region where [//[ is positive or de-
creased in a region where Il is negative. Consequently, FI must
be equal to Fmx throughout every region where exceeds , and be zero
throughout every region where is less than .
The preceding rules can be summarized as follows"

IFmax [1 ]--1,
(9) F=IF[[]-I, 0-< IFI <-_ Fm,

(0,

where[l >6;

where 6;

where < 4).

These are the usual necessary conditions for the optimality of the tra-
jectory r(t).

Singular arcs. The first-order optimality conditions (9) are defective in
that they fail to specify completely the value or values of thrust F required
to continue an optimal trajectory, once one has reached a singular arc of
finite length where [] is equal to throughout. To attack this problem,
we will repeatedly differentiate I with respect to t, noting that on a
singular arc, the second line of (9) and the second line of (6) imply that
4) vanishes. Therefore ]] is constant and successive differentiation of
1/2[ [2 gives

1 d L
1 d i2 dt

[ ’ + [ (.V)(.g) + I [ 0,

(10)
2 dt

(.v) (,.v)(.g) + (.v) ,. -+ 4(.v)(.g) 0,
1 d i m_ i-12 dt

{// [(g q- F ).V](.V)(.g)

d+ (.V) t [( v)(,.g)] + & (, (v) .
q- 4(’.V) (.g) 1

The second form of the second line follows from (5), and the last line makes
use of the expression for i’ from. (1). The forms of the third and fourth lines



of this equation have been simplified by taking advantage of the conserva-
tive property of the gravitational field, but the conclusions drawn are
applicable to a broader class of force fields.

Necessary conditions for a singular are are, that the last equation of (10)
be satisfied everywhere on the arc, and that the first three conditions all
be satisfied at some one point. In this ease the first three conditions, being
integrals of the last condition, are necessarily satisfied everywhere on the
are.
The conditions for a singular arc can be rephrased as follows" the first

three conditions must be satisfied by r, , , and at the point where the
are is initiated, and the fourth condition must have a root F F0 lying
in the range of permissible thrust magnitude 0 -< F0 _-< F If the co-
efficien of Il, which is (.V)(.g), does not vanish, then there is a
unique root and therefore a unique continuation of the singular arc.
The actual existence of singular ares can be demonstrated constructively

for the inverse-square-law central force field, for any positive value of
Fmax. It appears that singular ares exist in most problems of this class,
provided g is a nonlinear function of position.

An optimality test for singular arcs. If the last equation of (10) prescribes
a value of ]F] which is intermediate between 0 and Fm..x, then the opti-
mality of the resulting singular arc can be tested by means of a thrust
variation

(11)

e6F e . i-A(t)m(t),

a

A(t)= :a
if 0 =<It-to[<
if -r <=It-
if 2r-< It- to].

For small enough values of e and r, this variation results in a thrust con-
sistent with (2), provided the reference trajectory does not touch the
boundary of S.
The associated variation in r(t), according to (1), is

(12)
(t- t’)A(t’) dt’

terms of order ear and higher.

The leading term, of order ear, is linear in e and vanishes outside the inter-
val to 2r < < to nt- 2r (Fig. lb). Therefore, on substituting (12) into
(8), one obtains
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e ]-
t.

t’
(13) - (t )A( dt’ (.v) (.g) dt

+ terms of order ear and higher O.

Since the leading term is of order eeaeT, this condition is violated for small
enough values of r, unless

(14) (.V)(.g) O.

This inequality is a necessary condition for the optimality of a singular
arc.
Assume that the first three constraints of (i0) and are satisfied

at a particular point on an optimal trajectory. Then the final constraint of

to-2r

A (t)

to+2V

(la) VARIATION IN THRUST ACCELERATION

BT"l
(LEADING TERM)

o-2 r o to+2 r

(lb) VARIATION IN POSITION (THE DIRECTION OF 8-C IS PARALLEL TO ’)

Fig. 1. Variation used to test the optimality of a singular arc
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P2(cosS)

cos

+1

INTERSECTION

FG. 2. Intersection of the inequalities P2 (cos O) <= 0 and P (cos O) >= 0

(10) c be written, if (.V)(.g) is not zero, in the torm

d(15) m 1111 [(’V)(’)](ll F0).

If the strong inequality is stisfied in (14), then the fourth derivative
of I I, the lowest derivative not zero by hypothesis, is opposite in sign to

FI F0. Therefore the optimal trajectory cn continue with FI equal
to F.x only if FI F0 is nonpositive, so that will not immediately
begin to decrease. This cn occur only if F0 equals or exceeds F. Simi-
larly, the optimal trajectory cn continue with IF equal to zero only if

FI F0 is nonnegtive, so that ]1 will not immediately begin to in-
crese. This cn occur only if F0 is less thn or equal to zero. To sum-
marize, the strong inequality sign in (14) requires oe to continue n
optimal trajectory long the singular rc, provided the thrust required to
sustain that rc lies in the permissible range 0 =< FI =< F.
An optimal singular rc cn terminate in the interior of the interval

t =< =< t, if F0, which is continuous function of time when the strong
inequMity (14) pplies, exceeds F, or becomes negative. In the former
cse, the singular rc terminates in mximum-thrust rc, in the ltter
cse in zero-thrust rc. The general rule is, that F is continuous t ll
interior nd boundary points of singular rc which forms part of n
optimal trajectory, except t points where (.V)(.g) is zero.
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If (14) is violated, then the fourth derivative of I1 has the same sign
as I’1 F0. Iu this case, the optimal trajectory can continue with
equal to Fmx if 1 F0 is positive, or if F0 has any value less than Fmx.
Similarly, the optimal trajectory can continue with " equal to zero if
1 F0 is negative, or if F0 has any positive value. If F0 lies in the range

0 < F0 < F, there are two optimal trajectories proceeding from the
same set of initial conditions, and going off in quite different directions, one
using maximum thrust and one using zero thrust.

Application to a central force. For an inverse-square-law central force

(16) g=

where is a constant and r is the magnitude of the position vector r meas-
ured relative to the center of the field, then the second line of (10) shows
(.V)(.g) to be negative and (14) shows (.V)2(.g) to be negative.
These two conditions lead to

P.(cos 0) _-< 0,
(17)

P(cos 0) ->_ 0,

where P is the Legendre polynomial of order n, and 0 is the angle between
the thrust vector F and the radius vector r. The intersection of these two
conditions (Fig. 2) gives, as a necessary condition for the existence of an
optimal singular arc,

(18) -(1/2)/ -< cos 0 _-< 0.

Lawden [3] gives equations for all planar singular trajectories for the
inverse-square-law central force field, and discusses in some detail a family
of spiral planetary escape or planetary approach trajectories. The latter
involve thrust in a direction such that cos 0 is posiiive, and so fail to satisfy
the necessary condition for oplimality of a singular arc. Hence no segment
of these spirals can be part of an optimal trajectory.
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MINIMAX CONTROL OF DISCRETE TIME
STOCHASTIC SYSTEMS*

D. D. SWORDER

1. Introduction. In this paper the synthesis of a control policy for an
object with stochastic elements will be investigated. The randomness
associated with the object to be controlled can come about in several
different ways. For example, the control rule to be used may depend
explicitly on output measurements from the system which are contami-
nated with additive random noise. On the other hand, it might be that
some of the parameters which are contained in the equations describing
the process are random variables. If the criterion of performance is a
nonnegative functional of the system state and of the control policy, one
might hope to choose the control in such a way that the expected value
of this functional is minimized. In the case where certain parameters of
the process are incompletely specified, this leads to the conceptual problem
that an optimal control rule may be a function of these undetermined
parameters. Since the performance index now provides only a partial
ordering of control policies, an auxiliary criterion must be chosen to pro-
vide the designer with a "best" control.

In what follows we will make extensive use of the definitions and results
from the theory of games as presented by Blackwell and Girshick [1]. It
will be shown that the basic structural properties of the control problem
can be formulated within the framework provided by this theory.

2. Mathematical formulation. To make the ideas of 1 more precise,
consider the discrete time system described by the equation

xj+l fj(x, v, ), 0 <= j <= N- 1,
(1)

x0 x(0),

where"
x. the n-dimensional state vector at time jA. A is the unit incre-

ment of time.
v. the It-dimensional control vector at time j/.- the r-dimensional disturbance vector at time jA.
f- is continuous for all j in the interval 0 =< j =< N 1.

* Received by the editors April 20, 1964, and in final revised form December 23,
1964.
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We will assume Chat the object of the control action is to cause the plant
state vector, x., to follow a random command input vector, ., generated
by the equation

j+l gi(2i ),
(2)

:% (0),

O<=j<_N- 1,

where"
G" the m-dimensional command input vector of time jA.
g. is also assumed to be continuous for all j in the interval 0 _-< j =< N 1.
The performance of this system will be measured by a continuous non-

negative functional of the system tracking accuracy and the control action,

(3) h(x, v, ) W(x v, ),
i=O

where W is, itself, a continuous nonnegative functional.
The basic problem is to choose a control action in such a way that the

cost of the control process is small. It is well o consider in detail what the
choice entails. For each value of j it will be assumed that v. V-, where
V is a closed convex set in E which represents the set of all allowable
control actions at time j/x.
DEFINITION 1. Let the Cartesian product at V. sets (V0 X V X

X V) be denoted by V. Any element of V will be called an allowable con-
trol action and will be denoted by v.
When the compensation element chooses the control action v, it will

have available to it a certain quantity of information on the loop perform-
ance. This data will take the form of a vector composed of sequences of
the observed plant variables. For example, it might contain the output
sequence Ix0, xl, and past control actions Ivy, V-ll. We will
say that at time jA, the control element cn observe the vector

(4)
z r(x v_ z_ ),

zo z(O).

On the basis of the observed data the control element chooses an action

v- ff V. That is,

(5) v. a(z).

With this in mind, we make the following definitions.
DEFINITION 2. Let the information available to the control element at

time jA be denoted by z.. Let the range of z- be Z., and let (Z0
X Z X X Z) be given by Z. An element of Z will be indicated by z.
DEFINITION 3. A control policy is a function, g, from Z to V such that if
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a and b are elements of Z and if ai bi for some integer i in [0, N], then
a(a) %(b). The set of all such will be denoted by F.

In (1), (2) and (4) we have used the random vector . to account for
the random or undetermined elements of the system and/or the environ-
ment in which the system operates. For example one .component of -,
0 <= j <- N, could be a constant which represents an unknown parameter
in the plant description. Another could be measurement noise in vj. In
any case, the sequence {-} will be assumed to have a joint probability
distribution function of the form P(0, 1, $ t), where t is in general
a vector. The parameter vector represents the basic uncertainty about
the process, and it is constrained to be an element of a known parameter
set O.

Before we complete the description of the control problem, it would be
apropos to examine the fundamental characteristics of the disturbance.
Basically, the process {$.} is a sequence of random vectors chosen accord-
ing to one of a class of known probability distributions. This class is in-
dexed by the vector 0 and it is known that O. In this formulation
is the unspecified portion of the system model and for convenience will
be referred to as the "unknown parameter" in the process description. It
may be the case that the engineer initially has some information about
the relative probabilities of the elements of O. In this event the uncer-
tainty about the true value of 0 may perhaps be re-expressed as an a priori
probability statement. The vector 0 would be considered to be a random
variable in this description of the system. But because 0 is time invariant,
i will be labeled "unknown" even in this circumstance.
With the above definitions in mind we can write the cost of the control

process as

(6) h(x, v,
i=O

Since all of the arguments of W are implicitly functions of the random
variable 0 <__ <-_ i, h(x, v, 2) is a random number. In many situations
it is appropriate to use the expected value of this number as a performance
index. For a given initial state the expected cost can depend only upon
the control policy, , and the value of the unknown parameter vector 0.
Thus, we can write

(7) H(, ) E(=o W(xi v )}.
3. Game theoretic aspects of the control problem. In. the usua! optimiza-

tion problem in which. ) contains only one element, 00, he optimal control
policy is chosen to minimize H(, 00). Uffortunately, in the general case
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the criterion of performance induces only a partial ordering on I’. This
follows from the fact that the ordering is a function of the unknown vector
0, and it may change for different values of 0 O. To obtain a "best"
policy it is necessary to utilize an additional performance measure. For
this purpose we will introduce a few definitions and results from the theory
of games (see [1]).
DEFINITION 4. Denote the set of all probability distribution functions

over elements of 0 by 0". Elements of 0 are represented in O* by degener-
ate distributions. Elements of O* are denoted by 0".
DEFINITION 5. If 0o* O* and (o) F, then define the Bayes cost of

(o) with respect to 0o* as

((o), 0o*) f H((), O)H dOo*.

DEFINITION 6. If 00" O* and (0) F, and if

H((), 0") inf H(, 0"),

then (o) is called a Bayes control policy with respect to 0o*.
DEFINITION 7. If for every > 0, there exists * O* such that

H((), 0*)=< inf H(, *)+ ,
then (o) is called an extended Bayes control policy.
DEFINITION 8. ]f there exists (0) F such that

sup H((), 0") inf sup H(, *),
O*EO* "E F O*EO*

then (o) is called a minimax policy.
DEFINITION 9. ]f there exists an element g(0) r such that H((), 0)
C for all 0 0, then (0) is an equalizer policy.
RESVLT 1. If ft() F is an equalizer and if it is also extended Bayes,

then it is a minimax policy.
In the above definitions we have used the same symbol for the Bayes

cost and the expected cost for a specific value of 0 O. This is done for
notational convenience since O will be treated as if it were a subset of O*.
If we suppose that the choice of the true value of 0 is made by an entity
called nature, it is clear that allowing randomized strategies for nature

This result is not stated explicitly in [1] but follows in an obvious way from the
above definitions (see [5]).

supH((),0.) C H((), 0*) _-< infH(,0*) +
0*

_<_ sup inf H(, 0") + =< inf sup H(, 0") + e.
O* O*
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as we have done makes the control problem more difficult in the sense that

(8) sup H(, 0") _>- sup H(5, 0).
0*EO* OEO

The reader might then suggest that the control system designer might do
better to consider probability distributions over elements of F. Such a
suggestion was made by Feldbaum [2]. It can be shown, however, that
under rather mild restrictions, randomized control policies are not superior
to pure control policies when we restrict ourselves to a Bayes cost ordering
of F (see [1]).

In this paper we will consider the synthesis of Bayes control policies
with respect to a given a priori distribution 00* C 0". If it is known that the
actual value of 0 in the system is a particular realization of a random vec-
tor with distribution function 00", then the Bayes policy possesses charac-
teristics that one would intuitively look for in an "optimal" control. If
there is no such a priori knowledge, a minimax policy might seem more
appropriate. Result 1 indicates that minimax and Bayes policies are in-
timately related, and, it can be shown that in many cases all "good" con-
trol policies are Bayes with respect to some a priori distribution. The Bayes
ordering is a mathematical restriction, of course, as evidenced by the elimi-
nation of randomized control policies from consideration. This can, how-
ever, be viewed as a great practical advantage of Bayes rules since the
complexity of the mechanization of a randomized policy could be pro-
hibitive.
The reader should observe at this point the intimate relation between

the problem posed in this paper and the fixed sample size game defined in
[1] (see, in particular, [1, Definition 3.5.4]). The set of strategies which
nature has been allowed are more restrictive than permitted in the gen-
eral two-person, zero-sum game in the sense that nature is permitted no
observation of the control rule, , chosen by the engineer while /will be
an explicit function of z. This lack of symmetry provides at least intu-
itive iustification for the assertion that pure control rules are at least as
good as randomized control policies.

Let us also mention parenthetically that the minimax cost given in
Definition 8 may not be the value of the control process. For questions
relating to the value of the process and the maximin control policy the
reader is again referred to [1].

4. Evaluation of the Bayes cost. Before we can choose a policy
/(0) F which minimizes H(/, 0"), we must write out the Bayes cost
explicitly.
DEFINITION 10. The (s + 1)-fold Cartesian product of En spaces (E

X E X En) will be denoted by X8. An element of X will be de-



438 D.D. SWORDER

ioted by x’, ad will represent the space-time history of the system state
ve(tor from ti.e 0 to tie sA. Siiliarly, the (s + 1)-fold Cr-
tesia product of ];a: will be denoted by V. A element of V will be d-
ol,d by v and will represet the space-time history of the ontrol actio
from 0 to sk. The history of , 2, ad z will be deplored in the se

At any time sA, the control action will depend upon the information
vector z,. Assume that at time sA the following sequences were known"

x, , and 0. Then, using the notation of [2], define

r=E{W,I’-,.,,x, 01
()

W(., s,(z,), ).

The expected incremental cost at time sk is

(10)
R8

F
where j dft( represents aIl integration over the whole region of varia-

tion of the argument of ft.
Equation (10) contains a rather unwieldy joint probability density

function. It can be broken down into more manageable parts as follows"

(11) p(v, x’, 2, ’, O) p(v, ’, x, l O)p( O).

The conditional density function can be further reduced"

(12) p(v’, x, x, o) p(xo o vo,olO)p(v x l O, xo ,o,vo, o)
i1 i--1 i1 i1..p(v,x,,O,x ,x ,v

p (v, x, 2, 0, xE-,x’-,v’-i, -).
Finally, the product of conditional density functions becomes

p(,’. X’. X O) p(x X X V O)

i=O

()
p(yi]Xi, i, yi-,,)

i=O

p([x, , v-i -1, ,O),
i=O
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where x- 2- v- and $- are dummy vectors. Using 1 ), (2), (4) and (5),
we can simplify (13) cosiderably. Many of the conditional density func-
tions listed in (13) are degenerate because a functional relationship exists
between the arguments. For eonomy of notation., we will suppress the
explicit listing of the argmets of ’a.i, fi a(1 gi. Then (10) becomes

i=0

(14)
=0 =0

P( 0, -l)p(0) a(z", ", ", v", 0),

where ( is the usual delta function and f-1 z0, g_ 20.
In (14), p(O) is the probability density function for 0. Since 0 is a con-

stant, its distribution function is degenerate at the true value of 0 O.
Unfortunately, this distribution is not known to the control element at
time sA because 0 is by definition the unknown parameter of the sys-
tem. Let po(O) be the density function which corresponds to the a priori
distribution for 0. The compensation element can form an estimate of 0
at sA by use of the Bayes formula

po(O)p(z O)
(15) p(O z) p.(o) f p(z v)po() de(n)"J
Note that the Bayes formula is expressed in terms of the observation vector
z’ since any estimate of p(O) which is made by the controller must be in
terms of z".
An interesting special case of (15) occurs when ’- appears explicitly in

z but ’ does not. This may occur through an auxiliary feedback path or
perhaps (1) and (2) can be solved for -. The importance of this infor-
marion rests on the fact that only } depends explicitly on 0. In this case
all of the rest of the components of z become nuisance variables with re-
spect to estimating 0. With an argument much like the one we used to
derive (13), we can show that in this case

po(O) H P(( O,
(16) p,(O) ,=o

s--1

i=0

For the case where - is observable then,

nH(a, Oo*) W. (x -1) (
s=0 i=0 =0
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(17)

p([0, p0(0)
I._i=0
s--1

V )Po(V) d2(v)
d(x",x

5. Synthesis of the Bayes control policy. To evaluate the Bayes control
policy with respect to 00", the dual control technique of [2] can be used.
This approach is closely related to the principle of optimality of [3]. Define

i=o i=o

(18) [..i=0 po(O) da(O),k--1

i--0

k

H (v ).
i=0

Then,
N--1

(19) H(, 0o*) aNN--6(VN V) d(x, 2N, N--, VN) + R.
i----0

If we minimize the above expression with respect to N, we see that
appears only in the aN factor. Thus,

(20)

N--1

inf H(, 0o*) R
N i=0

The minimization is to be taken over all allowable N. Since aN is con-
tinuous in vN, the minimum exists. Define

(21) p inf

Then,

(22) inf H(a, 0o*) fN

N--1

PN N--1 d(x2, N, N--1, vN--1) + E Ri.

If we rewrite (22) in the form.
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(23)
inf H(4, 00") f

and define

then it follows that

/ f t
N--2

(v- a- da(x-,z--, -, v- + _,R,

inf (otN-1 -t- fpNd(X,N,.,y,
UN--1

(24) inf inf
gN--1

Consequently, if we denote that which minimizes pi by i, we have the
following sequential procedure for evaluating the Bayes control policy,

P+I 0,

(25) uN_i

inf H(g, 00") p0,

6. Examples. To illustrate the development of the preceding sections,
two examples will be considered here. The first example is chosen from
[4]. This is a stochastic control problem in which there are no unknown
system parameters, and the concepts of minimax policies and Bayes policies
coalesce into simply an "optimal" policy. The reason for presenting this
example is to show how the above work relates to some already published
results.

Let the system be described by the equation

x.+ .x. + &.v., 0 _<_ j =< N,

(26)
x0 x(0),

The matrices and zX. are matrices with random elements. These elements
are assumed to be completely described statistically, and, therefore, 00"
is degenerate at the true value of 0, 0. What is more, we will assume that
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these elements are independent from one time increment to the next, and
that the means and covariances of the random elements are finite.

It will be the job of the compensation element to generate the scalar
control action v in such a way that

(27) H(, )= E{xffQxj.=o + v2}
is minimized. Q is a positive symmetric matrix.
For this problem the form of o becomes quite simple,

(28) o, (xk Qxk + v, II a,_,,,_,).
i--0

Define
(Xi i--lXi--1 Ai-I)i-1) i.

Then, if p+l has the form
5+1

T(29) ps.+l x+PI+xi+I II
i=0

we will obtain the following form for p,

(30)

.= inffa. + f
inf xi QX"

We have used the notation p((., zXi) to represent the joint probability
density function for the elements of the s. and As. matrices. Let us define

(31) f f(s., As.)p((rps., As.) d2(s-, As) f((I)s., AS.).

The minimuln of the quadratic form in v. can be found quite simply. The
optimal control rule is given by

’I,S. as.T xs.
()

aft [Ai.T Ps.+l AS. + 1]-lAs.r Pi+1,
and

(33)
1. Q + rp+ a(A’ps+ A + 1 )as.r.
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From (28) it is clear that

(34) PN+I 0.

Thus (32), (33) and (34) provide a recurrence formula which can be
solved for
The second example to be considered is much more interesting from the

conceptual point of view. In this system there is a random parameter for
which the complete statistical characterization is not known. Thus, the
control element must "learn" about this parameter as the process unfolds.
The equation which describes the system is the scalar difference equation,

x.+ .x. + ., 0 _<_ j =< N,

(35) x x(1),

=0.
The observable information vector is given by the formula

(3) z )’-I

The object of the control policy is to minimize the expected value of a
measure of the final value of the state variable,

(37) H(z, 0o*) E{xv2}.
It will be assumed that is a sequence of independent random variables
with probability density

1(38) p(]O, 3--1) exp {-- (- 0)2}.

Here 0 plays the role of the unknown parameter for the system. 0 will be
assumed to be the real line. Note the essential difference between this ex-
ample and the one preceding. If 0 contained only one point, , this system
would be contained in the set of systems described by (26). For every
different , we would arrive at a different optimal control policy. Thus, the
problem of finding an optimal policy does not have a solution in the same
sense it had in the first example. As discussed earlier, if there exists some a
priori information on 0, a Bayes policy would seem appropriate. For this
example, however, it will be assumed that no such a priori information
exists, and a minimax policy is sought. The approach suggested in Result
1 will be pursued.
To apply this theory, the form of the Bayes rules for various 0,* (R)*

must be considered. The set of all probability distributions over the real
line is clearly a very large set. If one is fortunate, a sequence of 0* (R)*
which are called for by Definition 7 can be chosen from a small subset of
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0". With this in mind, let us investigate the Byes policies for 00*
(t, z). That is,

1 { (0- )2(39) Po(0) V/_r
exp

It is shown in Appendix I that a Bayes policy with respect to 0o* is given by

[ =o x

(40)
a,

+ =0 xi x, 1 j N.
a1,i

One method of finding the minimax control policy involves finding an
equalizer rule. One guess at an equalizer would be simply to use an un-
biased estimate for 0 in the formul for the optimal control policy where
0 is known. Denoting this policy by ,

zi, INjNN.
i=0 Xi

If we combine (40) and (A.14), we see that

(42) lim &.

This, in itself, is not sufficient to prove that is extended Bayes because we
must prove

(43) lira H(, 00"(a2)) lira U(, 00" (a2)).
0-2-

The notation 00*(z) has been used to indicate the dependence of the a
priori distribution for 0 on the parameter z. Equation (A.17) shows that

(44) lira S(, 00*(a2) Nix(1)

where N1 is a uniformly bounded function of a2 for a2 (0,
teflon function is continuous in s, and, therefore,

(45) lira H(&, 00"(2) Nx(1)2.

). The cri-

Equations (44) and (45) prove that is an extended Bayes control rule.
We must now show that it is an equalizer. Before treating this question in
detail, let us consider the following heuristic argument. Because of the
manner in which we formulated the problem, pl provides a measure of the
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expected cost of the process conditioned on xl, x0 and v0. In general, one
might expect that pl would be implicitly dependent on 0, and thus, ex-
plicitly on (x Vo)/Xo since 0 provides some indication of the true value
of 0. Instead, as the a priori information approaches the uniform "distribu-
tion" over the real line, p becomes independent of 0. Consequently, for
every 0, pl is the same, and we might begin to suspect that the Bayes
cost of is becoming less dependent on the true value of 0 as z -- .The simplest way of showing that is an equalizer rule is to argue as
follows-

1 . x(1)(46) h(x,

Therefore,

(47) H(, 0) x(1)2E
i=1 j=0

I is easy o see hat { (1/i) o .} is a sequence of independen
random variables with zero mean and variance equal Lo 1/2(1 + (1/i)).
Therefore,

N--1

)2(48) H(, 0) x(1 1 +
for all 0 O. Therefore, F is a minimax control policy.

7. Conclusions. Since we obtain such a nice solution to the second
example, the reader might wonder what would happen if the initial con-
dition is placed on x0 rather than Xl. For this problem the solution is quite
simple. All F are minimax. The truth of this assertion follows from the
fact that even if we have a good estimate of 0, the expected cost of the proc-
ess is proportional to xl2. If 0 is not measured before the initiation of con-
trol, nature is permitted sufficient freedom to make E{x} for all v0.

It is clear that by describing the motion of the control process with a
set of difference equations we have introduced an important mathematical
restriction on the class of problems which can be treated. In most physical
systems, however, this does not seem to be an unnatural method of de-
scription. In particular, if the loop contains inertial elements and if the
control energy is bounded, it is intuitively clear that a discrete time model
of the process will be adequate if the time increment is chosen appropriately.
In the same way, if the control policy approaches some limiting form as
N -- , the results of this technique may be suitable for optimization over
an infinite period.

Appendix 1. From (18),
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x II p(lo,
i---o Li=O d(A.1) a (0)

.II p( In, )po(n) da(n)

Since aN is independent of VN, VN is arbitrary and aN pN. Also W
0 for j < N and thus a. 0 for j < N. Using (38) and (39), one

can show that

Li=O
p(i I, Po(O) d(O)

(A.2)

=Kexp _?+ =o =o

1
}+1++ j

where K is a continuous function of k and z which is uniformly bounded
as a function of z: in the interval (0, for all k. If we substitute (A.2)
into (A.1) and perform the required integration, we obtain the result

2a,- 2}-
al,_l

exp {hv-, },

where we

(A.4) +
2aad 2-i a2 ,j

al,j

The a,. in (A.4) satisfy the following recurrence formula"



DISCRETE TIME STOCHASTIC SYSTEMS 447

1 4
]. 1N + - 2N -[

2a

2o-2

(A.5)

(3,N’--I a,,N-1

a4 ,hr-1 0

al,y-1 1 453," @ 52," -4-

a2,-1 52, a4,y -4-

a,- a, + --+
a2 ,y

a2 5-1 a2,y

4

al

4a3,- a2 ,y a ,y

al,y

al,i

a4d- a4,y
4a3 ,,/a2,y

Returning to (A.3), we see that only one factor depends on YN--1. Thus
the optimal control action at (N 1)A is

(A.6) .-
and

(A.7)
N--1

pv- N2xv_ II i exp {h_}.

Now assume o takes the form

(1.8) P
i--=0
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Performing the indicated integrations, we find that

j-1 fpj gt(xj, -) g II
i=0 2a,j_

(A.9) 2a,.-1 2 i 2+ v- + x-
al,i-1

exp X’- }.

We can see directly from (A.9) that a Bayes control policy is given by

2aa.. 2 2.., , a ,
(A.10) ’. x,

al,i

and that

(A.11) p-i N_ix_ II ( exp
i=0

By induction it follows that a Bayes control policy is given by (A.10)
for all integers j in the interval 1 -< j =< N. Note that many Bayes policies
are possible because v can be chosen arbitrarily.

Let us next consider the Bayes cost of the control process. From (A.11),

(A.12) p Nx2(hexl.
It is interesting to note what happens to this index of performance as-- . From (A.4),

(A.13)

j 1 1(A.14) lira a,. lira a2,..- lira a,- ) + 1’ - j + 1’ - 2(/+ 1)
Another identity which is contained in (A.4) is

(A.15) 453,. 52," + 2a4,. 4a3,. a2,.

Combining these equations,

(A.16) lira 1 0,

It can be shown using (A.5) that
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and

(A.17) lim pl Nx (x x(1)).
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