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AN ALGORITHM FOR THE ITERATIVE SOLUTION OF
A CLASS OF TWO-POINT BOUNDARY VALUE
PROBLEMS*

C. W. MERRIAM III}

Abstract. The algorithm, which is based on second variations, is intended for a class
of two-point boundary value problems arising in control optimization. These optimi-
zation problems are characterized by positive definite second variations, the absence
of point constraints on control and state variables, and free-point terminal boundary
conditions. In a suitably small neighborhood of the optimal trajectory, the algorithm
gives one-step convergence within the limits of the accuracy obtained with numerical
integration. The relationships which are used here and arise in variational mathe-
matics are stated in an appendix.

Introduction. The computational aspects of the two-point boundary
value problem arising in control optimization and other variational prob-
lems recently have received considerable attention. In this paper, the
variational problem of interest is the minimization of

(1) e = fono(x,m, t) di

with respect to m where

(2) x = f(x, m, ¢)

and

(3) x(0) = a.

The control and state vectors are taken to be m = col (my, ma, -+ -, mu)
and x = col (x1, 22, - -+, xx) respectively. The vector function f(x, m, t),

fo(x, m, t), and the required partial derivatives of these functions are as-
sumed to be continuous and bounded for all finite values of their arguments.
In addition, the assumption is made that fo(x, m, ¢) is formed properly
such that the optimal m is unique, bounded, and a continuous function of
a and ¢.

For this class of variational problems, Kelley [1] and Bryson [2] have pro-
vided a feasible and straightforward method,} variously called gradient or
steepest-ascent, for obtaining numerical solutions to these variational
problems. The method due to Kelley and Bryson offers many practical
advantages. Specifically, the iterative procedure guarantees a monotone

* Received by the editors December 1, 1962 and in revised form January 1, 1963.
+ General Electric Research Laboratory, Schenectady, New York.
{ This method requires fewer restrictions than imposed here.
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2 C. W. MERRIAM IIT

decreasing sequence™ of values for e, and every suboptimal trajectory ob-
tained satisfies (2) and (3) so that the iterative procedure can be termi-
nated when an efficient trajectory has been obtained. Also, the computer
memory requirements are linear in N and M whereas they would be ex-
ponential in N for the approach of discrete dynamic programming. Finally,
the computations are performed with stable differential equations, unless
(2) is unstable, whereas boundary condition iteration methods using the
equations arising from the calculus of variations always involve unstable
equations and the ensuing numerical difficulties.

More recently, refinements of the basic method due to Kelley and Bryson
have been introduced [3] which primarily are intended to alleviate two
remaining difficulties. First, experience with the basic method indicates
that the convergence of ¢ to the minimum value of e is considerably more
rapid than the convergence of m to the optimal control vector [4]. Second,
the rate of convergence tends to decrease in the neighborhood of the optimal
trajectory. The algorithm presented here also is directed toward these
two difficulties for the restricted class of variational problems discussed
previously and is a direct extension of the basic method due to Kelley and
Bryson.

Condition for a monotone decreasing sequence. The condition for a
monotone decreasing sequence of values for e is related to the formalism
used in the calculus of variations. Specifically, the integral

T N

@ o= [{am o + X plhm 0 - a)a

is minimized in the calculus of variations where p, is treated as a Lagrange
multiplier and is adjusted such that (2) is satisfied. This procedure yields
the necessary conditions for a minimum givenin (A9), (A10), and (A11) of
the Appendix. The iterative procedure, however, is based on neglecting
the condition given in (A11) by arbitrarily assuming a vector m. Then
the corresponding solution x** is obtained from (A9), and also the corre-
sponding solution p® is obtained from (A10). The condition e <
then is obtained in terms of

M@ ' 71 0m,® P

which results from neglecting (A1l). The notational simplification ful®
= f.(x”, m”, t), ete., is adopted throughout. Also the notations

. (41 . . i1 "
(6) Mn('b) — mn(1+) _ mn(l), Xn(z) — xn(1+) _ xn(z),

are used.

* The question of whether the limit point of this sequence is in general also the
minimum value of e apparently is unresolved.
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The condition ¢ < ¢ is obtained directly from (4) with a Taylor
series about the 7th trajectory under the assumption M, is maintained
sufficiently small. In this expansion, third and higher degree terms in the
elements of M and X” are neglected. Therefore, the series required are

P GHD o @ 2 9f," @

m=1 amm“)
(7) + i i—]; a2fn(z) x (Z)X o
== 2 dxPox, 0 T
and
N
(8) pk(z-l—l) ~ pk(l) + 2[2; plﬁz)Xl(l),

where py; 1s defined in (A12). The expansion of (4) is completed by rear-
ranging terms, by substituting the definitions given in (5), (Al4), (A15),
and (A16), and by substituting the equations given in (A10) and (A17).
Also, integration by parts is performed, and the boundary conditions
X,2(0) = 0, according to (3), and p,'*(T) = pi’(T) = 0, according to
(A2), are imposed. These straightforward steps yield

(9) e(i+1) ~ e(i) + v(i),
(7)

where the integral »** is given by
M
= { S 3 MO,
0 n=1 m=1
M . N . . .
(10) + 2 [Sn‘“ + 22 R;szm‘“] M,
n=1 m=

1 M N N . .
+3 > Z (RS K“)Xm(“Xk(”]} dt.

This integral involves both the first and second variations™® of ¢V about
¢, The basic method due to Kelley and Bryson involves only first varia-
tions and is obtained by merely neglecting the second degree terms in the
elements of M and X” which appear in (10). The condition for a mono-
tone decreasing sequence of values for ¢'” is established in either case by
choosing M such that v < 0 according to (10) but restricting the mag-
nitudes of the elements of M to suitably small values such that e ™ < ¢'®
according to (1). As opposed to the case of first variations only, however,
the iteration algorithm is not established by selecting M‘® such that the
integrand of (10) is negative definite for all .

Iteration algorithm. The iteration algorithm introduced here is based on

* This term is used here in the classical sense of the calculus of variations.



4 C. W. MERRIAM III

a second variational problem. Specifically, the perturbation vector M is
selected so that (10) is minimized® subject to the linearized incremental
state equation

N (%) M @)
& (4 6fn (2) afn (1)
1 n( ) = T AAm
(1) X ,ﬁ:‘l 0, ® X - mz__l M Mo

The solution to this variational problem is well-known in linear optimum
controls [5], but unusual simplifications oceur here. If V' is defined as
the minimum value of v*”, then the methods used for linear optimum con-
trols yield

T M
(12) V(i) = ——%f {Z Z T(l) ('L)Gm(i)} dt
0

n=1 m=1

The variable G,'? is defined by

SN ) oy @ O T
(13) ;1 qanm = —"Sn - Iczz:l ng
and
: 5 9 n(z) "
(14) ZR;>G<>+Z In 0@

1 9@ A

where g,'”(T) = 0. The variable g,” is analogous to p;" Whlch arises in
the original minimization problem. However the variable g5y, which would
be analogous to piy, is zero. In addition, the elements of the optimal vector
M are given by

N
(15) M, =@ — 3 KX,
k=1

As discussed previously, the elements of M must be restricted in mag-
nitude in order to validate the expansions which lead to (10) and (11).
Here, step-size is restricted by introducing the parameter e such that

(16) Mn(i) — eGn(i) . ZK('L)X (1)
k=1

When (11) and (16) are substituted into (10) and the appropriate manipu-
lations are performed, the integral v becomes

(17) VP = (& — 29[V

However V' is negative which is insured by the property that the matrix
[T¢)] is positive definite when x*” is in a suitably small neighborhood of

* A second two-point boundary value problem would be encountered here if the
control and state variables were subject to point constraints.
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the optimal trajectory for the class of variational problems discussed here.
As a result, v is a strictly convex function of the parameter e and also is
negative on the interval 0 < e < 2. Therefore the iteration algorithm
based on both first and second variations is taken to be (16) where step-
size is adjusted on the interval 0 < ¢ < 1.

As expected, the algorithm given in (16) yields one-step convergence for
e = 1 when fo(x, m, t) and f(x, m, t) are quadratic and linear, respectively,
with respect to the elements of x and m. This property results because no
approximations are introduced by the expansion of ¢tV Also, this prop-
erty gives rise to extremely rapid convergence when x is in a suitably
small neighborhood of the optimal trajectory.

Numerical considerations. In actual numerical solutions, the incidence
of truncation errors, which are primarily due to numerical integration,
makes the exact computation of the optimal trajectory and hence one-step
convergence impossible. Therefore a suitable condition for terminating
the computations is needed. A condition of this type is obtained with the
introduction of the variables U,,'” and G5 such that

(18) Z TinUn® = =87 22 TinGhid = — 22,
m=1 m=1 amn(z)

The variable G,,'” then becomes
(19) ¢ =U" + Z G52g"?

The vector U depends on S, and the condition U = 0 occurs on the
optimal trajectory where S” = 0 everywhere on the interval 0 < t £ 7.
The condition for terminating the computations is written in terms of a
norm and is taken to be

(20) U9 <5, O0=t=T.

The number §, although somewhat difficult to specify, is chosen in corre-
spondence with the truncation errors.
The form of (16) suggested for actual numerical solutions is

(21) m, = 9 4 KO — ZK(U LD
k=1

where

(22) Kn(i) = (1) + ZK;kl‘k

and G,,” is given by (19). This form of the algorithm is a linear control
equation which can be used for control purposes [6] with ¢ = 0 when x"**"
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and x'” are in a suitably small neighborhood of the optimal trajectory.
Presumably, the iterations would continue until the test given in (20),
which can be performed during the backward-time integrations, is satisfied.

Another numerical aspect of the iteration algorithm based on first and
second variations concerns the stability of the differential equations used
in the computations. If x*” is in a suitably small neighborhood of the optimal
trajectory, then the linearized equation given in (11) is a valid representa-
tion of (2). When (16) is substituted into (11), the incremental state
equations associated with the forward-time computations from ¢ = 0 to
¢t = T are found to be

. N %) M ) M (%) .
(23) _Xnm — Z l:af" - Z a.fn (1):! X @) + € Z afn ' Gm(z)‘
k=1

axk(l) m=1 6mm(4 m=1 6mm(’)

In other words, the forward-time computations are performed with dif-
ferential equations, namely (2), that possess the stability properties of
linear optimum control systems [6], when x'” is in a suitably small neigh-
borhood of the optimal trajectory, as opposed to the stability properties of
(11). This property is particularly important from a numerical point of
view when (11) is unstable. Also, suitable manipulations show that the
backward-time computations from ¢ = 7 to ¢ = 0 are performed with the
adjoint equations of (23) as opposed to the adjoint equations of (11).
Specifically, the substitution of (19) into (14) and the use of the definitions
introduced in (18) and (A18) yield

R M %) M @)
24) -3 = > ROUY + Z [afn ok {m] @
n=1

x (l) m=1 amm“)

Similar manipulations of (A10) in conjunction with (5) yield

M () M £ (@)
5 = = X RGUO 4 [0S k|

A T Omy,®

N (2) M (7)
+ Z [afn ‘ Z fn K(z):l 0}
n=1

A, = om, @

(25)

These two backward-time equations also possess the stability properties
of linear optimum control systems when x” is in a suitable small neighbor-
hood of the optimal trajectory. Therefore the backward-time computa-
tions associated with this algorithm are performed with (24), (25), and
(A17) which is of the stable Ricatti type when x is in a suitably small
neighborhood of the optimal trajectory. When (24) and (25) are used in
numerical integration, a procedure of setting the elements of U equal to
zero wherever || U] < § is satisfied on the interval 0 < ¢ £ 7 usually is
adopted. This procedure appears to inhibit the propagation of truncation
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errors in the neighborhood of the optimal trajectory where (5) may in-
volve small differences of large numbers.

Conclusions. This algorithm possesses the property of an exceedingly
rapid convergence rate when x* is in a suitably small neighborhood of the
optimal trajectory. The basic algorithm due to Kelley and Bryson many
times is characterized as a step-by-step gradient ascent on a convex surface.
However the algorithm based on only first variations does not account for
the surface deformations caused by the step taken. The algorithm based
on first and second variations includes a first order approximation to the
deformations in this surface, thereby giving rise to rapid convergence under
suitable conditions. The added elapsed computer time per iteration re-
quired to solve the added N + N(N + 1)/2 backward-time differential
equations when second variations are used appears to be more than com-
pensated for under these conditions. However this conclusion is based on
limited experience with the algorithm and most likely does not apply for
large N.

Another attribute of the algorithm developed here is that the computa-
tions always are performed with differential equations which tend to im-
prove the stability of (2) and (A10) when x'” is within a suitably small
neighborhood of the optimal trajectory. This property eases the difficulty
of obtaining numerically accurate solutions which are required in order to
converge to a nearly optimal trajectory.

On the other hand, the algorithm based on first and second variations
suffers from the conceptual disadvantage that penalty functions must be
used to approximate point constraints on the control and state variables.
Also, penalty functions must be used for approximating fixed-point termi-
nal boundary conditions. In this situation, (1) would have the alternate
form

e = [ fo(x, m, t) dt + FO(X’ T)’
0

where F is a strictly convex, continuous function of the elements of x(7).
The only modifications required in the previous results are the boundary
conditions

oF(x, T
(200 pur) =D oy -

6xk

162F0(X, T)
2 dxpdx;

This algorithm also has the practical disadvantage that an added set of M N
time functions, namely K%, must be stored in tabulated form, thereby
increasing the amount of temporarily stored data.

Another disadvantage occurs in the selection of an initial trajectory when
(2) is both nonlinear and unstable. Specifically, numerical examples support
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the conjecture that the backward-time differential equations are unstable
when x” gives rise to an unstable form of (23). The numerical solution of
(A17) is particularly difficult when [p£}’] is not positive definite, a condition
which may occur if x*” is not in a suitably small neighborhood of the optimal
trajectory. Similarly, the matrix [T5] may not be positive definite for
certain initial trajectories, thereby invalidating the required negative
definite property of (12). As a result of these difficulties, the algorithm
based on second variations is recommended only when x is in a suitably
small neighborhood of the optimal trajectory.

Acknowledgments. The author is deeply indebted to Mr. R. J. Ringlee
of the General Electric Company for many valuable discussions and sug-
gestions which contributed to the development of this algorithm. Dr. I.
Lee of the General Electric Research Laboratory made helpful suggestions
concerning notation and the exposition of this work.

Appendix. This appendix is included in order to define notation and
to state certain relationships arising in variational mathematics.

The minimum-error function is defined in accordance with dynamic
programming [7] as

(A1) B(x,t) = min l:ftTfo(x, m, o) da],

subject to the boundary condition
(A2) E(x, T) = 0.
The Hamiltonian function is defined as

(A3) H(x, t) = n}nin l:fo(x, m,t) + é:l P fn(X, m, t):l ,

where the variable p, is defined as
dE(x, t)

Xy

In accordance with these definitions, the minimum-error function satisfies
the Hamilton-Jacobi equation [8] which is written as
0E(x, t)
at
The characteristic equations [9] which are associated with (A5) and
which are well known from the calculus of variations are derived readily.

Specifically, the total time derivative of pj is expanded in terms of partial
derivatives as

P apk apk @
(A6) Z-:1 69:,,

(A5) + H(x,t) = 0.
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In addition, the partial differentiation of (A5) with respect to x; yields

opr , 0H(x,t)
(A7) —a—t‘ 'I' axk - 0)
so that (A6) becomes
. _OH(x,t) _ ~<~0pk .
(A8) o= =g = 25 S

If the partial differentiation of H indicated in (AS8) is expanded and the
state equation

(A9) & = fi(X, m, t)

is used, then (A8) becomes

. df(x,myt) | <~ 9fu(x,m,t)
A10 — = YO Y y A T P
( ) Pe 3561; + 2——:1 P axk
The relationship
afo(x, m, t) - af"(xy m, t) _
(ALD) o TP T g =0

also is used in obtaining (A10) and is found from the minimization indicated
in (A3). Equations (A9) and (A10) are the characteristic equations.

Additional relationships are required for the computational method
based on second variations. Specifically, the variable

10
(A12) Pt = 5 P

is introduced [6, 10] subject to the requirement that px; = pu . When
steps similar to those leading to (A8) are performed, the total time deriva-
tive of px; becomes

. 10°H(x,t) <X dpu
Al - = == i,
( 3) Pit 2 Oxi 011 n=1 0%y x

The explicit form of the right-hand side of (A13) is found when the indi-
cated partial differentiation of H is expanded. For the sake of simplicity,
the definitions

axy
_ S m, ) | 5 [ 8"fm(x, m, 1) 3fu(x, m, t)]
and
2 N 2
(A16) T, = 9hGEm ) S 9fi(xm, 1)

om, om, =1 My 0My
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are introduced for frequently occurring sets of terms. With these defini-
tions, (A13) reduces to

Loh(xm 1) | 1 v Iz m )

(A7) —hu = 2 oxi oz + s Pn 9xy, 0x;
N M
fn(x, m, t) dfa(x, m, t):l 1

The variable K,; is found from the partial differentiation of (All) with
respect to x; and is given by

M

(A18) > T = Rup.

m=1

The matrices [pri] and [T,] are positive definite for the class of mini-
mization problems treated here. The condition on [py;], which is the matrix
of second derivatives of K(x, t), results because the minimum-error func-
tion is a continuous, strictly convex function. The condition on [T,.] is
the Legendre condition which is sufficient for a unique bounded minimum
found from (A3).
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ASYMPTOTIC CONTROL THEORY*
RICHARD BELLMAN{t anp RICHARD BUCY{

1. Introduction. In recent years the mathematical theory of control
has received an increasing amount of attention. New theories have been
developed and older theories have been refined and extended [1, 2, 3, 4, 5, 6].

In this paper, we wish to initiate discussion of a problem in the calculus
of variations which has not had the attention due it in the classical litera-
ture. The problem is concerned with the asymptotic behavior of the solu-
tion of a variational problem as the time interval becomes infinite. I'rom
the standpoint of control theory, and more generally from the standpoint
of dynamic programming, this is a very natural type of behavior to study.
In many significant cases, the “steady-state” policy is simpler conceptually,
analytically and computationally.

We shall consider the minimization of the functional

1 T
(1.1) J(u) = _f (u? + I(z)) d,
2 Jo
over all functions v where

(1.2) T = f(x) + u, z(0) = e¢.

Let V(¢, T) = min, J(u). For finite and sufficiently small 7 the classical
calculus of variations, or dynamic programming applies, under certain
reasonable assumptions on L and f. We shall be interested, however, in
the following questions.

(1) When does the problem for infinite 7' make sense?

(2) When it does, are the optimal motions and policies for infinite 7" the
limits of the corresponding optimal motions and policies for finite 7'?

(3) What is the effect of using steady-state optimal policy for the
finite problem?

This is an example of what we mean by asymplotic control theory.

Tor example, if f = 0 and I = 2 + ia* the problem is that of mini-
mizing the functional

(1.3) J(w) = [0 [ 4+ 2 4+ L'l di

* Received by the editors September 23, 1963.

This research is sponsored by the United States Air Force under Project RAND—
Contract No. AF 49(638)-700.

1 RAND Corporation, 1700 Main Street, Santa Monica, California.

1 Consultant, RAND Corporation. Currently at RIAS, 7212 Bellona Avenue,
Baltimore, Maryland.

11



12 RICHARD BELLMAN AND RICHARD BUCY

over all C* curves for which z(0) = ¢. The Euler equation is

(1.4) i—z—2a =0,
subject to the two-point boundary conditions
(1.5) z(0) = ¢, #(T) = 0.

Establishing the existence and uniqueness of solutions of (1.4) and
determining the asymptotic behavior as 7 — o is analogous to the classical
problem of Poincaré-Lyapunov [5], but materially more difficult because
of the two-point boundary-value condition.

We shall first, using quite general arguments, show that V(c, T) is
monotone increasing as a function of 7, and uniformly bounded under
mild restrictions concerning L(x). Taking advantage of the fact that the
Fuler equation posseses a first integral, we can analyze the behavior of the
solution in detail as T — .

This analysis shows that the formal asymptotic series obtained from the
partial differential equation

(1.6) Ve = min [3(«® + L(z)) + V.(ax + w)].

an equation derived from dynamic programming considerations which
yields the Hamilton-Jacobi equation relevant to the variational problem
when f(z) = azx ([1] and [12]), is an actual asymptotic series for V(c, T').
This corresponds to the result easily derived in the case where the in-
tegrand in (1.1) is merely quadratic in z and u.

In the concluding section, we shall mention some open and apparently
quite difficult questions in connection with asymptotic behavior and give
some references to analogous results obtained for dynamic programming
processes by Kalman and Buey [6], Beckwith [7], Iglehart [8], T'reimer
19], and Bellman [10].

2. Monotonicity and boundedness. Let us introduce the function

(2.1) Ve, T) = min J(u),

(with the assumption that f(z) = ax). Let (¢, T), u(f, T') represent the
functions that furnish the minimum of J(u) under the assumption that
L(z) is a nonnegative entire function of z. In most processes of interest
L(z) is a polynomial in z.

Since
T T+A
V(c,T+A)=f0 +fT

T T+A

(2.2) = rr;mfo +fT
T+A
=z Ve, T) + )

T

we see that V(e, T) is monotone increasing in 7'.
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To show uniform boundedness in T, for fixed ¢, let us choose an ap-
propriate control policy, say

u = 0, when a <0,
(2.3) % = —20x, when a > 0,
U = —z, when a = 0.

bt

In each case, we see that u = ce™”* with b positive. Hence,

(24) J(u) = fo 1066 + L)) d.

Under the assumption that L(x) = O(z) as x — 0, the integral is uni-
formly bounded as 7' — .

Having established boundedness and monotonicity as 7' — o, we can
assert convergence,

(2.5) Vie, T) — V(e)
as T — oo,

It is not settled, however, whether or not the states x(¢, T) and the
policies u(t, T") converge as T' — . The foregoing argument extends to

quite general situations, but leaves unanswered the interesting and im-
portant questions concerning the convergence of policies.

3. Detailed analysis. We will be interested in an explicit solution to the
partial differential equation
(3.1) Ve = LL(c) + acV, — 3V.,
subject to the boundary conditions
Ve, T)|r=0 = 0, a <0,
(3.2) \
Ve, T)|r—o = ac’, a > 0.

As is well known [12], existence of a sufficiently smooth solution to (3.1)
is a sufficient condition for the variational problem (1.1) to have a solution.
The equation of (3.1) is (1.6) with the minimization carried out.

It will be assumed that I satisfies the following conditions.

(1) L is even, and positive.

(2) L and L, are continuous and increasing for positive x.
3) L(z) =0(z]|)as|z|—0.

(4) L is analytic.

(3.3)

Now the Cauchy-Kowalewski theorem implics (3.1) has a unique local
analytic solution [11].
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With the aim of solving (3.1) we introduce the function y(¢, T'), which
corresponds physically to the final state of the controlled system along an
optimal trajectory initiating at (¢, 0) and ending at (y, T'). The following
lemma shows that y is well defined for ¢ > 0. The case ¢ < 0 is similar.
When L(¢) = ¢ + ¢, y will be defined by an elliptic integral of the first
kind.

LemmaA 1. Suppose ¢ > 0, and assume conditions (3.3) are fulfilled. Then
for every K, o > K > 0, there exists a unique 0 < y = c¢ such that

¢ dx
(34) I(y) = f _K
v Vaa? + L(z) — L(y)

Proof. Since it is clearly continuous, elementary bounding of I(y)
shows it takes on all finite positive values as y ranges over (0, ¢]. To show
uniqueness assume for some finite positive K that there exist y; and y.,
Y1 > y» > 0, where both satisfy (3.4). Then

(35) ¢ dx _ f“ dx
nvaa? + L) — L(y) vV + L(z) — L(ys)
But (3.5) implies

c—A

dx
(3.6) v Va(z+ A2+ L + A) — L(y,)
' oa dx
v V@2 + L(z) — L)
where A = y; — y» > 0. It suffices to show (3.7) to contradict (3.6):
(3.7) 2d°zA + o’A" > L(z) — L(xz + A) + L(yp) — L(y).

Consider the right-hand side of (3.7) for x = ¥; . The mean value theorem
gives

>

I

Lz 4+ A) — L(z) = L.(e)A Z Lo(y1)4, ¢ € (x,2 + A),
L(y1) — L(y2) = Lo(0)A = Lo(y1) 4, 0 € (y2, %),
and for these x, (3.7) is satisfied. Then for y, < @ < ¥y,
L(z + A) = L(y1) = L:(8)(x — y2) 2 Lo(y1) (& — 32),
L(z) — L(y2) = Lo(v) (2 — 92) = Lo(2) (2 — y2) = La(y1) (z — 92),

and (3.7) is satisfied for all z € (y.,c — A).

A closer examination of the previous lemma shows I(y) decreases strictly
as y increases through (0, ¢] and hence (8/dy)I(y) < 0. Defining y(c, T')
as that value of y which satisfies
dx

88 fv Ve ¥ L@ — L) "
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it is easy to see by the implicit function theorem that y is C" in ¢ and T
on (0, ¢] X [0, ). Further, y is analytic! The following lemma char-
acterizes the behavior of y as T tends to infinity.

Lemma 2. Under the assumptions (3.3) and a #= 0, y defined by (3.8)
tends exponentially to zero as T — oo.

Proof.

0<T=[ o < dz =—1~—ln£,
v Vaar + L) — L(y) v lalz  lal y

or0 £y = ce oz,
Now we will characterize the solution of (3.1) subject to (3.2).
TuarorEM™ 1. Equation (3.1) has the following analytic solutions in the
regions ¢ > 0 and ¢ < 0 under assumptions (3.3). For a < 0,

(fy at+VEEFLE - Lw e+ 12 0 >0,
(39) V(e,T) ={0,¢=0,

[[w-veerto-1wa+ r"c <o

while for a > 0,

I a4+ V@B FLE = L) d

+I’L(y)+ay ¢ >0,

(3.10) Vie, T) = 1 0,¢c =0,

f; ot — /@8 T LE — L) d

L(y)

L + T 222+ ay’, e <0

where y satisfies

d

v Ve + L — L)
— f di
VEE+ LE) — L)

* Replacing af and (a)? by f(¢) and f(¢)2 with f continuous and ay? by 2f% f(£) dt,
provides a solution to the equation Vr = L + V.f(z) — 3V.? which is local unless y
is defined for all T'. Further Haar’s uniqueness theorem [13] is applicable and implies
(3.9) for ¢ > 0 is the unique C* solution of (3.1).

= T forc > 0,

T forc < 0,
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and y has the same sign as c. Further,

V(e ) =limVie,T) = [ at+ Ve + L@ &5 ¢ >0,
(3.11) ”
Vele,0) = ;un Ve, T) = ac + Va2 + L(c), ¢ >0,

and the corresponding formulae for ¢ < 0 and ¢ = 0. Finally, the optimum
control law s

(3.12) u’(t) = —ax(t) — sgn x(t) V) + L(x(t)) — L(y).

Proof. Equations (3.9) and (3.10) follow from Lemma 1 and direct
substitution. Equation (3.11) follows, since for fixed ¢, V(¢, T') and V,(c, T)
are monotone in 7' and uniformly bounded, while the explicit form follows
from Lemma 2, (3.3)—(3) and the dominated convergence theorem. Equa-
tion (3.12) is just the principle of optimality.

CoroLLARY 1. Under the previous assumptions, the value of the T-infinite
case V(c, ») satisfies 3L + Veoac — 3V, = 0, just (3.1) with V, = 0.

4. Asymptotic behavior. As mentioned above, the principle of optimality
yields the partial differential equation

(4.1) Ve = LL(c) + acV, — V..

It does not seem possible to obtain the asymptotic behavior of V, even
formally, by means of a series of the form

(4.2) V= Ve) + Vile, T) + -+,

without some additional information concerning the analytic structure of
Vi, eg.,

(4.3) Vile, T) = Vi(e)u(T).

Here Viole) = limgw Ve, T).
We can, however, obtain an interesting bound for V(c, ) — V(e, T)
in the following fashion. Consider the expression

(44) V(e ) = min | “ @+ L(o)] de.
u 0

Let u(t, T), x(t, T) denote the minimizing set of functions for the interval
[0, T]. Then, it is clear that

(45) V(e =) 5 | ", TY + ot TY + Lis(t, T))] dt + f:[“-]dt,
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where in the second integral our choice of % and z are constrained only by
the condition 2(7T) = z(T, T). Write (T, T') = x(c, T'), the state of the
system at time 7 starting in state ¢ at time O associated with the finite
variational process over [0, T']. Then (4.5) yields the inequality

(4.6) Vie, ») = Vie, T) + V(x(e, T), ).

Hence, we can obtain an estimate of the difference between V(e, «)
and V(c, T) if we obtain an estimate for z(¢, T') as T — .

Observe that the estimate for V (e, «) is readily obtained by using a
convenient approximate policy of the type described in §2.

The estimate for z(¢, T') is not readily obtained in general. Let us in-
dicate how elementary arguments yield the result for the problem of mini-
mizing

4.7) J(z) = foT & 4+ o + 2 dt,

where z(0) = c.

It is clear from the form of the integrand that if ¢ > 0, then z is monotone
decreasing. For, as indicated in Fig. 1, if « reached a turning point and
started to increase, we could replace it by the dotted curve, obtaining
obviously a smaller value of the integral. The Euler equation is

(4.8) i—x—2"=0 20)=¢ &T) =0.

If x decreases monotonically, the limit must be zero as T — «. From the
Poincaré-Lyapunov theorem, we know that all solutions of (4.8) which
approach zero as t — o« have an asymptotic expansion of the form c¢;e™*
+ ¢ + - -+ . Using this information in conjunction with the preceding
results, we readily obtain an asymptotic series for V(¢, T) as T — oo,

5. Further problems. The technique we have used here to obtain the
asymptotic behavior of the state variables and the control variable is
quite special and does not extend to the multidimensional case, to control
processes with constraints, to more general control processes involving

u
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distributed parameters, to general stochastic control processes, or to adapt-
ive control processes. Some partial results can be derived, but on the whole
there appears to be a need for a development of some new techniques.

We feel that it is worthwhile, in one case at least, to show that the ex-
pected results actually hold.

For asymptotic results in dynamic programming for processes of quite
different nature, see [7, 8, 9, 10].
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MULTIVARIABLE LINEAR FILTER THEORY APPLIED
TO SPACE VEHICLE GUIDANCE*

GERALD L. SMITH?}

Abstract. Midcourse guidance of a spacecraft involves estimating the vehicle’s
trajectory from noisy observations and then computing velocity corrections on the
basis of this estimate. The estimation procedure is regarded as a filtering problem
and a guidance system concept is developed using multivariable linear filter theory.
The ability of such a system to guide the spacecraft accurately and efficiently is
demonstrated by the results of a digital computer simulation.

1. Introduction. Space-vehicle guidance presents a complex and exact-
ing design problem for which we need the most modern design techniques
available. Despite the complexity, this problem is recognizable as having
the features of a control problem, and we therefore seek to apply control
theory methods to its solution. In particular, recent developments in
multivariable filter theory have provided a useful new approach to such
problems [1]. In this paper we will show how these new ideas can be em-
ployed in a space-vehicle application. This application is described in more
detail in NASA papers recently published [2, 3].

SYMBOLS AND NOTATION CONVENTIONS

= submatrix in M relating éy to oz

subscript denoting the kth observation

weighting matrix in optimal filter

matrix relating 8y to éz*

observation error vector

covariance matrix related to observation error n
covariance matrix of &

covariance matrix of u

position deviation of spacecraft from reference trajectory
covariance matrix of n

white noise

velocity deviation of spacecraft from reference trajectory
state vector

augmented state vector

observation vector

= transition matrix

= inverse of matrix ( )

= transpose of matrix ( )

s
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E() = expected value of ()
(*) = estimate of ()
(™) = error in estimate of ()

2. Description of the space-vehicle guidance problem. We will be con-
cerned here with the midcourse phase of guidance. The general nature of
midcourse guidance is illustrated in block diagram form in Fig. 1. It is as-
sumed that the vehicle is in free fall following injection, except for brief
periods of thrusting when corrections to the trajectory are executed. The
state of the vehicle—that is, its position and velocity—is therefore a func-
tion of the injection conditions and the trajectory dynamics. Since the
injection conditions are not perfect, the vehicle departs from its desired or
nominal trajectory, and it is the function of the control system to correct
the course so that prescribed end-point conditions will be satisfied.

The first step in performing this function is assigned to instruments or
sensors which measure observables related in some known way to the state.
The sensors could be, for instance, optical instruments on board the vehicle,
measuring the space angles between the lines of sight to certain celestial
bodies. These angles are geometrically related to the vehicle position. The
measurements are of course subject to errors, represented as observation
errors in the figure. Generally it is neither necessary nor desirable to make
continuous measurements, so some means must be provided for deciding
if and when certain measurements should be made. This amounts to the
selection of an optimum observation schedule which will be discussed later.

The next step is to make use of the observational data in the best possible
manner to obtain an estimate of the state. This is seen to be essentially a
filtering process, and filter theory can be applied to the design of the data

1
KINEMATICS «—|—»CONTROL SYSTEM
|
| DATA
PROCESSING

/ FOR STATE
OBSERVATIONS |ESTIMATION

ESTIMATED |
ATE

|
|
|
|
¥ '
STATE- : PREDICTION
|
INJECTION TRAJECTORY ! GUIDANCE
CONDITIONS—.‘ DYNAMICS :
[y |
| CONTROL
|
VELOCITY | DESIRED VELOCITY CORRECTIONS
CORRECTION Xt~
ERRORS {

Fia. 1. Schematic diagram of a midcourse guidance system
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processing system. The output of the filter is an estimate of the state,
which is then used to cstimate, or predict, what the end-point conditions
would be if no course corrections were made. Next, a guidance law is em-
ployed to compute the velocity correction which would change the pre-
dicted end-point conditions to correspond to those preseribed. (The pre-
scribed conditions might be, for instance, achievement of a given periapsis
at the target moon or planet at a given time.)

Finally, a decision must be made as to whether or not the computed
velocity correction should be made at the present time, and the correction
implemented if the decision logic so indicates. The velocity correction when
made then closes the control loop, acting through the trajectory dynamics
to influence the state. The actual velocity correction, of course, is not quite
the same as that intended, because of errors in the engine control mech-
anism.

3. Design of the guidance system. Having scparated the midcourse
guidance problem into distinguishable elements, we now can proceed to
the application of design techniques to each of these elements. The sensor
and control element designs will not be discussed, and we will dispose of
the guidance law briefly by stating that in our studies we have used a
linear prediction law. Thus we will concentrate on the trajectory estima-
tion and decision aspects of the system.

First consider the trajectory estimation subsystem. Here we assume a
sequence of observations, perturbed by additive errors, which are to be
processed in the order in which they are received to maintain a continuous
estimate of the state. The injection conditions and observation errors are
not known exactly, hence can be described only probabilistically. Thus, the
series of observations is regarded as a stochastic process (assumed discrete
here since isolated observation times are presupposed). This stochastic
process is generated by physical phenomena which can be represented in
block diagram form as shown in Fig. 2. The injection conditions are ac-
tually trajectory initial conditions and thus not, strictly speaking, an input.
The state is a 6 vector of position and velocity which can be expressed as
a function of the injection conditions:

(1) z(t) = flz(t)].

The observables constitute a vector having as components all those physi-
cal quantities to be measured by the sensors. The observation errors, n(t),
arc represented as the output of a linear dynamic system excited by white
noise, the standard engineering trick, valid when only second-order
statistics are concerned. It is noted that this representation can be used
for any type additive observation errors—for instance, bias type errors are
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Y,’Q:;E OBSERVATION ERROR OO RRORS
ERRORS
up(h) DYNAMICS n(t)
SAMPLER
/
OBSERVATIONS
y(ty)
INJECTION
CONDITIONS TRAJECTORY | STATE ~OBSERVABLES

GEOMETRY

xitg) DYNAMICS

Fia. 2. Observation process

agsociated with dynamics having very long time constants. The sampler
represents the sclection of a particular one (or set) of the observables for
measurement. The resulting observation is designated y(¢), the &k sub-
seript being used to index the time of a member of the sequence of observa-
tions. I'or convenience, the observation can be written as a function of
x(tx) and n(;):

(2) y(te) = gla(l), n(t)]
or more compactly,
(3) y(h) = gla®(t)),

where 2* is an augmented state vector having as components all the com-
ponents of both x and n.

It is now assumed that the statistics of the injection conditions x(#,) and
of the white noise u,(t) are known. (If z(¢;) and u,(¢) are gaussian, only
the means and covariance matrices are required.) If the trajectory dy-
namies (i.e., the vehicle equations of motion), the error dynamics, and the
geometry equations are also known, then the y(#) stochastic process is
completely specified as soon as the observation schedule is stipulated.

Having defined the observation process, we now wish to develop the
equations needed to process the observational data. We assume that we
desire an optimal linear cstimate of the state. This estimate will also con-
tain an estimate of the observational error vector n. That is, we obtain an
estimate of 2*(¢) which we call £,*(¢). The & subscript means that the esti-
mate is based on a total of & observations.

Assuming that we wish to process one observation at a time, the linear
estimation equations are of the form

(4) &5 () = &ia(t) + K {y(t) — gliia(i)]},
(5) Gia(te) = foaalfioa(tio)],

where K (1) is a weighting matrix to be described later, and 251 (t) is the
estimate at time ¢, based on the previous k& — 1 observations. The quan-
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tity £r_1(tx—1) is known as a result of processing the previous observation,
y(te—1), and it is clear that updating this estimate to time ¢, is simply a
matter of using the equations which describe the dynamics of the z* proc-
ess, (5).

The computation flow diagram is as shown in Fig. 3. It is seen that the
essential elements are a model of the kinematics and the matrix K. The
model of the kinematics simulates the vehicle equations of motion, the
error dynamics, and the geometrical relations between the state and ob-
servables. The operation of the system is described as follows. After injec-
tion, but before any observations have been made, the best estimate of
is based solely upon a priori knowledge of injection conditions, and the
best estimate of n is zero. Thus, these are inserted as initial conditions on
the kinematics equations. When an observation is made and the data is to
be processed, the equations are integrated until computer time equals
observation time. Then the estimated observation is computed from this
updated estimate of z*, compared with the actual data and the residual
weighted by the matrix K to produce an incremental change in the esti-
mated position, velocity, and observation error. The new estimated state
variables serve as new conditions on the kinematics equations when the
entire process is repeated to process the next observation.

The optimality of the data-processing system described obviously de-
pends on the weighting matrix K. Linear filter theory is used to derive the
equations by which K is computed. To facilitate this derivation it is con-
venient to linearize the equations of the observation process. This lineariza-
tion is accomplished by expanding in a Taylor’s series about the mean of the
random variable z*(t). Thus, 2*(t) = Ea*(t) 4 62™(t), where oz*(t)
now has zero mean and the same covariance matrix as «*(¢).

()

EQUATIONS |__ ™) | GEOMETRY
OF MOTION EQUATIONS
y ()
+_ K
OBSERVATION ERROR|___frithd .
DYNAMICS

ESTIMATED OBSERVATION, ¢ [x:..(’k)]

Fia. 3. Trajectory estimation system
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The vehicle equations of motion and the observational error equations so
linearized are written in terms of the transition matrices ®, and ®, .

(6) da(t) = @u(t, bo)dx(to).

t

n(t) = 2,04, (o) + [ 80t Dualr) dr
(7) to
@ (1, to)nlo) + o' (1, to).
In (6) there is no forcing function since the vehicle is assumed to be in free
fall. In (7) the forcing function u,(t) appears under the integral, and the
entire integral is replaced by a new function u'(f, t,) for convenience. It is
noted that since u,(t) is uncorrelated with n(%), w'(f, t) is also uncorre-
lated with n(t).
Equations (6) and (7) may now be combined:

ox(t) ®.(t,t)1 O dx(to) 0
o LA T )
n(t) 0 1®.(tt) n(ty) u (1, to)

or in more compact form:
(9) 82" (1) = ®(t, 6)oa" () + u(l, o).

. . . 3k
The statistics nccessary to describe the random process 62" are the co-
variance matrices

Il

P(ty) = Elsx(to)dx" (t)],
(10) R(h) = En(t)n"(k)],

In combined form we write

(t)_[ 0 E 0 }
AL Q1) |

The observation is also expressed in terms of a deviation quantity, dy(t)»
and the geometry equations are linearized to obtain:

dy(tx) = H(tx)ox(t) + n(ts)
dx(t)

n(tk)}

= M(t:)sx*(t),

(11)

(12) = [H}I]{
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where H is a matrix of partial derivatives of the observables with respect
to the state variables.

The linear estimation equations are now written in terms of the deviation
quantities:

(13) 88 () = 88ia(t) + K(tu)y(te) — M (t)oti—1(te)],
(14) 5tna(te) = Dt , ter)d8m—s ().

For this linear problem the equations for the computation of the optimal K
have been derived by Kalman [1]:

(15) K = Py M[MP; M"|",
where

Pl = EQGzidain
and

Sy = oz — odna.

The argument of all these quantities is ¢ , omitted here for simplicity.
The covariance matrix P* is computed from the recursion formulas as
given by [1]:

(16) P () = Pia(t) — K(t) M (t) Pia(t),
(17) P;:—l(tk) = ®(t ; tk-—l)P;:—l(tkml)q)T(tk ; be1) + Ny te),

where N is the covariance matrix of . Now, although the K so computed
is not the optimal K for the original nonlinear problem, it certainly is
approximately the optimal K to the same degree that the linearized equa-
tions approximate the original nonlinear equations. This approximation
has been demonstrated by means of computer simulation to be good as
long as the actual state does not depart radically from the reference (mean
value).

The computation of K is seen to be straightforward. At the time of the
kth observation, the matrix M and the transition matrix ® (4 ; 1) from
the last observation must be computed. The latter can be done in a number
of ways. One is to integrate a set of perturbation equations, each with a
set of suitable initial conditions at the time of the previous observation, to
give the several columns of the matrix. The M matrix and the coefficients
of the perturbation equations are functions of the state variables and are
computed using the estimated values of these variables. It should be noted
that using the estimated state variables, in effect, amounts to linearizing
about the estimated state. This is clearly the correct procedure because at
each step of the estimation process, the mean of the conditional random
vector (2 |41, -+, y) is £, and & thus has zero mean which is re-
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quired if the foregoing is to result in an unbiased estimate. In actual
practice if the actual trajectory does not depart very far from the nominal,
the nominal may be used with little effect on the results. However, in
some situations, such as an abort, the departure is substantial. Then either
the estimated trajectory or a new nominal trajectory sufficiently close to
the actual must be used.

0l 0
The matrix N = ‘:—()—~E—]—\7-/~} is also required. This can be computed
|
from the relationship
2
(18) Nt ti) = [ @alte, Q)2 (1, 7) dr,
k-1

where Q,(t) would presumably be a stored matrix, and ®, is computed as
part of @. In many cases Q,(t) may be constant, or at least only slowly
time varying; also ®, may be a function only of ¢ — = (i.e., non-time-
varying). In these cases the computation (18) is substantially simplified.

In the data processing scheme we have described above, each observa-
tion is a vector whose components are a set of measurements made at the
same time. Now when it is seen that the observations can be processed
one at a time, it is natural to consider the further possibility that the com-
ponents of each observation can themselves be processed individually.
In fact, they can be, and that is the reason we have chosen to write the
estimation equations in the particular form given. If one piece of data (i.e.,
a measurement) has been processed at time f , then to process another
measurement taken at the same time, (5) and (17) are not used since there
is no time transition. Iquations (4) and (16) give the new estimate and
the new P* matrix. In reference to Fig. 3 this means simply that the in-
tegration parts of the computation are not employed. We note that in
processing data in this way MP*M" is always a scalar, so the matrix in-
version required in (15) is avoided.

If the observations are uncorrelated, some simplification of the data
processing equations is possible. By ‘“uncorrelated observations” we mean
that the errors in any pair of observations are statistically independent.
This may be because the time between the observations is large compared
to the “time constants’ of the error dynamics, or because the observations
are of basically different types. In any case, this means that the previously
processed data contain no information regarding the present error in ob-
servation; hence, the estimate 7(#;) is zero and need not be computed.
The error in estimate of n(#), namely #(t), is of course just n(t;), and
the portion of the P*(#) matrix containing the covariance matrix of 7(t)
is seen to be simply N’ (t; ; tx—1). Furthermore, N’ is seen in this case to
be a function only of £, , hence could be a simple stored matrix. The result
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is that the computation of the P* matrix can be simplified, omitting the
rows and columns having to do with n, thus reducing the order of the
matrix operations required. The estimation equations can then be written
in the form:

(19) Br(te) = Eea(te) + K(){y(t) — guleea ()]},
(20) ea(te) = Jeralfe (o),

(21) K = Py H'[HP . H" + N/,

(22) Proa(te) = Pl 5 teo1) Peoa(be)® (b 5 tia),

(23) Py = Py — KHP.;.

Consider now what happens to the estimation process when a velocity
correction is made. This situation is treated exactly the same as an ob-
servation. If the velocity correction is assumed to be monitored, the actual
correction (Av) differs from the desired (Awvg) because of the control error,
and from the observed (Av.) because of the monitoring error. The a priori
statistics of the control error and monitoring error are assumed known.
The estimate of Av before the correction is Avs, and we obtain the new
estimate by the formula

(23&) AD = Avg + K,,[Avm - Avd],

where S is the covariance matrix of control error, 7' is the covariance
matrix of monitoring error, and K, = S(S + T)™". This Ad is added to
the estimated velocity vector in the trajectory estimation system. The
error in estimate, A# = Av — A?, has zero mean and covariance matrix
(S — K,S), which adds to the velocity portion of the P matrix. The sys-
tem is then ready to process new data.

This method of handling velocity corrections is seen to be quite simple
and is valid even for very large corrections, such as might occur in an
abort maneuver for instance. The assumption of an instantaneous correc-
tion is not valid, however, when the correction is large. In this case a con-
tinuous correction estimation, analogous but more complicated than the
above procedure, would have to be implemented.

One pitfall we must avoid in using the foregoing theory is that the P
matrix gives us the correct values of the error statistics only if we have
employed the correet model of the observation process. In practice, our
model can never be perfect. Ior instance, the equations of motion simu-
lated in the system described here are only approximations in that the
gravitational effects of only a few celestial bodies are included and the
astrodynamic constants used in the equations are not known perfectly.



28 GERALD L. SMITH

Furthermore, any digital integration routine employed is in itself an ap-
proximation to true integration and thus generates errors.

Such errors can be seen from Fig. 3 to enter the system in exactly the
same manner as do observation errors. Hence, they can be estimated and
compensated for in exactly the same manner as described before—at the
expense of a more complex system, of course. In practice one would first
determine the gross effects of such errors and implement only as sophisti-
cated a system as is justified by the accuracy desired; that is, for the sake
of simplicity, in general we would accept “off-design” performance a bit
poorer than might theoretically be attainable.

An interesting by-product of the consideration of errors due to the im-
perfect knowledge of the astrodynamic constants is the thought that we
have here a ready-made technique for obtaining by direct experiment a
better estimate of these constants. For instance, a properly instrumented
circumlunar vehicle could be used to improve current estimates of the
earth-moon distance and the earth and moon gravitational constants. It
may be noted that Pioncer V tracking data were used to obtain a good
estimate of the astronomical unit [4] although the shot was not designed
specifically for this experiment and the data processing technique em-
ployed was somewhat different from that described here.

To implement an estimating procedure for the astrodynamic constants,
we define the uncertainties in these constants as additional random vari-
ables, augmenting the state vector with these variables. The transition
matrix and the P and K matrices are likewise augmented. If we then solve
the variance equation (using a digital computer), we can obtain a measure
of the improvement in the knowledge of these constants which could be
obtained from a prescribed sequence of observations.

Now, to complete the design of the midcourse guidance system, we must
consider the selection of an appropriate schedule of observations and
velocity corrections. Specifically, we would like to find an optimal schedule,
where the optimality criter on must take into account practical considera-
tions such as the cost of executing the required operations and the interac-
tions that exist between these and other operations involved in the over-all
mission. The problem is seen to be complex and, worse, rather ill-defined.
Thus, an attempt to find a true optimum does not seem practical, at least
at present. In our studies we have resorted instead to a cut-and-try ap-
proach. Itirst, a reasonable operational schedule is selected and its per-
formance is computed. Then this schedule is varied systematically and
the change in performance noted. Problem solutions are obtained fairly
rapidly on the digital computer (typically about 10 minutes on the [BM
7090 using the particular programs we have written). Thus, a reasonable
schedule can be generated without too much effort.
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To obtain a true optimum schedule it should be possible, at least in
principle, to mechanize the described variational procedure so all the work
is done by the computer. However, because of the varied nature of the
conditions one wishes to place on the schedule, a program for doing this
must necessarily be quite complex, and as yet we have not attempted it.

4. Results of simulation study. Computer simulation studies carried on
at Ames Research Center have demonstrated that the midcourse guidance
system described here can do an effective job in the assigned guidance
problem. Some of the results of these studies will now be presented for the
case of a hypothetical 63-day circumlunar flight in which the entire guid-
ance system is to be carried on board the space vehicle. The assumed
conditions for this mission are summarized as follows:

1. Each observation involves sighting upon either the earth or moon and
measuring the direction of the line of sight (two angles) and the angle
subtended by the disk of the planet.

2. Observation errors have zero mean and are uncorrelated from one
observation to the next. The error statistics are represented by a diagonal
covariance matrix, @, whose elements are of the form

(24) o’ = 100 4 (0.001y)® seconds of arc squared,

where v is half the subtended angle; that is, the errors are assumed to be
greater when the vehicle is nearer the planet being observed.

3. Midcourse velocity corrections are computed using a simple linear
prediction fixed-time-of-arrival scheme. The corrections are intended to
null the position deviation of the vehicle from a reference perilune on the
outboard leg and from a reference atmospheric entry point on the return
leg.

4. Velocity correction errors are one degree rms in direction and 0.1
m/sec in magnitude. Frrors in the measurement of the correction are 0.01
m/sec rms in each of three Cartesian coordinate directions.

5. Rms injection errors are 1 km and 1 m/sec in each of the three Car-
tesian coordinates used in the computations.

It should be pointed out that these assumptions are not intended to
describe, even tentatively, any actual mission configuration. Although
hypothetical, they are nevertheless realistic and can be used to illustrate
the operation of the system described.

One of the trajectories studied is shown in Fig. 4. On the trajectory is
indicated one specific observation and velocity correction schedule for
which we have obtained performance data. No attempt has been made to
optimize this schedule, which consists of 77 observations and 6 velocity cor-
rections. Tlarth observations are shown as tick marks, moon observations
as stars, and velocity corrections as circles.
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VELOCITY EARTH MOON
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Fia. 4. Schedule of observations and velocity corrections

POSSIBLE ACHIEVED
TRAJECTORIES

UNCERTAINTY IN
ESTIMATION

Fia. 5. Krrors at time of reference perigee

The manner in which we deseribe the performance of the guidance sys-
tem is shown in ¥ig. 5. The dotted line indicates the reference trajectory
selected to provide a near passage of the moon and a safe entry into the
carth’s atmosphere. A measure of the guidance effectiveness is the differ-
ence between the actual and reference trajectories, the statistics of which
we compute in our studies. The deviation in position is called 7. The devia-
tion in velocity is in like manner called » but not illustrated in the figure.
Similarly, we represent the difference between the actual and estimated
trajectories in terms of 7 and 9, the rms values of which are obtained from
the covariance matrix of estimation errors I>. We also compute the rms
variation in perigee altitude, which is of significance for establishing the
probability of safe entry, regardless of the achievement of a particular
landing site.
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TaBLE 1. Results at end points—rms values
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Irig. 6 shows what happens to the rms errors in estimation as the flight
progresses. The points indicate the rms errors after each observation, and
the times at which velocity corrections are made are shown by arrows. It is
seen that rms position estimation errors do not exceed 26 km. Rms velocity
estimation errors are highest at the beginning of flight and rise again near
the end but are never greater than 0.03 per cent of vehicle velocity. Thus,

the assumption of small deviations is valid

and the linearization approach

employed in the analysis should be reasonable.

Table 1 summarizes the end-point data obtained for the case described,
showing how well the guidance system has performed at the times of nomi-
nal perilune and perigee. In the first column are perilune results and in the
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second column results at perigee. Note that the rms variation in virtual
perigee is only 1.1 km, indicating a high probability of safe atmospheric
entry. The next two numbers of 26.4 km and 23.8 m/sec for the rms posi-
tion and velocity deviations from reference are given at virtual perigee
but are of the same order of magnitude at the time of actual atmosphere
entry.

The next two figures are the rms values of the errors in knowledge of
position and velocity, 15.0 km and 13.2 m/sec. These figures are to the
terminal guidance system what the uncertainty in knowledge of injection
conditions are to the mideourse guidance system. They result in an un-
certainty in the landing location which we have not calculated. Of course,
any tracking information acquired during the terminal phase would reduce
this uncertainty.

The last figure in the table shows the total corrective velocity required
for making the six corrections for the 61-day flight—a modest 20 m/sec
rms.

The performance at perilune as shown in the second column is seen to be
similar to that at perigee.

5. Conclusions. The simulation results presented demonstrate that the
described guidance system concept is capable of providing excellent mis-
sion performance. It is seen that an important advantage of the system is
a high degree of versatility in that a fixed observation and velocity cor-
rection schedue need not be adhered to and there is no dependence upon
earth-vehicle communication. The required calculations are not overly
complex, so it is felt that the on-board digital computer can be of modest
size and power consumption.
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OPTIMIZATION, A MOMENT PROBLEM, AND
NONLINEAR PROGRAMMING*

LUCIEN W. NEUSTADTY}

1. Introduction. Certain problems from optimal control theory and the
optimization of trajectories can be formulated as follows.

Given an n X r matrix ¥ whose elements y,;°(-) are continuous, real-
valued functions on [0, 1}, a normed linear function space § whose elements
u( +) are Lebesgue integrable functions from [0, 1] to , (real r-dimensional
Euclidean space), and a vector ¢ in E,, ; find an element w*(¢) € § of mini-
mum norm satisfying the equation

1
(1) f Y()uw*(t) dt = c.
o
In this paper we restrict ourselves to spaces § with norm defined by

IW@Hb=£IMDb%

where 1 £ p £ », and |u|,, for any vector u = (uy, -+, u,), is de-
fined by

=1

r 1/p
= (Slwl) ) p<s
(2)
|u|o = max |u;].
1gigr

For such spaces &, the above described problem docs not, in general,
have a solution. It is necessary to embed § (while preserving the norm) in
the conjugate space ®" of an appropriate Banach space ® (to which the
vector functions %*(-), which make up the rows of Y, belong) and inter-
pret (1) as conditions to be satisfied by an element of &*. We shall show that
a desired element of ®&* with minimum norm does exist, that it can be
characterized in a relatively simple manner, and that it can be thought of
as corresponding to a function w*(¢), which is a linear combination of
“delta functions.”

Before putting the initially given problem in this new formulation (in
§4), we shall prove a general theorem in the theory of moments. This
theorem, which is stated and proved in §2, provides the existence and char-
acterization of the minimizing functional. When applied to the problem

* Received by the editors July 22, 1963, and in revised form October 14, 1963.
1 Aerospace Corporation, Los Angeles, California. On leave of absence at College
of Engineering, The University of Michigan, Ann Arbor, Michigan.
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described in the preceding paragraph, it makes it possible to reduce the
original variational problem to a relatively simple (nth order) problem in
nonlinear programming which is particularly suitable for solution on a
digital computer. This is described in detail in §5. Although the theorem,
in its essential features, is well-known, the proof we shall give is novel.

In §2 we prove another general theorem, as a consequence of which we
show that a minimizing “function” u*(¢) can be constructed with at most
n “impulses.”

In §6 the general theory is applied to the problem of determining a
minimum-fuel midcourse correction for a space flight. A particularly note-
worthy result is that if the equations of motion of the space vehicle can be
approximated by equations of a special form, and if n (n < 6) components
of the vehicle’s position and velocity vectors must take on given values at
a given terminal time, then a minimum-fuel maneuver for achieving these
end values will consist of not more than n impulsive corrections.

2. Theorems from the theory of moments. We now prove two theorems
from the theory of moments.

The first theorem deals with the problem of finding a functional (on a
Banach space) of least norm taking on given values at a certain finite
number of given elements (or having a finite number of given “moments”).
Our original problem will be put in this formulation in §4.

TuroreM 1. A. Let ® be a Banach space, let ', -+ -, y" be n linearly in-
dependent elements of &, and let ¢ = (c¢1, -+, ¢,) be a given nonzero vector
in B, . Then there exists a functional ' € &* such that I'(y*) = c: for each
i,and ||I°|| = \, where

(3) A = sup n-c,
n€H

and
(4) H={n: 1 € L, ;myi =1}
(the dot in (3) denotes the ordinary vector dot product, and || || denotes the
norm evther in & or in ®*). Further, if 1 is any element in & satisfying the
relations 1(y") = ci, i = 1,---,n,then || 1] = X (de., P is @ minimum-
norm solution of the equations l(y*) = c¢;).

B. The supremum in (3) is attained. If 5 = (71, « -+, 7a) 28 any member
of H which achieves the maximum, and 1 is any element of &* such that 1(y*)
= ¢; for each i, then ||1]] = \if and only if

(5) z(é v'ny”) = |2 ;ny“

(by definition of H, the right-hand side in (5) is equal to || T |])-
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C. An element | € & salisfies the relations I(y*) = ¢; for i = 1, -+, n,
and || U] = N if and only if

(a) there exists a vector 4 = (fu, ~-+, #a) in H such that 1(Y 7"
=|1] = 4¢>0,and

(b) U ny') = 0 whenever D, nic; = 0.
We note that the number A in (3) can also be given as

_ ne _ | Iln'yll:l”1 - S

@ =gy L ] L)

where -y, with 9 = (91, <=+, 72), is used to denote D= . Also,
except possibly for a positive scalar multiple, the same vectors 7 achieve
cach of the extrema in (6) and (3).

Relations (3) and (4) (or (6)), together with (5), may be used to obtain
the minimum-norm functional which is being sought. As a result of (3) (or
(6)), the variational problem in ®* has been reduced to a variational prob-
lem in the n-dimensional space F, , since a minimizing functional is usually
easy to obtain, because of the necessity and sufficiency of relation (5), once
a maximizing element in (3) has been found.

The basic result of Theorem 1 is contained in Part A. This was first
proved by Hahn [1], and is a consequence of the Hahn-Banach theorem.
Karlier references pertaining to the same result in particular Banach spaces,
together with a proof of the general theorem, are given in Dunford and
Schwartz [2, p. 86]. The same problem was also treated in detail by Krein
[3, Article IV], who pointed out the necessity of relation (5) in order that
[ be a minimum-norm solution. Krasovskii [4, 5] first applied these results
to specific optimization problems of the type mentioned in the introduc-
tion. In many of these problems, relation (5) essentially specifies the func-
tional 7 (or the function »*(-) in the original problem formulation), once
7 1s known.

The application of Theorem 1 to particular optimization problems has
also been derived independently. The case of spaces § with the norm de-

fined by
ftyn =] [ tuwra]”,

where 1 < p < «,or [[u(-)| = supe<i<1| u(f)| «, has been extensively
studied by Krasovskii [4, 5], the author [6], Reid [7], and Kreindler [8]
among many others. In this problem, relation (5) usually defines the mini-
mum-norm function «»*(-) uniquely, as is pointed out in the above-cited
references. In [6], a successive approximation scheme is suggested for the
computation of the extremum in (6).

We shall present a proof of Theorem 1 which is distinet from that given
in [1] or [3], and which, because of its geometrical character, is felt to be
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particularly illuminating. The basie idea of this proof can be found in [6].
Very similar arguments are presented in [8]. Antosiewicz [9] has also made
use of this geometric viewpoint in considering a closely related problem.

The proof given by Reid [7] is noteworthy in that it is distinet from any
of the others discussed above. It is partially based on Part C of Theorem 1,
specialized to the problem he considers. Some additional references to
earlier work on this problem are also given in this paper.

A large number of related references from the engineering literature can
be found in [8].

Proof of Theorem 1. Let y denote the n-tuple (¢', -+, y™). It | € &, we
shall, for ease of notation, denote the element (I1(y'), -+, I(y")) of E, by
L(y).

Consider the linear operator 7' from ®* to K, defined by T(1) = I(y).
Define S, = {I: 1€ ®% ||1]|| £ o} for every positive number «, and
let TS, = Cs. We denote S; by S and C; by C.

LEMMA. For every a > 0, C, s a convex compact set in I, containing the
origin as an interior point.

Proof. Since S, is convex and 7T is linear, C, is convex. It is clear that
C, is symmetric with respect to the origin. Hence, to show that the origin
is an interior point of C, , it is sufficient to show that C, is not contained
in any subspace of dimension less than n. Suppose the contrary. Then there
is a nonzero vector n € K, such that n-T(l) = I(5-y) = Oforeveryl € S.,
and indeed for every I € ®&*. But by a well-known corollary to the Hahn-
Banach theorem (see, for example, [2, Corollary 14, p. 65]), this implies
that n-y = 0, contradicting the linear independence of the .

It follows at once from the definition of the weak™ topology in &* [10,
p. 37], that 7' is continuous from ®&* to E, in terms of the weak™ topology
in ® and the ordinary Euclidean topology in E, . Since S, is compact in
the weak™ topology [10, Theorem 2.10.2, p. 37], C, is compact. This com-
pletes the proof of the lemma.

Now consider the following question. What is the smallest positive num-
ber « for which ¢ € C,, or, equivalently (since C, = a(C), what is the
smallest positive number « such that o "¢ € C'? Since ¢ # 0, the existence
of such a number « follows from the lemma. Denote this number by A, and
let v = N7 Tt is clear that v is on the boundary of C.

There is a plane of support to C at each of its boundary points. We shall
say that the nonzero vector 4 € E, is an outward normal to C at a boundary
point ¢ if there is a plane P normal to n which is a support plane to C at ¢,
and if 7 is directed away from C at ¢.

Let 7 be any outward normal to C at 4. Then

(7 7y = max 75-£.
tec
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If w € E, (n # 0) is not an outward normal to C at v, then

(8) 7y < max 9-§&
tec
But, again using Corollary 14 in [2, p. 65],
(9) max n-¢ = maxi(n-y) = |2y
tec =1

Combining (7)—(9), and using the definition of v, we finally obtain

(10) A = max % = max 75-c.

ek, |0yl nem
(It is interesting to note that the maximum in (10) is attained by those,
and only those, vectors n that are outward normals to C at v.)

Now, since v = A\ '¢c € C, there is an element [ € 8 such that 7(1) = v,
or,if weset I’ = N, [[I'| £ Nand T(") = ('), -+, '(y") = (a1,
++, ¢a) = ¢. On the other hand, if I € ®" and I(y) = T(l) = ¢, then
¢ € Cyyy - Then, by definition of X, |[7|| = \. In particular, ||I"|| = A,
or |I'] =

Let 7 be any vector in H which achieves the maximum in (10), so that
7.¢ = Aand || 5.y || = 1. If [ is a member of ®* such that I(y) = ¢ and
2]l =X theni(7-y) = 53¢ = X =[]/ 7-y || . Conversely, if I(y) = ¢
and i(n-y) = [[ L]l 7-y ||, then [[ 1] = I(7-y) = 7-c = \.

Finally, suppose that I(y) = cand || 1| = A. Then -¢ = 0 implies that
I(n-y) = n-¢ = 0. Conversely, suppose that there is an element I € &* and
a vector # € H such that I(4-y) = ||l]] = 4-¢ > 0, and such that I(4-y)
= 0 whenever n-¢ = 0. Then, n-I(y) = 0 whenever n-¢ = 0, implying that
I(y) = ec for some scalar e. But then I(4-y) = ef-¢c = #-¢ > 0, so that

= 1;1e., I(y) = c. By what was proved above, this implies that || [ || = .
But by (10), A = #4-¢ = |||, so that || I || = . This completes the proof
of Theorem 1.

The following theorem will be used to characterize certain solutions of
our basic problem.

TuEorEM 2. Let y', - -+, y” be nonzero elements of a Banach space ®. Let
T be the map from & to K, defined by T(1) = (I(y'), -+, W (y™)). Suppose
that there is a set D in & with the following properties.

(a) 1 € D implies that || L || = 1.

(b) The convex hull of D is dense in the unit ball S of ®* with respect to
the weak™ topology of ®*.

() If{l}, E = 1,2, - - -, is any sequence of elements in D, there is a sub-
sequence {li;} of {1}, and an element l,, of D, such that T(l;) — T(l.) as
j— .

Then, if | is any element of ®", there exist n elements (depending on 1)



38 LUCIEN W. NEUSTADT

I, , bn of D and n nonnegative numbers Ay, -+, N, such that T(1)
2 P and [ SN = ) 4]

Proof. Let K denote the convex hull of D, and let C = T'S. Since the
map 7 is linear, TK is convex. It follows at once from hypothesis (b) that
TK is dense in C.

It is sufficient to prove the theorem for elements [ € ®&* with || 1 || =
Thus, let I € ®* where || 1] = 1, and let 2" = T(1). If 2’ = 0, the theorem
follows immediately. Thus, assume that ' # 0. Let ez’ = z be on the
boundary of C, where @ = 1. Such a number « exists by virtue of the lemma
used in proving Theorem 1.

Since TK is dense in O, there exist elements 2 € TK (k = 1,2, ---)
such that 2* —  as k — . Since TK, the convex hull of T'D, is in I, , it
follows from a theorem of Carathéodory [11, p. 35] that there are elements
¥ € D and nonnegative numbers A\ (k = 1,2, -+~ ;6 =1,---,n + 1)
such that

n+1 n+1

foreach k = 1,2, - - - . Because of hypothesis (¢) and the uniform bounded-
ness of the numbers A, we shall assume, without loss of generality, that
(foreach ¢ = 1, -+, n + 1) there is a nonnegative number X;, and an
clement ; € D, such that A — X; and T(Zik) — T(l;) as k — o. Hence,
n+1 n+1 _
= > NI,  2oXN =1
=1 =1
Let us first consider the case where the points 17'(l;), - -+, T (l,41) do not

all lic on some hyperplane in F, of dimension less than n. Then, these points
constitute the vertices of a nondegenerate simplex M < C. Since x € M
and z is on the boundary of C, z is on the boundary (i.e., a face) of M.
Xop—vanishes. Thus

= RTU) =T (}: m),
=1 =1

or

T() =2 =a 2 =T <Zl m,),
where \; = o 'X; = 0,and Y i\ = o © £ 1. Finally, || I; | = 1 for each
zsothatHZz:l)\lll DN <1—||l||
If the points 7'(1;) belong to a hyperplane of dimension less than n, we
can apply the Carathéodory theorem to the convex hull of these points,
and conclude that there are nonnegative numbers \; (¢ = 1, -+, n + 1),
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at most n of which are positive, with A = 1, such that

= 2 i NT(L:). The remainder of the proof follows as above.

3. Description and characterization of some vector spaces. In order to
apply Theorems 1 and 2 to our original problem, we shall introduce some
linear vector spaces.

Let r be a fixed positive integer, and let p be a real number such that
1 £ p £ «. Let ¢ be the conjugate index of p: if 1 < p < o,
g=pp—1)5ifp=1,¢g= o;ifp=o,¢g=1

Denote by &, the normed linear space of Lebesgue integrable functions
from [0, 1] to E, with the norm of an element u(-) € I, given by

(1) 1uC-) [l =f0 lu(t) |, di,

where | u |, is defined by (2).
Let 8, be the Banach space of continuous functions from [0, 1] to #,,
with the norm of an element y(-) € §, defined by

Iy lee = OE?EJ y()lq -

If g(-) is a function from [0, 1] to £, , define the strong total p-variation
(8TV,) of g(-) by

STV,0() = sup 3 | g(t) — gty

where the supremum is taken over all finite partitions 0 = &, < ¢ < ---
<t,=10f[0,1]. If STV,g9(-) < «, we say that g(-) is of strong bounded
p-variation (see {10, p. 59]).

Let G, denote the Banach space which consists of all functions g(-) from
[0, 1] to E, that are of strong bounded p-variation, satisfy the relation
g(0) = 0, and are continuous from the right in (0, 1), with the norm in
Gp given by || g()|lo., = STV,g(-).

If » = 1, it is well-known that 8,* and g, are isometrically isomorphic.
Namely, to each function g(-) € G, there corresponds a functional [ € 8,*
defined by

(12) 1y()) = f y(t) dg(1),

with || 1 || = || g(-)|l»., ; conversely, if 7 is any functional in 8%, then there
is a unique function g(-) € G, of equal norm such that [ is defined by (12).
If r > 1, the above statements are still valid, except that (12) must be re-
placed by

() = | ,Zlyf“) o) = [ ()0
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(the scalar-valued functions ¢;(-) and y;(-) represent the components in
E, of g(-) and y(-)). The proof of this representation in the case r > 1 is
straightforward and based on the case of r = 1, and is omitted here.

We note that there is an isometric isomorphism between &, and a linear
manifold in G, (or 8,%). Namely, to each u(-) in F,, there corresponds a
function g(-) in G, defined by

(13) g(t) = ft u(s) ds, 0t=s1,

and a functional I € 8," defined by

(14) m«»=£§wmwwm=£mwwwa

It follows directly from (14) that || I | = || u(-)||, . In addition, relation
(13) implies that for every y(:) € 8,

(15) [mwwm=1ymmow=m«m

so that the isomorphism defined by (14) is the product of the isomorphism
between G, and 8,°, and the isomorphism defined by (13). Relation (15)
implies that || ]| = || g(-)lls.0 = | w(-)|lp, so that the isomorphisms de-
fined by (13) and (14) are indeed isometric.

4. Solution of the optimization problem. In this section we shall apply
Theorems 1 and 2 to the spaces described in §3, with the aim of obtaining
a solution to our given problem.

In this and the next section we denote by y'(t) the dth row vec-
tor (4:°(8), -+, u'(¢)) of the matrix ¥'(¢) in (1).

Our original problem may now be reformulated as follows.

Given n elements %'(-), ---, ¥"(-) in $,, and a nonzero vector
¢ = (¢, ,cs) (the problem is trivial if ¢ = 0) in ¥, , find a function
u(+) € F, of least norm that satisfies the equations

1 r 1
(16) o = [ LuiWu@d = [ fOuwd,  i=1,n
0 j=1 0
In general, this problem will have no solution. It is necessary to embed
F, in G, (as described in §3) and rephrase the problem as follows.
Find a function g(-) € G, of minimum norm which satisfies the equations

a7 o= [V g,  i=1n

Because of the isomorphism between G, and 8,*, we may state the problem
in yet a different way.
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Find a functional I € 8,* of minimum norm which satisfies the relations
(18) ) = ¢, i=1-,n

The last problem statement is precisely the one to which Theorem 1 ap-
plies. We shall show that Theorems 1 and 2 imply that there is a minimum-
norm functional [* which satisfies (18) whose corresponding function
g*(+) € g, is a step function with at most n points of discontinuity. As we
shall see, a step function ¢*(-) in (17) may loosely be thought of as corre-
sponding to a function «*(-) in (16) which is a linear combination of delta
(or impulse) functions (with impulses at those values of ¢ where g*(-) is
discontinuous), with || w*( )|, = | g* ()Mo = | T |-

We shall henceforth assume that the vector functions ¢°( -) are linearly
independent. By virtue of Theorem 1 and the representation of 8, dis-
cussed in §3, a minimum-norm solution ¢*(-) € G, of (17) does exist, and
can be obtained by first finding a vector 7 that satisfies the relation

(19) 7+c = Sup 1-c,
n€H
where
(20) H = {n: n € E,, max Zmyi(t) = 1},
0<t<1| i=1 '

and then finding any solution g*(-) € G, that satisfies (17) as well as the
condition (corresponding to (5))

(21) [ 90+ g1 = [ max 15(0) 1] STV,g"(-),
where
(22) W = DRGW,  F= G w).

Define the sets T'; (7 = 1, - - - , r) and T' (which are closed subsets of [0, 1}),
for a fixed solution 7 of (19) and the corresponding function () defined
by (22), as follows.

IIA

14

IIA
[y
——

r={t: [§()|, = max|g(r)l, O
0<r<1
(23)
Iy ={t: |§;(t)] = max max|7(r)|, 0=1=1}.
0<r<11<k<r

(Since 7 € H, max, | §(7)| = 1, and if p = 1, max.x | %(7)|] = 1.)
Note that I' = Uj_; I';if p = 1.

We now make use of (21) to characterize the minimum-norm solutions
of (17). It is convenient to treat the cases p = 1 and p > 1 separately.
We first consider the case p > 1.
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TuroreMm 3. Let 5 be any solution of (19), (20), and let §(-) and T be
correspondingly defined through (22) and (23).

Then, if g*(-) € Gp (where p > 1 s the conjugate index of q in (20)) s
any minimum-norm solution of (17), g*(+) is constant in each open sub-
interval of [0, 1] which does not meet T'. Also, the points of discontinuity of
g*(-) are all contained in T. If { is a point of discontinuity of ¢*(-), there is
a positive number oz such that the “jumps” in the components g;*(+) of g*(+)
are given by

(@] g,(D)] ™ sgn g5(D),
if 1<p< x;
. i oA Eopey Olngn'gj(i), if p=x
(24) a; > 0, gi (1) gi (1) = and §;(1) # 0;
any value in [—ai, ail, i
p= oo and ;) =0

(if £ = 0, the left-hand side of (24) should be replaced by g;*(0%) — g;*(0)).
In particular, of T is made up of a finite number of points, then g5 () is a
step function (whose points of discontinuity belong to T' and whose jumps are
given by (24)).

Conversely if g*(-) is any step function in G, whose points of discontinuity
all belong to T, whose jumps are given by (24), and which satisfies (17), then
g () is @ minimum-norm solution of (17).

Proof. We first prove that if ¢*(-) is a minimum-norm solution of (17),
and [t', ¢”] is a closed subinterval of [0, 1] that does not meet T', then g ()
is constant for £ < ¢t < t”. By Theorem 1 Part B, g*(-) satisfies (21). It
is easily seen that

1
[ 90 dg* ) = 81V, " max 501
(25) o<t<t 0<t<t
+ STV, ¢*(-) [ max |27(t)lq:| + STV, g*(')[ max ly(t)iq]-
t<t<tn <t tn tr<t<1 tr<t<1

Sinee [¢, t”] does not meet T,

(26) ax |90, < max l F(®)le -

Also,

(27) STV,g"(-) = STVpg () + STVpg( ) + STVpg*( )
0<t<1 r<t<tn

Relations (21), (25), (26), and (27) can hold simultaneously only if
STV, g*(+) =0,

t'st<itn
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i.e., only if g*(-) is constant in [t’, ¢”]. This implies that ¢*(-) is constant
in any open subinterval of [0, 1] which does not intersect I'. In particular,
if g*(-) has a point of discontinuity in (0, 1), this point must belong to T.
An analogous argument shows that the jumps of ¢*(-) at a point of dis-
continuity are given by (24), and that ¢*(-) is discontinuous at ¢ = 0 or
at ¢ = 1 only if these points belong to T.

If g*(-) € G, is a step function whose points of discontinuity belong to
T and whose jumps are given by (24), it follows by direct substitution that
g%(-) satisfies (21). If, in addition, ¢*(-) satisfies (17), then according
to Theorem 1 Part B, ¢*(-) is a minimum-norm solution of these equations.

We now employ Theorem 2 to show that there is always a minimum-
norm solution of (17) which is a step function with at most n points of dis-
continuity (all of which belong to T', with the jumps satisfying (24)).

Define the subset of G of G, as follows: g(+) € G if and only if g(-) isa
step function with a single point of discontinuity in [0, 1], and || g(-)|ls.»
= 1; i.e., G is made up of functions of the form

0, 0=t<i
(28) g(t) = {

E t=t=1,

where  is some point in [0, 1] and | £ |, = 1. If { = 0, an obvious modifica-
tion must be made in (28). Let D denote the set of functionals in 8, that
correspond to elements of G.

TurorREM 4. The set D defined above satisfies conditions (a), (b), and (c)
of Theorem 2, with $, taken for ®.

Proof. Condition (a) follows from the fact that ||| = STV,g(-)
= | £], = 1 when [ € D corresponds to a function g(-) of the form (28).
Condition (¢) is an immediate consequence of the sequential compactness
of the interval [0, 1] and of the unit “sphere” {§: £ € E.,|%], = 1}
in B, .

Thus, it only remains to prove that the convex hull K of D is dense in
the unit ball S of 8, with respect to the weak™ topology of 8,

Let [ € S, and suppose that  is represented by I(y) = f y(t)-dg(t),

where §(-) € G, and STV, §(+) = || 7| £ 1. Fix a weak™ neighborhood N
of I defined by elements 2', ---, 2" in 8, and a positive number ¢, thus
N={: |l =) <ei=1,---,m}.

Choose a partition 0 = t, < t; < -++ < &, = 1 of [0, 1] such that, for
each? =1, .-, m,

r—1

(29) (&) — 252t [§(tin) — §t)] | < e

J=0
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Note that, by definition of STV, (),

v—1>L

1
(30) 2 3(ts) = (1)l < STV, 9() < 1.
Define elements ;,7 = 0, -+ ,» — 1, in D by setting
§(tiv1) — §(t;)

31 b)) =yl | TG 200
81 WED =y | gt = 96 1y
(if the denominator in (31) vanishes, set I; = 0), and let

y—1
(32) [ = ];0 [ §(tiy) — G(ti)lnls.

Tt follows from (29), (31) and (32) that | I(z) — I(2°)| < e for each 4;
i.e., [ € N. Since each nonzero I; € D and since the origin of 8,* belongs to
K, it follows from (30) and (32) that [ € K. Because of the arbitrariness
in the choice of [ and N, this implies that K is dense in .S, completing the
proof of Theorem 4.

CoROLLARY. There is a minimum-norm solution g*(-) € G (p > 1) of
(17) which is a step function with at most n points of discontinuity, all of
which belong to T, the jumps at which satisfy (24).

Proof. According to Theorem 1, a minimum-norm solution I° of (18)
exists. By Theorem 2, there is an element ' = D _j— A\,l; , with each I; € D,
in 8, such that I'(y") = I(y’) = ¢;foreach ¢ = 1, --- , n, and such that
N7 11| . Since I° is of minimum norm, ||| = || I’ |; ie., ! is a
minimum-norm solution of (18).

Each I; corresponds to a function ¢’(-) € G with a single point of dis-
continuity. Hence, I’ corresponds to g*(-) = 2.7=12¢’(-) € Gp, which
has at most n points of discontinuity and is a minimum-norm solution of
(17). The remainder of the corollary follows from Theorem 3.

We now turn to the case of p = 1 (¢ = » ). Corresponding to Theorem
3, we have the following proposition.

TueorEM 3. Let 7 be any solution of (19), (20) with ¢ = =, and let
7(+) and the sets T and T'; be correspondingly defined through (22) and (23).

Then, if ¢*(+) € G is any minimum-norm solution of (17), the component
9.7 (+) of ¢*(+) s constant in every open subinterval of [0, 1) which does not
meet T'; . Also, the points of discontinuity of g;*(-) are all contained in T'; C T.
If §is a pownt of discontinuity of g;=(-), there is a positive number a;; such
that the jump in g;*(-) is given by

(33) 9;5(0) — ¢;* (1) = ajisgn g;(D), a;i >0

(if § = 0, the left-hand side in (33) should be replaced by g;*(0%) — ¢;%(0)).
In particular, if T'; 7s made up of a finite number of points, then g5 () isa
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step function (whose points of discontinuity belong to T'; and whose jumps are
given by (33)), and if T'; is empty, then g;*(t) = 0.

Conversely, if g*(-) is any step function in Gy such that the points of dis-
continuity of g;*( ) belong to T'; and the jumps are given by (33), and if g*(-)
also satisfies (17), then ¢*(-) is a minimum-norm solution of (17).

The proof is very similar to that of Theorem 3, and is therefore omitted.

The fact that a minimum-norm solution ¢*(-) is of the above form, when
I is made up of a finite number of points, has previously been pointed out
by Krasovskii [5], the author [6], and Kreindler [8].

In analogy with the set ( in the case p > 1, we now define the set G as
follows: g(-) € G if an only if g(-) is of the form (28) (or an obvious modi-
fication thereof in case { = 0) with £ a unit vector all but one of whose
components vanish; i.e., G consists of the functions g( -) whose components

are given by (for some index k = 1, ---, r, some number € [0, 1], and
6 =-+1or —1)
_Jo, 0=t<i
9:(1) = {0, i<t<l,
g;(t) =0, if j # k.

(An obvious modification must again be made if = 0.) Let D denote the
set of functionals in 8,,* that correspond to elements of G.

TuporeM 4'. The set D defined above satisfies conditions (a), (b), and (c)
of Theorem 2, with S, taken for ®&.

The proof is almost identical with that of Theorem 4, and is omitted.
The following corollary to Theorem 4’ (which follows just as the corollary
to Theorem 4) yields a representation of a minimum-norm solution of (17)
when p = 1.

CoroLLARY. There is a minimum-norm solution g*(-) € G of (17) which
is a step function such that g;*(-) has n; points of discontinuity (all of which
belong to T'; , with the jumps satisfying (33)), and dSiang £ n.

Because a minimum-norm solution of (17) is an element ¢g(-) € G,
which is a step function, there naturally arises the following question.
Given a step function g(-) € G, and the corresponding functional [ € 8,
(defined by (12)), do there exist functions u(-) € &, such that the corre-
sponding functionals I € 8,* (defined by (14)) in some sense approximate
the functional [? We shall below answer this question in the affirmative.
Indeed, for any e > 0, there exist functions u'( - ; €) and u”(-; €) in F, such
that

1) =) <e 4
and

It
[y

y Ty My ”lé,”=”2”7

lé”(yi) = Z(yz), 1 L.y, l || lé” H - “ Z H I < ¢
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where 1" and I.” are the functionals in 8, corresponding to w'(-; ¢) and
w”(+; €). Thus, if g(-) is a minimum-norm solution of (17), it is possible
to find a function u'(-) € ¥, whose norm in &, equals || g(+)|l,.,, and
which satisfies relations (16) with an arbitrarily small error, as well as a
function u”(-) € F, that satisfies relations (16) exactly and has norm
arbitrarily near [| g(+)|»,p -

To verify the above, let g(-) be a step function with discontinuities at
the points #;, - -+, .. Let Ajg = [g(¢;) — g(&;, )] if ¢; £ 0;if t; = 0, let
Ay = [g(0") — ¢g(0)]. If 0 < t; < 1, define I, . for € > 0 to be the closed
interval [tj - 6/2, t; + 6/2]; if i =0, let ije be [0, e]; if t; = 1, let Ij,e
= [1 — ¢ 1]. We shall always assume that ¢ is sufficiently small that
I;.<[0,1] for each j, and that I; . N I, = Bif j # k. Denote by «;({; €)
the characteristic function of 7; ., and let

1 I3
' (tye) = - Zl k(L5 €)A;g.
=

Then it is easily seen that

1 1
f yi(t)-u'(t;e) dt — f y'(t) - dg(t), i=1 - ,n,
0 e~>0 Jo
” g(')“v,p = ” u’('; G)Hp for all e
If the n X wr matrix ¥ = (Y (%), ---, Y(4)) has rank n, it readily

follows that there exist functions u”(¢; €) € F, of the form
I‘ .
u"(t;€) = %Z ki (L5 e)u’,
=1

where the %’ are constant r-vectors such that u®
each j, with

(34) foy*‘u).u”(t;e) dt:fo Y (1) - dg (8), i=1,--,m,

and such that

€

— Ajg as € — 0 for

1G5 o= 19() e

Thus, the functions %’ and w” have the desired properties. Loosely
speaking, one may say that a step function g(-) in (17) corresponds to a
function %(-) in (16) which is a linear combination of ‘“delta-functions.”

If the matrix ¥ has rank less than n, it is still possible to construct func-
tions u” (t; €) satisfying (34) and vanishing outside U4_; I; .. This follows
from the fact that if we define

56,0 ={[ T@uto @ L)1, < |50 b},

1

j=1,"',p;€>0,
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then S(7, €) is a convex set in I, containing the origin as a relative interior
point, and Y (¢;)A;g belongs to the closure of S(j, ¢). In fact, the stated
properties of S(j, ¢) imply that there exist functions w'(¢; €) € F,, vanish-
ing outside 7;,., such that for each j,

1

Y(0u(te =y [ Y0 dglt) = 5 YA,

Ije

| w'(5e) Il =] Aig]s-

If we define w”(¢; ) = (1 4+ €) D4 w'(t; €), then the functions u”(¢; €)
satisfy (34), and || w”(-; )|, £ (1 4+ | g(+)|ls,» - In particular, if g(-)
is & minimum-norm solution of (17), so that the u”(-; ¢) satisfy (16), then
w5 lle 2 119() b, and || w5 )l = 1 9(-)[lo,p a8 € 0.

The above remarks have significance for the following problem, which is
a variant of our original problem.

Let I', , where 0 < a < , be the set of elements u(-) € F,satisfying the
condition | u(t)|, £ aforallt,0 < ¢ < 1;then find a function u(-) € T, of
least norm that satisfies (16).

By what was said above, there is at least one solution in T'y to (16) if « is
sufficiently large. Then, according to results in [16], 2 minimum-norm solu-
tion exists in T', (s0 that it is unnecessary to embed F, in G,).

Let M, denote the minimum of the norms of the solutions of (17) in
Gy, and let M, denote the minimum of the norms of the solutions of (16)
that belong to T',, . It follows from the previous discussion that M , — M, as
a— o,

Under certain conditions (which will not be discussed here), if a mini-
mum-norm solution of (17) is a step function, then the minimum-norm
solutions of (16) in T', approach the linear combination of delta functions
corresponding to the step function. To be precise, if the step function has
discontinuities at the points ¢, - -+ , . (we denote the value of the jump
at ¢;, as before, by A,g), and if »*(-) is a minimum-norm solution of (16)
in T, , then, for sufficiently large «,

W) = 3 ras() D

j=1 6a,j

where k., ;(t) is the characteristic function of an interval I, ; contained in
[0, 1], containing the point ¢; , and of length §,,; > 0. In addition, 6.,; — 0 as
a—0;|u*(¢)], = 1foralla,j,and t € I,,; ; and
sup | u”(¢) — Ay ], — 0.
t€la,j a—>0
5. Computing the optimum solution. In this section we shall discuss a
possible computational method for obtaining a solution 7 of (19), (20),
and, having found an % and determined the corresponding sets T, T'; and
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the function #(-), for finding a minimum-norm solution of (17) of the
type described in the corollary to Theorem 4 (or 4').

We first consider the case p > 1.

The problem of finding the maximum in (19), (20) is clearly equivalent
to the following problem in nonlinear programming. Maximize the linear

function g(n) = g(m, -, ) = 2.i= cin: subject to the constraints
(defined for every ¢,0 < ¢t < 1):

r n . q
(35) plnst) = 21 2 yi'(ms | S 1.

7=1 | =

This programming problem, being given in terms of a linear objective func-
tion and a continuum of convex constraints, is in itself convex, and the
absence of false local maxima is thus guaranteed. Note that the dimension
of the programming problem is only n. A number of computational methods,
e.g., Rosen’s gradient projection method [12], exist for such problems. It
is clear, however, that the continuum of constraints (35) must be approxi-
mated by a suitably large, finite subcollection, if the problem is to be solved
on a digital computer.

In the nonsingular case, a solution of the above problem is given by a
vector 7 which lies on the intersection of n (or fewer) surfaces p(5;t) = 1
which are in general position at 7; i.e., 7 maximizes g(4) subject to the
constraints (35), p(5;t) = 1 for n (or fewer) values of ¢ in [0, 1]—which,
by definition, make up I'—and p(%; t) < 1 away from these values of &.

Once a solution 7 to the programming problem has been obtained,
and the set T' and the function %(-) defined accordingly (by (22) and
(23)), it is only necessary to find values ¢; € T' and positive numbers
ay, = a; (1 =1, -+, p; p £ n) such that the corresponding step function
in G, (i.e., with discontinuities at the points ¢ and the jumps given by
(24)) is a (necessarily minimum-norm) solution of (17). If p = «, addi-
tional numbers must be determined if 7;(¢;) = 0 for some z and j. We shall
suppose that this case does not arise in the argument that follows.

Let us first consider the nonsingular case where I' consists of precisely
n points &, -+, t,, and the n surfaces whose equations are p(7;;)
= 1(j =1, ---, n) are in general position at their point of intersection 7.
By Theorem 3, every minimum-norm solution ¢*(-) € g, of (17) is a
step function whose points of discontinuity are included among the ¢; , and
whose jumps are given by (24). If g*(-) is of this form, then

1 n
(36) f(; Y (1) - dg*(t) = ;ﬂi(ti)aj = ¢, i=1,-,m,

where

Bit) = 2 u(t)] 7.(6)] g 7.0,
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The quantities a; are the only unknowns in (36), but they are uniquely
determined by these equations if the matrix (B8:(Z;)).,; is nonsingular. How-
ever, the nonsingularity of this matrix is precisely the condition that the
surfaces p(%; t;) = 1 be in general position at 7. In this case, therefore,
the minimum-norm solution of (17) is unique. In summary, it can be ob-
tained as follows.

1. Solve the nonlinear programming problem of maximizing g(9) = 7-¢
subject to the constraints (35).

2. Let 3 be a solution of this problem, let ¢, - - - , £, be those values of
t for which p(%;t) = 1, and let () be defined by (22).

3. Solve (36) for the constants a; ( = 1, -+, n).

4. The minimum-norm solution ¢*(-) of (17) is a step function whose
points of discontinuity are &, - - - , ¢, , and whose jumps are given by (24)
with a; = «; (if a; = 0, g*(-) is continuous at #;).

5. The optimum solution can be approximated by an element u(-) € F,
as discussed in §4.

If T consists of u points ¢, - - -, {, , where u < n, and the corresponding
surfaces given by p(n; %) = 1 (4 = 1, ---, u) are in general position at 7,
equations (36) take the form

I3
(37) Z;ﬁi(ij)aj = C;, 1= 1, R (8
-

Although this system is overdetermined (n > u), our existence theorem
guarantees that it is consistent, i.e., does have a solution for numbers «;,
and the general position condition implies that this solution is unique, which
in turn means that the minimum-norm solution of (17) is unique in this
case also.

The numbers «; are analogous to the Lagrange multipliers that arise in
an ordinary maximization problem in the presence of constraints. Indeed,
they are precisely the multipliers for the problem of maximizing g(») sub-
ject to the constraints p(9;¢,) <= 1,2 =1, -+, u = n.

If the surfaces p(n;t) = 1 for ¢t € T' are not in general position at 7, as
must occur when T' consists of more than n points, it is necessary to pick
out some u (u = m) values t; € T' such that the corresponding equations
(37) have a solution for numbers «; with each a; > 0. Such values always
exist by virtue of the above-proved existence theorems.

We now turn to the case p = 1. The problem of finding a maximum in
(19), (20) is equivalent to the problem of finding the maximum of the
linear function g(%) subject to the linear constraints

1S g 0SL j=1e,n 0

lIA

t

IIA

1.

This is now a linear programming problem of dimension n. To obtain an
approximate solution on a digital computer, it is again necessary to replace
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the continuum of constraints by a suitably large finite number chosen from
them.

Once a solution 7 of this linear programming problem has been found,
and the sets T'; and the function 4( -) defined accordingly, it is only neces-
sary to find values t;; € T';, and positive numbers «j,;, (j = 1, -+, r;
i=1,---,mn;;2,;n; =n) such that the corresponding step function
g(+) in Gy (i.e., with the discontinuities of g;(-) at the points ¢;; and the
jumps given by (33)) is a (necessarily minimum-norm) solution of (17). The
method of finding these numbers differs only in detail from that for the
case p > 1, and will not be presented here. This case has been discussed
in some detail by Kreindler [8].

6. Applications to optimization. In this section we shall describe how
the results derived in the preceding sections may be applied to optimiza-
tion problems, and, in particular, to obtaining minimum-fuel space maneu-
vers.

We consider physical “systems’ whose behavior can be described by a

system of ordinary differential equations of the form
(38) @(t) = A()x(t) + B(u(t) + f(1).
In (38), x is an m-vector whose coordinates describe the ‘“‘state’ of the sys-
tem at any instant of time ¢, A(f) is an m X m matrix function, B(t) is
an m X r matrix function, and f(¢) is an m-vector function; 4, B, and f
are assumed to be continuous known functions of f. The quantity w(t)
is the “control,” a measurable function whose range is contained in Z,
which is constrained to be a member of a given normed linear function
space &.

Certain problems in the theory of optimal control can be stated as fol-
lows. Given two distinct values &, and ¢ of ¢, an n X m matrix N, an m-
vector ', and an n-vector ' (where n < m); find a function «*(-) € &
of minimum norm such that the solution z(¢) of (38) (by a solution we
mean an absolutely continuous vector function that satisfies the equation
almost everywhere) with x(t) = a” and u(t) = w*(t) satisfies the bound-
ary condition Nz(#) = a'. Without loss of generality, we may assume
that tp = 0 and ¢; = 1.

By virtue of the variation of parameters formula for solutions of (38),
the preceding problem can be restated as follows. Find a function «*(-) € &
of minimum norm such that

(39) fol Y(O)u* (1) dt = c.

In (39), Y(t) = NX(1)X '(t)B(t) is a known continuous n X r matrix
function, X (¢) being the m X m matrix solution of the equation

X = AX, X(0) = I, the identity,



OPTIMIZATION, A MOMENT PROBLEM, AND NONLINEAR PROGRAMMING 51

1
and ¢ = ' — NX(1)[2" —}—f X7Nt)f(t) dt] is a known m-vector. In
0

this form, this is precisely the problem described in the Introduction,
and if the norm in & is given by (11), we have the problem discussed in
§4 and §5. The theory developed therein can be applied if ¢ 5 0 (the prob-
lem has the trivial solution «*(t) = 0 if ¢ = 0), and provided that the
vector functions y'(-), - -+, ¥"(-) constituting the rows of ¥ are linearly
independent. A necessary condition for the linear independence of 4'(-),
-+, y"(+) is that N have rank n; the latter together with the condition
that the given system is “proper” [13, p. 12] is sufficient for linear inde-
pendence of the y°(-).

Let us now consider a specific type of physical system that is of particular
current interest.

The equations of motion of a space vehicle subject only to gravitational
and propulsive forces can be given in the form

(40) F =G0,

where 7 is the radius-vector to the vehicle’s center of gravity from the origin
of some inertial coordinate system, G is the vector representing the gravi-
tational acceleration, T represents the force vector due to the vehicle
engine thrust, and M is the vehicle mass. If the thrust is due to a single
rocket engine, the rate of change of mass due to thrusting is given by

(41) —(py = LTk

9 L
where ¢ is the acceleration due to gravity at the earth’s surface (a known
constant) and I, is the so-called specific impulse, which we shall assume
to be a known function of time.

The following problem naturally arises in the control of such vehicles.
For given initial position r(f), velocity #(), and mass M (%), find a thrust
program (T as a function of ¢) which will achieve prescribed terminal
values for (some, or possibly all of ) the components of » and # (or for given
functions of the components). The terminal time may be fixed or free.
The optimal problem consists in finding that thrust program that results
in a minimum loss of mass, or expenditure of fuel. This general optimization
problem is as yet unsolved, although numerous particular cases have
been treated in the engineering literature (see, for example, [14]).

For those cases where (40) can be put in the form (38), the methodsand
results developed in this paper can be applied. This can be done when (40)
represents the motion of a vehicle near a “nominal”” known free-fall trajec-
tory, the radius-vector along which satisfies the equations B = G(R, t).
Namely, set & = r — R, in which case 67 = G(R + or, t) — G(R, 1)

)
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4+ T/M. Assuming that [G(R + or, t) — G(R, )] can be approximated
by first-order terms in §r, we obtain

(42) oF = %§<R<t), Dor+ L

where dG(R(1), t)/dr is a known matrix function of the time ¢. Finally,
let z be the 6-vector whose first three coordinates coincide with those of
or and whose last three coincide with those of &+. Then (42) can be put in
the form

(43) & = A(t)z(t) + B(t)u,

where w = T/(Is, M). Suppose that initial “perturbations” from the
nominal 81 (%) and 87(t), a terminal time ¢, an initial mass M (), and
desired terminal values ér(1), 67(4) (or certain linear combinations, less
than 6 in number of them) are given. Since a minimization of the loss
of mass is equivalent to a maximization of M (¢,), or a minimization of

ftt [ u(t) | dt,

because, by (41) and the definition of u,

[y o= [ o g )

our problem is now of the type described at the beginning of this section,
with p = 2. The computational method deseribed in §5 can be applied to
determine an optimal thrusting program. Note that if it is only of interest to
determine the minimum fuel expenditure, it is sufficient to solve the non-
linear programming problem, since the number X in (3) here corresponds

to the minimum of the values for f | w | dt.

The corollary to Theorem 4 has a particularly interesting interpretation
in the present problem. Namely, if the number of coordinates of ér and
67 (or linear combinations of them) whose end values are prescribed is
n(n £ 6), there is a minimum-fuel thrust program which consists of =,
or fewer, impulses. If a rendezvous with another vehicle is the desired
terminal state, all the coordinates of ér and &7 are specified at the terminal
time, and n = 6. Note that if the entire motion of the space vehicle takes
place in a plane, (43) can be put in the form of a fourth-order system, and a
minimum-fuel rendezvous can be accomplished with four or fewer impulsive
corrections.

Acknowledgment. The author is indebted to Dr. J. S. Meditch for his
aid in formulating the minimum-fuel space vehicle problem. Some related
work in this problem has previously been deseribed in [15].
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TIME-OPTIMAL CONTROL OF SOLUTIONS OF OPERATIONAL
DIFFERENTIAL EQUATIONS*

H. O. FATTORINTI{

Introduction. We consider the following problem: given two points
u, v in the Hilbert space H, find f, | f(¢) | £ 1, such that the solution of
the operational differential equation u; = Aw -+ f, with initial condition
u(0) = wu, reaches v in the smallest possible time. We prove that such an
f exists, utilizes the maximum energy available (| f(¢)| = 1), and is
unique. The finite-dimensional problem was studied by Bellman, Glicks-
berg and Gross [3] and others (see [6]); results for the infinite-dimensional
case have been announced by KEgoroff [7], who generalizes Pontryagin’s
maximum principle to a class of equations in Banach space.

The author wishes to acknowledge his indebtedness to Professor P. D.
Lax for assistance received during the preparation of this work.

1. Existence of optimal controls. We shall use the notations

(i) s, t,t, - - for positive real numbers, ¢, d, e, - - - for (Lebesgue meas-
urable) subsets of the real line, | ¢ |, |d |, - - - for their measure;

(ii) H = {u, v, w, ---} for a Hilbert space with scalar product (u, v)
and norm | u |;

(iii) L, = {f, g, - - -} for the space L*((0, t); H) of all functions with
domain (0, t), range in H, strongly measurable and bounded, with norm

[ f1le = ess.sup {|f(r) |, 0 = r = 4.

Sometimes we shall write simply L, || f |, omitting the subindex . We
recall that L, is a Banach space, dual of the space L'((0, t); H) of sum-
mable, H-valued functions in (0, ¢). For further details see [1, p. 88] and
2].

Given a linear operator A in H with domain D(A) and a function f(¢),
t = 0, with values in H, we will consider the initial-value problem

(1.1) W) = Au(t) + f(1), t=0,
(1.2) u(0) = wu.

A function u (1), ¢ = 0, with values in H will be called a strong or genuine
solution of (1.1), (1.2), if
(a) for each ¢ = 0, u(t) € D(A);

* Received by the editors November 11, 1963.
1 Courant Institute of Mathematical Sciences, New York University, 4 Washing-
ton Place, New York, New York.
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(b) the equality (1.1) is valid, where %’ is the strong derivative of u(t);

(¢) fort = 0, u(t) assumes the required initial value.

We assume that the homogeneous problem (f = 0) is well-posed in the
sense that

(d) it has a genuine solution for any u € D(A);

(e) two solutions that agree for ¢ = 0 agree for all values of ¢;

(f) the values of a solution at a time ¢ > 0 depend continuously on the
initial data, i.e., the operators T'(¢t) defined by

(1.3) T®)u(0) = u(t)
are bounded.
By (f) we can extend 7'(t) (by closure) uniquely to the whole space H.

We will denote these extensions by the same symbols. From the definition
of T'(t) it follows that

(8) T(0) = I.
By uniqueness of genuine solutions,
(h) T)T(s) = T+ s),

ie., T(-) is a semigroup of bounded operators. It can be shown also [1,
pp. 304-305] that

(1) T(t)u is a strongly continuous function of ¢ (u being a fixed element
in H);

() m(t) =sup { | T(r)|,0 £ r < #} is finite for all ¢ = 0;

(k) T™(¢) is also a strongly continuous semigroup of bounded operators.

Under conditions (d), (e), (f), it is also true that

(1) if f(t) € D(A) forallt = 0, f(t) and Af(t) are strongly continuous
functions of ¢, then

(14) w(t) = T(t)u + fot T(t — r)f(r) dr

is a genuine solution of (1.1), (1.2), for every u € D(A) (see [4]).
On this basis we define the expression (1.4) as a wealk solution (or simply

a solution) of (1.1), (1.2), integration being performed in the sense of
Bochner (1, p. 76).

LemMa 1.1, Let {t.}, {u.} < H, {f.} < L be sequences such that
t

f” T(ty — v)fu(r) dr = un.

Suppose further that t, — t, u, — u (weakly), || fa || < 1. Then there exists
FeL|fll £1, such that

ft Tt — r)f(r) dr = u.

0
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Proof. Choose some upper bound s for {t,} and some element v in H.
Define g(r) = T*(t — r)vif 0 < r < t, g(r) = 0if ¢t £ r < s; define
similarly g, using ¢, instead of ¢. It follows at once from the strong con-
tinuity of 7%(-) that g, — ¢ in L'((0, s); H). Observe next that, by
Alaoglu’s theorem [1, p. 37], the unit sphere of L, is weakly compact.
Then there exists a subsequence of {f,} (strictly speaking, a generalized
subsequence), weakly convergent to some element f, | f|| = 1; denote
again this subsequence by {f,}. Noting that

(Un 0) = ( [t = 0 ar, v) = [ ), 00

and taking limits, the lemma follows.
Given two elements u, v in H, we will call f in L an admaissible control

if the weak solution of (1.1), (1.2) reaches v at some time, i.e., if for some
¢,

(1.5) T(t)u + fot T(t — r)f(r) dr = v,

and [ f| = 1.

The corresponding solution will be called an admissible trajectory. The
smallest ¢ for which equality (1.5) is valid will be the transition time cor-
responding to the control (or to the trajectory). The admissible control f
will be called optimal if its transition time minimizes the transition times of
all admissible controls; we will call also the corresponding trajectory an
optimal tragectory.

To avoid confusion we shall often write (u, v)-admissible control, - - - ,
ete., to specify which u, » we consider.

TaeoreM 1.2. Suppose that for u, v in H there exists an admissible con-
trol. Then there exists an optimal control.

Proof. Let t be the infimum of all transition times of all admissible con-
trols, ¢, a sequence of transition times corresponding to admissible con-
trols f, , tending to ¢. Write (1.5) for these controls and apply Lemma 1.1.

2. Uniqueness of optimal controls. We define the subspace K as the
set of all elements of H of the form

(2.1) fo 7 — nf(r) dr, f€ L.

The equalities

[ " Ts — r)f(r) dr
0

(22) t
- ft_ T(t— )f(r — (t—s))dr, 0<s <t
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t
f T(t — r)f(r) dr
o
_ [ — T(r) e ’ /)
(2.3) = l T(s — r) <-8—— fo T(t — s — 7)f(+') dr' ) dr
-I—jsT(s—-r)f(r+t—-s)dr, 0<s <t
0

(2.4) T = fot T(t — 1) T_(t’;”.‘dr,

imply that K, = K; = K for all s, ¢t > 0 and that T'(¢)H C K. If we now
introduce the family of norms

¢
ule= {1 [ 76 = 070 ar = g € 1,
identities (2.1), - - -, (2.4) give immediately

(2.5) lwle = |ule,
(2.6) [uls§<1+t—_§—§m(s)m(t—s)>luh, 0<s <t
(2.7) lu| = tm(®)|ul,

28) 17l s ™ ul,

Given now any measurable set ¢ in the positive real line we define L.(e)
as the (closed) subspace of L. consisting of all functions with support in
e(0,t) = e N (0, ), and K;(e) as the subspace of K consisting of all ele-
ments of the form (2.1), with f € L;(e). Our next result is concerned with
points ¢t € e for which K.(e) = K.

Lemma 2.1. Let | ¢| > 0. Then for almost all ¢ in e, Ki(e) = K.

Proof. Applying (2.2) and (2.3) it is easy to see that any u in K can
be written in the form

ft T(t — r)f(r) dr,

with f € L, s arbitrarily close to {. Now take ¢ € ¢ and a sequence
by < boa < B, by — t. If we write

ftt T(t — r)f(r) dr = ; Tt = tos) f:"“ T(twss — )f(r) dr

- T(T - tn+1)
- T(t — p) (ot = tett)
f\':‘l ‘/;(tn+1,tn+2) ( ) (l e(tnt1 5 tate) |

[ T = 5 @) ar,

tn
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we see that we can assert that K,(e) = K if we can construct a sequence
ty < tyy1 < tsuch that lim ¢, = ¢ and

(29) Ie(tn ) tn+1) l -2— p(tﬂ+1 - tn)’ P > 0)
(2.10) lim sup tn = bt <
tn-l—l — I

Now take e,, = {t € e:

1 1
pE—— > > _
e (t 7 t) l = op k= m} . By a well-known

result in measure theory, U,e,, has full measure in e; moreover the set d
of points on e which are density points of some e, has the same property.
It is now easy to show that any ¢ in d has the required property. In fact,
let ¢ be a density point of e, . Then we can select a sequence {i,} in e,
suchthat t — + < t, < tyyy < t,andt =t — s, + 0(s,), where s, is any
sequence tending monotonically to zero. But this implies (2.10), having
chosen s, adequately (for instance s, = exp (—n)), and (2.9) follows from
the fact that {t,} C en.

Before beginning the proof of our main result, we recall that, if f is an
optimal control with transition time ¢, then f is optimal in any subinterval
of (0, t). In particular, the corresponding trajectory u will reach any of
its points only once. The proof is a straightforward consequence of the
definitions involved.

TarorEM 2.2. Let f be a (u, v)-admissible control with transition time t,
and suppose that | f(r) | < 1 for r in a non-null set ¢ < (0, t). Then f s not
(u, v)-optimal.

Proof. Suppose first that || f||; < 1. Then taking s sufficiently close to ¢
and applying inequalities (2.5), (2.6), and (2.8), we can conclude that

12
1f T — r)f(r)dr+ TU)u— T(s)u| <1,
0 s
which plainly implies that f is not (u, v)-optimal. Similarly, if for some
5,0 < s < t,we have || f|ls < 1, f will not be (u, u(s))-optimal, and a
fortiori will not be (u, v)-optimal.
We return now to the general case. For some e > 0 there exists a non-

null set e € cwith | f(r) | £ 1 — ¢ r € e. Take s in ¢ like in Lemma 2.1,
and consider the operator M: L;(e) — K, defined by

Mg = f T(s — r)g(r) dr.
e(0,s)
It is not difficult to see, examining the proof of Lemma 2.1, that the equation

(2.11) Mg =3 fs T(s — r)f(r) dr
o
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will have, for § sufficiently small, a solution g in L.(e) with || g = e
Consider now the control h(r) = (1 — §)f(r) + ¢(r). By (2.11), h is
(u, v)-admissible. But || b ||, < 1. This shows that f itself cannot be (u, v)-
optimal.

CoroLLARY 2.3. (UniqueNiss Tarorem). Let f and g be two (u, v)-
optimal controls. Then

(a) both transition times coincide,

(b) fand g are equal for almost all points in (0, t).

Proof. (a) is trivial. Suppose (b) were false. Then 4(f + ¢) would also
be an optimal control with norm less than 1 in a non-null set, which is
absurd.

3. Generalizations. The present methods can be applied, in some cases
with slight modifications, to the following more general situations.

(a) H is a reflexive Banach space.

(b) The elements u and v are replaced by closed convex sets, for instance
[u(0) —ul, |u@®) —v| = p.

(¢) The arrival time is specified (instead of the departure time).

(d) A = A(%). In this case, the weak solutions of u;, = A(t)u + f,
u(s) = wu, are given by

ut) = Ul sy + [ U605 d

where U(t, s)u is the solution of u; = A (t)u, u(s) = u (see [5]).
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MODES OF FINITE RESPONSE TIME CONTROL*
C. A. HARVEYt

Summary. A linear autonomous system with a single control variable is con-
sidered. There are, in general, several modes of finite response time control for such
a system. The concepts of single component regulation and multiple component
regulation are defined. It is then shown that a multiple component regulation prob-
lem can be transformed into a single component regulation problem. Thus it is pos-
sible to express any of the modes of control considered as control of a single input,
single output system.

Introduction. The system considered is represented by the vector dif-
ferential equation

(1) &(t) = Az(t) + bu(l),

where the dot denotes differentiation with respect to time ¢, z(¢) is a col-
umn vector with elements z;(%), x2(t), - -+, z,(¢t) which describe the state
of the system, u(¢) is a scalar control variable, A is a constant n X n
matrix, and b is a constant column vector.

It is assumed that the system (1) is completely controllable. This means
that for any initial state of the system there exists a control defined on a
closed finite interval of time [0, T'] such that the state of the system arrives
at the zero state (x = 0) at the time 7'. It is known [3, pp. 483-484] that a
necessary and sufficient condition for complete controllability of system
(1) is that the vectors b, 4b, ---, A" 'b be linearly independent, i.e.,

det [b, Ab, -+, A"} # 0.

Single component regulation is defined as control of the system such that
one component of the state vector is transferred to zero in a finite time and
held zero thereafter. Multiple component regulation is defined as control
of the system such that more than one component of the state vector is
transferred to zero in a finite time and held zero thereafter. As an example
of a particular type of multiple component control a time optimal mul-
tiple component regulation problem could be defined when u(¢) is con-
strained in amplitude as follows: for any initial condition find a control
satisfying the amplitude constraint on the interval (0, «) such that the
components to be controlled are transferred to zero in the minimum time
such that they may be held at zero thereafter. The time optimal single

* Received by the editors August 28, 1962, and in revised form December 4, 1963.
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component regulation problem was first discussed by Schmidt [5, pp. 40-69]
and was later treated by Harvey and Lee [1], [2], [4].

The definitions of single component and multiple component regulation
given above are somewhat ambiguous and are not mutually exclusive. It is
possible in some cases to state the same control problem as a single com-
ponent or as a multiple component regulation problem. For example, con-

sider the system
i) 0 1] 2} 0
= + u.
1222 00 Lo 1

The single component regulation problem of controlling z; is the same
as the multiple component regulation problem of controlling z; and x,
since &» = 4, and a necessary condition for holding x; at zero is that x
be held at zero. Thus, whether this particular control problem is viewed
as a single or multiple component regulation problem depends on the
desire of the analyst.

The following section is devoted to a constructive proof of this paper’s
principal result.

Given a multiple component regulation problem, there exists a linear trans-
Sformation of the state space such that the given problem is a single component
requlation problem in the transformed state variables.

This result makes possible the application of the theory related to time-
optimal single component regulation [1], [2], [4], [5] to time optimal mul-
tiple component regulation. Also, the result allows the control engineer
faced with a multiple component regulation problem to reformulate the
problem as a single input, single output problem with which he may have
more familiarity.

Development of transformations. Consider the following multiple com-
ponent regulation problem for the system (1). Suppose that the compo-
nents x;, 3, -, Tm, 1 £ m = n, are to be controlled; i.e., given an
arbitrary initial condition x(0) = 2°, find a control u(t), 0 < t, depending
on 2°, such that the corresponding solution of (1) satisfies 21(t) = za(t) =

- = x,(t) = 0fort = 7 for some real number r which may depend on z’.

For convenience the following notation is introduced. The vector x will
be partitioned into two vectors & and & with & = (21, 22, -+, Zm)
and & = (Tmy1, Tmyz, -+ , T,) where  denotes transpose. Also the vector
b will be partitioned into two vectors B; = (by, bs, -+, bm) and Be
= (bms1, bmyz, -+, by)’. The matrix A will be partitioned into four sub-
matrices, Ay, As, 4;, and A, with 4, = [ay], 1 71 =m, 1 £7 < m;
Ao=ayl, 1=2i=m m+1=27=n; A3=1[ay], m+1=17=n,
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1=<j=m; As=lay], m+1=i1=n m+1=j=n Then (1)
can be written as

£ = Ak + Aobs + Buu,
332 = A3£1 + A43§2 + Bou.

The following theorem, which is evident from an examination of (2),
is readily established.

TusoreM 1. If the system (1) 7s completely controllable, then A, and B;
are not both zero.

Proof. Suppose that 4, and B; are both zero. Then it is casy to show that
the vector A*b has zeros for its first m elements, with k a nonnegative in-
teger. Thus the matrix [b, Ab, --- , A" 7'b] has m rows of zeros and hence
its determinant is zero.

It may occur, as in the example cited in the introduction, that the con-
trol of £ may imply the control of certain linear combinations of compo-
nents of £ . To examine this possibility, consider the requirement that
£(1) = 0 for all t = T for some time 7. From the system (2) it is clear
that for ¢ = T,

(2)

0 = Ak + Bru,
52 = A4£2 + Bou.

If B; = 0 then Ayt = 0 for ¢t = T'. Hence control to the subspace de-
fined by & = 0 implies control to the subspace £ = 0 defined by & = 0
and A& = 0. £ may be obtained by adjoining to & the linearly inde-
pendent elements of A,fs. The problem may then be restated with £
and £ (the projection of = onto £ = 0) replacing & and & . The matrices
Ai, Ay, Az, Ay and the vectors 8; and 8, would of course have to be re-
placed with corresponding matrices and vectors. In case B; # 0, it is
clear from (3) that u = —B:/As&/|| 81 |°, and hence (|| B [|*A2 — BiB) 4»)
= 0. As in the case when 8; = 0 the problem can be reformulated with z
partitioned into vectors £ and £ . These procedures may be repeated until
it is found that control to the subspace & = 0 does not imply control to
any smaller subspace. The number of reformulations is finite and is in fact
less than or equal to n — m.

Now let us assume that the problem stated at the beginning of this sec-
tion is the result of necessary reformulations so that control to the sub-
space £ = 0 does not imply control to any smaller subspace. This hy-
pothesis guarantees that

(4) B # 0, 4y = ﬁlﬁllAz/” B1 ”2

To show this suppose that 8; = 0. Then, since the system is assumed to
be completely controllable, A, 5 0, and control to the subspace & = 0 im-

(3)
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plies control to the smaller subspace, £ = 0 and A4,¢ = 0, which contra-
dicts our hypothesis. Thus 8; 5 0 and hence A; = 818, 4/ I 81 ]]2, because
if this were not the case, control to the subspace £ = 0 would imply con-
trol to the smaller subspace, & = 0 and (4, — B8 As/|| B1 ))& = 0,
which contradicts our hypothesis.

With (4) established, the system (2) will be transformed into a par-
ticular form, in which it is evident that the problem is a single component
control problem. Let z = Sz where S is an n X n matrix partitioned into
the submatrices S;, Sy, S; and S, in the same manner that was used in
partitioning A. The matrices S, and S; are zero matrices of appropriate
size and S; is the (n — m)th order identity matrix. The matrix S; is
defined indirectly by defining a matrix denoted by S;~* and the nonsingu-
larity of S, is established in the next theorem.

TuroreM 2. If the system (1) is completely controllable and (4) s satis-
fied, then Sy is nonsingular, where Sy~ is defined as

Sl—l = [Alm——lﬁl ) Alm_2ﬂl y T AlBl ) Bl]'

The proof of this theorem will be given following the proof of Theorem
3. Partitioning the vector z into m and n — m vectors ¢; and ¢, , the trans-
formation may be written as {1 = Si¢1, {2 = & . The transformed system is

b= SlAls1_1§1 + Sidofe + SiBiu,
G = AsST + Ads + o

The matrix S; has the property that Si8: is a unit vector with its first
m — 1 elements zero. From this result and (4) it is clear that the first
m — 1 rows of Si14, are zero and the last row is 8, 45/| 81 ||>. The matrix
S:14:8;" has ones on the superdiagonal, the first column is a vector c,
and all other elements are zero, where the elements c; satisfy

Alm = Zl: Cif_‘.lm—l.
From the form of (5) it is easy to establish the next theorem.
TueorEM 3. Regulation of 21 (the first component of 2) s equivalent to
the regulation of ¢ .
Proof. Clearly, regulation of §; implies regulation of z;. From (5),
2hy1 = & — 21,k = 1,2, -+, m — 1. Therefore

(5)

k—1

(k) (€)

241 = 21 — Z Cr—jR1 "
=0

where 2, denotes the jth time derivative of z . Thus {; can be expressed
in terms of z; and its first m — 1 derivatives and hence regulation of z;
implies regulation of ¢; .

Proof of Theorem 2. From (4) it is clear that A.8 is a multiple of 8
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for any n — m vector B. Let v;; and v,; denote m and n — m vectors,
respectively, such that

. Yii
A'b = l: 1]:|, for each j = 0.
Y25

By induction it can be shown that
j .
(6) Yi; = k_ZO My’ kﬁl;

where \; is a scalar for k¥ = 0, 1, ---, 7; Ao = 1, and Ayys = Ney1B1 -
Denoting the matrix [8;, 4181, -+, A" 8] by M and the matrix
[b, Ab, --- , A" 'b] by N, the determinant of N may be written as

Yo Yt ot Y
det l: ] .
Y20 Yer Tt Yon
Using (6), the Cayley-Hamilton theorem and the elementary properties of
determinants, this determinant may be written as

- o
det ,
P Q

where 0 is the m X (n — m) matrix of zeros. Thus the determinant of N
is the product of the determinants of M and Q. The determinant of N is
nonzero since the system (1) is assumed to be completely controllable and
hence the determinant of M is nonzero. But the determinant of M is the
determinant of S; ", so that S, is nonsingular.

Remarks. If {1 is to be held zero after the response time 7, it is clear
from (5) that fort = T,

(7 u(t) = —31/A2§'2(t)/|| B1 “27
and
(8) $o= (A4 — ﬁzﬁllAz/” B ”2)3'2 .

If the control w(¢) is required to satisfy the constraint | u(¢) | < 1 for
all ¢, it is necessary to consider u (%) given by (7) and (8) with {»(7") being
the initial condition for (8). Satisfying the constraint imposes constraints
on the initial condition {»(7'). It may occur that some constraints are of
the form 7'(T) = 0, where n is a constant n-m vector. In this case the
control of {; implies the control to the subspace, {1 = 0 and ne =0,
and the problem may then be reformulated to be control to this subspace.
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Conclusions. It has been shown that multiple component regulation
problems can be transformed into single component regulation problems
for linear constant coefficient systems with a scalar control input. This
permits one to view such problems as single input, single output control
problems. The development presented is of a constructive nature so that
the single output of the single component formulation of the regulation
problem may be determined explicitly.
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OPTIMAL PROGRAMS FOR AN ASCENDING MISSILE*
G. M. EWING{ AND W. R. HASELTINE]

1. Introduction. In 1919, R. H. Goddard proposed [1, p. 10] the problem
of minimizing the mass of a given propellant required to transfer a rocket
along a vertical path from rest on the earth to an assigned maximal height.
He identified this as an unsolved problem of the calculus of variations but
attempted neither a solution nor a precise formulation.

Although this problem, in one version or another, has interested many
writers, no adequate treatment of any version has been published insofar
as the present authors are aware. The object here is to give one.

Literature on the problem suffers from the vagueness that plagued early-
day calculus of variations. Typical approaches equate to zero a formally
derived first variation of the initial mass, often without identifying the class
of function-triples (v,y,m) for velocity, displacement, and mass, in which a
best one is sought, or stating any restrictions on the drag D. Without es-
sential restrictions, there need not even exist an optimal program; without
such restrictions, one cannot hope to prove that a particular program, sus-
pected of being the best, does indeed have this property. One hopes that
such an approach will at least yield necessary conditions on a best program.
That it may not is pointed out in §13.

Authors have often overestimated the content of their work and others
have referred to this or that paper as a solution when in fact only super-
ficial aspects of the problem have been treated. For example, a system of
Euler equations and transversality conditions with as many parameters as
there are boundary conditions may be mistaken for a solution of the
original problem.

For an introduction to a wide class of problems for which the Goddard
Problem is a prototype, see articles by D. I. Lawden, G. Leitmann, and A.
Miele in [2] and [3], with the included bibliographies. The problems are in-
teresting, difficult, and tricky; they usually involve features not covered
by existing books on variational theory.

We mention the work of Miele and Cavoti, [3], [4], [5], on a generalized
Goddard Problem with bounded rate of mass-flow. Their mathematical
model, in contrast with ours, isa classical program of Mayer[6, pp. 187-190].
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They recognize the need for sufficient conditions, that the real objective
is a global and not a local extremum, and show special cases, termed linear,
for which sufficiency for the global extremum apparently follows from
Green’s theorem. They do not mention the class of programs in comparison
with which this method identifies the best, nor examine the validity, for
their procedure, of the changes in independent variables that are required,
nor find conditions on drag D under which an extremum necessarily exists,
nor deal with sufficiency in general nonlinear cases.

We also mention the work of Pontryagin [7] and others. His Maximum
Principle is a necessary and not a sufficient condition. Our formulation of
the Goddard Problem admits functions with many discontinuities as do
the control problems of the Russian school, but our functional to be mini-
mized does not fall under existence theorems based on weak compactness
such as Theorem 1 of Lee and Markus [8], and certainly not under existence
theorems requiring equicontinuity.

2. Formulation of the problem. We use the particle idealization, a flat
stationary earth, and a uniform gravitational field. Like Hamel [9], Tsien
and Evans [10], and Leitmann [11], we use a single stage rather than the
continuous staging of Goddard’s original description and of Leitmann [12].

Suppose we are given the positive numbers g, ¢, M, Y, the nonnegative
number V, and a real-valued function D of v and y with suitable properties
to be listed later.

That an ordered triple (v,y,m) of functions on an interval [0,7] to the
reals is an admissible program will mean that the following conditions hold.

(2.1) v is Lebesgue summable over [0, T'].

(2.2) y(t) = fot o(s) ds.

For all ¢, , € [0, T,

m(t1) exp v—“@ = m(t,) exp 1)(_t2)7-l-it2
) 1 v(t) + gt
+ - ftl Dlv(), y(8)] exp ———= dt.
(24) m(t) is monotonic nonincreasing.

(25) v(0) =0, y(0) =0, o(T) =V, y(I) =Y, m(T) = M.

For the moment, extend v by setting v(¢) = Ofort < Oandv(t) = V
fort > T. As a consequence of (2.4) and (2.3), there is a possible countable
set of t-values, all on the closed interval [0, T, at each of which m has a
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negative jump and v a positive jump. Left limits m(i—), v(i—) exist
everywhere, as do right limits m(¢+), »(¢+). Functions m and v are con-
tinuous except for the possible countable set.

We now adopt the convention that

(2.6) m(0) = m(0—), v(0) = v(0—),
' m(T) = m(T+), o(T) = o(T+).

Values m(t), v(t) at a discontinuity are of no consequence; the one-sided
limits are all that are needed and m(t), v(¢) need not even be defined. It
simplifies the exposition, however, to regard m(¢), v(¢) as defined every-
where. In order to satisfy (2.3) and (2.4), without exceptions, we require
that

(2.7) m(t=)e" """ = m(1)e " = m(t+)e "

Clearly (2.6) is no real restriction.

Henceforth, we always consider the common domain of v, y, m to be a
closed interval [0, T] of the reals, as already stated above (2.1). When we
mention m(¢) or v(¢), (2.7) is understood to hold. We shall also make
statements involving one-sided limits.

Since the derivative m of a monotone function m exists and is finite a.e.
(almost everywhere), it follows from (2.3) that ¢ also exists and is finite
a.e. and that

(2.8) mo + e + D(v,y) + mg = 0, a.e.

This familiar equation is not very useful unless m and v are both AC (ab-
solutely continuous). Our m and » need not even be continuous, hence the
formal integration by which one is tempted to go from (2.8) to (2.3) is
not valid. The integral formulation (2.3) is essential in order to admit the
largest possible class of programs (v, y, m).

By the Goddard Problem we mean the following questions:

(A) Does there exist an admissible program (vo , Yo , Mo) such that, in com-
parison with all admissible programs (v, y, m), me(0) s the least value of
m(0)?

(B) If so, what s the program (vo , Yo , Mo) and s it unique?

We are asking for the existence and characterization of the absolute or
global minimum.

3. Existence of a minimizing program. We require of D that its domain
consist of all ordered pairs (v,y) of reals, that it be of class " in (v,y), that
it be increasing in v for each y and nonincreasing in y for each », that
D(v,y) > 0forv > 0, and that D(0,y) = 0.

Denote by K the class of admissible triples (v, y, m). Clearly K is not



OPTIMAL PROGRAMS FOR AN ASCENDING MISSILE 69

empty. It is shown in §15 that, if (v, y, m) is any admissible program, there
always exists an admissible program (u, z, u) with 4(¢) = 0 on its interval
and such that u(0) = m(0), with the strict inequality holding unless the
original v(t) is nonnegative. Therefore, in the search for a least value of
m(0), we need consider only the subclass K; of K consisting of those triples
in K such that v(t) = 0, or equivalently, such that y(¢) is nondecreasing.
We henceforth use these properties of v and y without explicit mention of
the restriction to triples in K; .

The set of values m(0) for triples in K; has an infimum M, > M. There
necessarily exists a sequence (v, , y, , m,) with domain [0, T,},n = 1,2, - - - ,
of triples in K; such that m,(0) — M, as n — «. The sequence of numbers
m.(0) necessarily has a finite upper bound M.

From (2.3) with {; = ¢ and ¢, = 0, it follows that

v(t) + gt
C

mn(t) exp < ma(0);

hence that v,(¢) has an upper bound v,
(3.1) V = clog M/M.

With ¢, , £, in (2.3) replaced by 0, T, , observe that the numbers T, have
a finite upper bound 7'; otherwise m,(0) cannot be bounded.

As a consequence of §14, under the conditions on D stated above, the
total variation of v, on [0, T,] is below a real number depending on 1,
V, and T but independent of n. We wish to apply a theorem of Helly [13,
p. 29] on sets of uniformly bounded functions of uniformly bounded varia-
tion. To that end, extend v, to the interval [0, 7] by setting v,(¢) = v, (T%)
= V fort > T, . By the Helly Theorem there exists a subsequence of v,
converging pointwise to a limit function v, on [0, 7). The bounded sequence
T.,n=1,2, ---, may not converge but some subsequence will converge
to a limit 7T . Let v,(¢), ¢t € [0, TW], n = 1,2, --- , now denote a sequence
such that m,(0) — My, v.(t) — ve(t) on [0, T, and T\, — T .

Lebesgue’s Bounded Convergence Theorem applies to (2.2) with v,(s)
as integrand and we define y, by the relation

t
wolt) = f w(s)ds, O0<t<Th.
0

The same convergence theorem then applies to (2.3), written for (v, ,
Yn , My), and we define mo by (2.3) with t, = Ty, t; = ¢, v = vy, and
Y =Yo.

Since v, , Y., m, satisfy boundary conditions (2.5) it follows that the
respective limits vy , yo , mo satisfy (2.5). Sinece m,(¢) is nondecreasing in ¢,
s0 also must be the limit m(¢). Therefore (vo, 4o, mo) is admissible. Con-
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vergence of m,(t) to mo(t) applies in particular for ¢ = 0, hence m(0) = M,
and (vo, Yo, Mo) is & triple such that, among all admissible triples, it fur-
nishes the least possible value for m(0).

4. Additional restrictions on D. The Existence Theorem used results from
§14 and §15 depending only on the mild restrictions stated at the beginning
of §3. Our sufficiency and uniqueness arguments require additional proper-
ties of D, which we state for reference.

Let h be a nonnegative constant and require of D(v, y), forv = 0:

(4.1) D(v,y) = Do(v)e™,

(4.2) Dy is of class C”, that is, Dy” is continuous,
(4.3) Dy'(0) =0,

(44) Dy"(v) 4+ (1/¢) Dy'(v) > 0.

We anticipate that suitable drag-functions D, not exponential in y, can
be used with no change in our principal conclusions but the details will be
more complex.

5. Thrust-free flight. One type of optimal program (ve, yo, mo) will in-
clude a coast after burnout. In studying this type of motion it is convenient
to shift the time-origin so that 0 now corresponds to the assigned terminal
values Y,V of y(t), v(¢). The differential equations for motion with no
thrust are

(51) v = —g—D(U, y)/M, y= v,
and the terminal conditions are
(5.2) y(0) =Y > 0, v(0) =V = 0.

Various existence theorems ensure that there is a pair of functions v, y
satisfying (5.1) and (5.2) on some maximal interval (¢; , 0]. It is clear from
the form of (5.1), that if t{ = — «, then v(¢) — 4+ « and y(t) — — « as
t — t; , and that there is a unique negative time 7, such that y(7,) = 0.

If t; > — =, a case which occurs, for example, if Do(v) = v* + o* for
v = 0, there is then a number y; such that v(¢) — + « and y(t) — y: as
t — t; from above. If y; < 0, we again define 7T, by the relation y(7,) = 0;
if y = 0, we define T, as #; .

Let y = v, v = v denote the solution of (5.1), (5.2) on the closed inter-
val [T, , 0] or the half-open interval (7T, , 0], according as y(7,) = 0 or
T, = t . Let T" denote the oriented path in the (¢, y) plane defined by
y = v(T) with the positive sense determined by increasing ¢.

6. An Euler equation. Set

(6.1) (t,4,0) = (1/6)D (v, y) exp "2,
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An important role will be played by solutions of the Euler equation

(62) G009 = 16y, D),

in which subscripts denote partial differentiation.

Heuristic reasons for suspecting the relevancy of (6.2) to our problem
are found in such papers as [9] and [10], to which we are indebted. If we were
to replace our class of admissible triples by all triples (v, y, m) such that
v and m are possibly discontinuous at take-off but are continuously differ-
entiable everywhere else and if we require (2.2), (2.3) and (2.5), but not
(2.4), then the procedure of [10] yields (6.2) as a necessary condition on
v = yand y for 0 < ¢t < #, = burnout time.

If we add restriction (2.4) on m to those stated above, the problem of
minimizing m(0) can be expressed as a classical problem of Bolza [6, p. 189],
and (6.2) again appears, this time by way of the Multiplier Rule.

These remarks are suggestive but no more. Neither of the problems de-
scribed above is our Goddard Problem.

7. Some consequences of §2, §4, and §6. With primes denoting differentia-
tion, set

(7.1) F(v) = Dy (v) + Do(v)/c,
(7.2) G(v) = vF(v) — Do(v),
(7.3) H(v) = F'(v) + F(v)/c.

From (4.1) and (6.1), Euler equation (6.2) is seen to be equivalent to
the system,

(7.4) H(v)o = hG(v) — gF(v)/c, ¥y = .
Conditions on drag D in §2 and §4 ensure that

(7.5) Dy(0) = F(0) = G(0) = 0, H(0) > 0,

and that

(76) D(v,y) >0, F) >0, G») >0, Hw) >0, for v > 0.

Moreover,

(7.7) G) > +o as v— + o,
(7.8) F(v)/H(w) <e¢, Gw)/H{@®) < e, for v =0,
and

(79) F@)/H(@) = 0@), Gw)/H(v) = O0(v"), for small positive v.
When m(t) and 9(¢) both exist and are finite, then (2.8) is meaningful
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and correct. If system (7.4) holds and v(¢) = 0, we then find, with form
(4.1) for D(v, y), that

(7.10) e = —Doe ™ — mlg(Dy + Dy /¢) + hG]/H.
The right member is not positive and therefore
(7.11) m(t) <0 a.c.

It can be verified that Euler equations (7.4) and trajectory equation
(2.8), taken together, have, as a first integral, the relation

(7.12) [G(v)e™ — mg] exp v—?’—t = constant.

8. Construction of a field in the large. We use the time-scale of §5, in
which the interval for a triple (v,y,m) is [T,0], T < 0. The following condi-
tions on such an interval are equivalent to the defining properties (2.1)
through (2.5) of an admissible program:

(8.1) v is Lebesgue summable,
0
(8.2) v = ¥ — [ ols) ds,
t
(8.3) condition (2.3) for i; , t; in {7', 0],
(8.4) m(t) is monotonic nonincreasing,

(85) »(T) =0, y(T) =0, v(0) =V, y) =Y, m(0) = M.
With T, defined as in §5, let

a, T, < a 20,
(8.6) o = {o, 0<as< Vg

Define, with reference to §5 for v,

_ (), T, <a =0,
8.7) ua(e) = {V —ag, O0<asV/g,
’ _ 'Y(ta>, Ta <a= 0,
(8.8) zo(a) = {Y, 0<a<V/g
Denote by
(8.9) v = u(t, a), y = x(t, a), Te <a=V/g,

a solution of system (7.4), and hence of the Euler equation (6.2), satisfy-
ing the conditions

(8.10) U(le, @) = u(a), 2(te, @) = xo(a).
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A sketch showing graphs of ¥ = z(i, a) intersecting T' tangentially from
the left, for T, < o < 0, and issuing from (¢, ) = (0, Y) to the left with
slopes V — ag at (0, V), for 0 £ o = V/g, will clarify the above choice of
notation.

These remarks apply to both of the cases, y(7T,) = 0 and y(7%) > 0, of
§5. In the first of these, extend the family (8.9) by including o = T, .

Standard existence theorems in the small for differential equations en-
sure that a solution (8.9) exists for each o and for ¢ on some interval to
which ¢, is interior. T'or present purposes, restrict cach such solution to a
time-interval terminating at ¢, as is customary in envelope theorems of the
calculus of variations [14, p. 131, pp. 140-141].

It is clear from the form of (7.4) and the first inequality (7.8) that
du/dt > —g. There are moreover positive numbers a; and v, such that
du/dt < —au if 0 £ u < vy ; hence if for any « on the interval (7., V/gl,
solution (8.9) could not be extended to an arbitrarily long interval (¢, 1],
we could reach a contradiction. We may also conclude that for a < V/g
and ¢t £ t., u(t, ) is positive and bounded from zero, and therefore that
there is a ¢ such that x(f, «) = 0. Moreover it is easy to see that this ¢ can
be made to be as close to T, on the left as we please, simply by taking «
sufficiently close to 7', on the right.

Observe in particular of the family (8.9) that w(¢, V/g) = 0 and
x2(t, V/g) = Y,t £ 0, and that, for each such ¢, u(¢,a) — 0and z(t,a) =Y
as a — V/g. According to existence theorems for differential equations, u
and z are of class €' in ¢, to , uo(a), zo(a) for ain [T, V/gl or (T., V/g),
depending on which case of §5 we may have. Moreover, ¢, , uo(a), and
2o(a) are continuous and continuously differentiable in a with the excep-
tion of « = 0 when the assigned terminal velocity V is positive, in which
event they are continuous and right and left differentiable at & = 0.

Denote by R the subset of the (¢, y) plane bounded by the halflines
y=Y t=0andy = 0,t < T,, together with the path I and, in the
event that y; of §5 is positive, by the vertical segment t = T, , 0 Sy = »1 .
The definition of R is completed by assigning to it all of its boundary
points except those on the possible vertical segment.

It follows from the properties of u(¢, «) already discussed and the prop-
erties (7.5), (7.6) of F, G, and H that R is simply covered by the family
y = z(t, a), except for the point (0, ¥'), which is the common right terminal
ofy = 2(1, @), 0 £ o £ V/g. With this exception, there is a slope-function
p such that p(t, y) = (1, «) if y = 2({, «) is the unique member of the
family through (¢, ) in R. p(¢, ) is continuous in ({, ¥) in R, and its first
partial derivatives are continuous in R cxcept along I' and curve Cy :
y = z(t, 0) (for V> 0).
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9. Invariance of the Hilbert integral. Let E; denote R with the point
(0,Y) deleted. Let S; denote the class of all piecewise smooth oriented
paths C: y = y(t), that are contained in R, with the positive sense on C
determined by increasing i.

The usual considerations show that the Hilbert integral

(9.1) ) = [y 0) + G — D)t v, )] di

is independent of the choice of C in S, joining given endpoints so long as C'
does not include points on both sides of Cy : y = x(¢, 0). At points of Cy, p
is continuous but, if V' > 0, p has distinct one-sided derivatives.

Given a path C in S; joining points on opposite sides of Cy, one verifies
that there is a path C; in S; having exactly one point in common with C,
and such that I*(Cy) = I*(C). It follows that I*(C) has the same value
for all C in S, joining points on opposite sides of C .

Consider next two piecewise smooth paths C,: y = y(¢) and C,:
y = 1y(t) in R with the common endpoints (4, yo) and (0, Y). If C; and
C» coincide on some subinterval [t , 0] of [f, O], then clearly I*(C;)
= I*(C,). If not, let t, ,m = 1,2, -- -, be a sequence in (T, , 0) converg-
ing to 0 and such that y,(f,) # y2(t.). If y1(t.) < y:(i.), a line segment
of slope 2y(t,) from [t , 11 (,)] to a point (¢,*, Y), joined to the part of
C, that terminates at [t, , y:1(¢.)] defines a path Cy, in S; . Construct simi-
larly a path C, in S; . Now I*(C1.) = I*(Ch.) by preceding results and, if
we let n — o, we are led to the conclusion that I*(Cy) = I*(C,).

Finally let C be a path in R defined by the second component y of any
admissible triple. Since y is an integral (2.2) of a summable function v, we
know that y is absolutely continuous on its interval. Let C, be a sequence
of piecewise smooth paths in R, coterminal with C and defined by func-
tions ¢, ,n = 1,2, --- , converging in length to C. The difference I™*(y,)
— I*(y) is the sum of integrals,

f [f(t, Yn, pn) - f(t: Y, P)] dt,
[ .t 0,9 = pufilts g, )1
[ 9.6 w0, 0) = 2t )

f (y" - y)fv(t, Yn s pn) dta

in which p and p, denote p(¢, ¥) and p(t, y,) and for which the suppressed
limits are endpoints of the common interval of y and ¥, .
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The various terms in f and f, are bounded, hence the first two integrals
converge to zero as n becomes infinite. The third integral tends to zero
since the second factor of the integrand tends to zero and its first factor is
summable. We reach the same conclusion for the last integral as a conse-
quence of the boundedness of the second factor and of the fact [15, p. 247]

that convergence in length of ¥, to y implies that f | 9o — 9| dt converges

to zero. Therefore I*(y,) — I*(y) and, since I*(y,) is independent of =,
Integral (9.1) thus has the same value for all AC functions y defining
paths C in R having the same endpoints.

10. Further necessary properties of an optimal program. We require
that D have all properties stated in §3 and §4.

By §3, there exists a minimizing triple (vo, %o, m0) ; as a consequence of
§15, vo(t) is nowhere negative. The principal results of this section are that
vo and mo are both necessarily continuous on the interior of their common
interval, and that y = y,(¢), T < t < 0is a member of a certain family of
extremals.

Let C be a path defined by the second component y of an admissible
triple. As a consequence of §15 and §16, we may restrict attention to the
case in which C is in the subset R of the (¢, y) plane introduced in §8. In
the light of §15, we need consider only the case in which y(¢) is nondecreas-
ing. Let [T, 0] be the domain of y as in §5 and §8. We have remarked in
§9 that y is AC on [T, 0].

With C fixed, there exists a path E, coterminal with C, where E, is de-
fined by ¥y = z(t, «), introduced in (8.9), for { < « and, in the event that
a < 0, E, coincides with T for &« < ¢t < 0. Denote by My(C), M(E.) the
respective values of initial mass corresponding to C and E,. ; by I(C),

I(E,) the respective values of ff(t, Y, ) dt, where f is given by (6.1);
and by I*(C), I*(E.) the respective values of the Hilbert integral. We now
prove that

0
(101) [Mo(C) = Mo(BW™ = [ Bit, y(0), plt, 9 (D), 5(0)} d,

in which the integrand is the Weierstrass E-function,
Ett,y,p,9) =1y, 9) — f(t,y, p) — (§ — )l ¥, D).
By (2.3),
(10.2) Mo(C)e'™® = Me"'* + I(C),
and
(10.3) My(E)e’"° = Me""* + I(E,).
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Along E, , except at { = 0 and possibly at t., y(¢) = plt, y(¢)]; hence
I(E,) = I"(E,), while I*(l,) = I"(C) by §9. It then follows from (10.2)
and (10.3) that [Mo(C) — Mo(E.)e""" = I(C) — I*(C), and this is
relation (10.1).

The E-function, interpreted relative to the indicatrix z = f(¢, y, v) in
the (v, z) plane for each fixed (¢, y), [16, p. 77], is the difference between
the ordinate to the indicatrix and that to its tangent line for v = p(, y).
Sinee f,» = H(v) exp [—hy + (v + gt)/c] is positive for all nonnegative v,
the integrand in (10.1) is nonnegative on [T, 0] and indeed strictly positive
on a subset of positive measure of that interval unless €' and %, are identical.

It then follows that

(10.4) Mo(C) > My(Es), if C#E,.

As a consequence, the first two components of the minimizing triple
must be in the one-parameter family (8.9); the third component is then
given by (2.3). According respectively as 7, < « £ 0or0 < « = V/y,
vo and mo will have a single discontinuity at 7' or discontinuities at both 7'
and 0.

11. Characterization of the optimal program. It remains only to mini-
mize Mo(E,) with respect to the parameter a.

Symbols u(t, a), 2(f, @) are as defined by (8.9) if « = 0; if o < 0, we
interpret u(¢, ), x(f, a) as the extensions deseribed preceding (10.1).
Thus y = z(t, a), possibly extended, determines the path £, and, if « < 0,
I, coincides in part with T

We have remarked in §8 that (¢, «) is, for a # V/g, always positive,
hence the relation x = x(¢, a) determines ¢ = ¢(x, «). Define w(zx, ) as
ul[t(z, a), al. Then w(z, «) > 0 if x < Y. Moreover if the terminal velocity
V is positive, w(z, «) is bounded from zero, while if V = 0, w(z a) be-
haves like /Y — z for x near Y. Also define u(z, «) as mli(z, «), af.
Thus ¢, w, and w are functions of (z, &) for 0 < 2z < Yand 7, £ «
< V/g, with

(11.1) t(z, a) = .—fy dz/w(z, @),
and

u(z, o) exp w(z, @) + g4(z, @)
(11.2) c

= Me"" + (1/c) f:f(t, 2, w) dz/w(z, o).
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Using the time scale of §8, denote by T, the negative time such that
2(To,a) = 0. Thus T, = £(0, @) and dT./da = t.(0, «). Subscript « on
t, w, or u denotes partial differentiation.

From (11.1),

100, @) = fo walz, &) dw/w'(z, ).

Observe that u(0, @) = My(L,). We find by differentiation of (11.2)
with reference to §7 that

Y
(11.3)  w.(0, @) = (1/c)e~"7"'/”f [Gw)e™ — ug](wm/w)cxp + gt dy.
o

Yor T, < a < V/g, we have T, < t. = 0. Also wa(z, a) = 0 if
v(ts) <z < Y,whilew,(2, @) < 0if 0 < z < y({4); hence the upper limit
of the integral (11.3) can be replaced by v(l.). The statement about the
sign of w, may be justified as follows: I'irst, dw/dx = (1/ult(z, ), al)du/dt,
since v is nowhere zero for a« < V/g. Second, at x = v({,) for T, < a < 0,
dw/dx > dv(t(x, «))/dx, because m < 0 alongy = z(f, a); and dy({.)/da =
¥(te) > 0for T, < a < 0; whilefor0 = a < V/g,w, > 0at z = y. Then
(7.4), (7.9), and (4.2), together with standard theorems, ensure that w.
exists in the interior of R, except along C, where the right and left deriva-
tives exist, and furthermore that w, < 0.

As a consequence of (7.12),

(11.4) [G(w)e™ — pugl expw——t—@

is constant for 0 < z < y(t.). As & — v(ta) —, u(x, &) — Me™" or M ac-
cordingas 0 = o < V/gor T, < a < 0 respectively; hence uly({.) —, o] is
monotonic increasing in a.

Now from (7.2), (7.3), G, = vF' + F — Dy = v(Dy" + Dy'/c) + Dy/c.
Hence, by (4.4) and (7.6), G, > 0 for v > 0. At ¢, , dv/da < 0, and z, is
positive for T, < a < 0, and zero for 0 < a < V/g. Thus the value of
G(w)e™ at # = y(t,)— is a monotonic decreasing function of a, which
is zero at @ = V/g. For « sufficiently near V/g, the bracket in (11.4) is
negative for all  on the interval (0, y(¢.)).

It may happen that for some ay between T, and V/g, the bracketed ex-
pression vanishes for x = v({,). It is necessarily so if the y, of §5 is posi-
tive. Whenever there is such an «, the integrand of (11.3) is positive or
negative for 0 < x < y(t,) according as « > a¢or @ < op . If there is no
such «o , the integrand is positive for all & > T, and M,(E,) assumes its
smallest value at « = T, .

In any event there is a unique «, corresponding to which Mo(E.) is a
minimum.
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12. The zero-drag case. This essentially trivial and well-known case is
excluded by (4.4) from parts of our theory. If D(v,y) = 0, the path T' of
§5 clearly exists and can be extended downward from the summit arbitrarily
far. From (2.3) with D(v, y) = 0,

(12.1) m(0) = M exp V-l;—_gT

For any admissible program (v, y, m) such that y is not identical with =,
the time of flight will exceed the positive number —7, . It follows that
(12.1) is a minimum if and only if « = T, .

13. Description of the optimal program. If there is no drag or if the as-
signed height ¥ and the effect of drag are small enough, the optimal pro-
gram consists of an initial boost from »(0) = 0 to »(0+) > 0 followed by a
coast to height Y and velocity V.

If this case does not occur and if, for a given Y, V is small enough, the
minimizing program consists of an initial boost followed by a propulsive
phase in which the Euler equation (6.2) is obeyed and then a coast. For
V = 0, this is the case exhibited by Tsien and Evans [10] without using a
monotonicity restriction on m or any restrictions on D or showing for any
class of programs including this m that it is the best.

If both Y and V are large enough the best program consists of an initial
boost, a variable thrust phase subject to (6.2) and a terminal boost at
height ¥ with no coast.

The three cases correspond respectively to ag = 1., Tos < ap = 0, and
0<a<V/g.

In variational problems without side-conditions that introduce bound-
aries in function-space or otherwise restrict the functions that are admitted,
stationarity is a necessary condition on whatever it is desired to minimize.

In the present problem, consider a particular case for which the minimiz-
ing program has a coasting phase covering the altitude range
0 <y <y =Y, where y is the burnout altitude. By regarding ¢, v, m as
functions of y, and then allowing variations of v on y, < y < Y, it is easy
to construct a family of varied admissible programs depending on a parame-
ter b, such that the minimizing program is that member of the family speci-
fied by b = 0, changes in ¢, ¥, m are uniformly small of first order in b, and
dm(0, b)/db |s= > 0. The solution program, in other words, is not even
weakly stationary.

14. Velocities of bounded variation. This section together with the next
two contain results already used at crucial points in the theory. In this sec-
tion drag D is required to have the properties stated at the beginning of
§3. We show that if (v, y, m) is admissible, then v is a function of bounded
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variation. We use the time scale of §2, hence the domain of v, y, and m is
an interval [0,7].
Given a triple (v, y, m) satisfying (2.1), (2.2), and (2.3), together with
numbers {; , & on [0, T'], then m(#) in (2.3) increases strictly with m(¢,).
If (v*, y*, m*) also satisfies (2.1) through (2.3) with »*(¢) = »(¢) on
[, ] and y*(&) = y(t), then by (2.3),

’ln*(t1) _ ’H’L(t1) _ 1[ 1 1 ]

m* ) mls) ¢ Lm*t)  m)

xp :“[v(tll + gt

(14.1)

2
t D(v, y) exp %-g—t dt.
1

+e

If t; < tyand if m(t) = m(t), m* (&) < m(f), and v(¢) = 0 on the open
interval (4, t;), it follows from (14.1) that

(14.2) m*(t) = m*(t).
We also obtain this conclusion in the form
(14.3) m () = m*(—),

if ¢, in the hypotheses above is replaced by #,—, that is, if the hypotheses
are in terms of left limits at ¢, .

Let (v, y, m) be admissible in the sense of §2. Suppose that {; < i, and
v; = v(t) > v(f2) = vy. Then

(144) v — vy < ce—valc evxlc _ eug/c).

By (2.3) the difference in the parentheses on the right of (14.4) is the sum
of three terms A;, 4., 4;, where

_ |y m®) v(ts) + g(ts — 1)
A= [1 m(tl):l xp c

to—t
Ay = evzlc[ea( 2—t1)le __ 1]’

M

ty
Az = 1 g ol D(v, y) exp v+ gt

dt.
em(t) & c

A, is negative. If v(%,) is negative, v is also negative on some maximal open
interval to the left of &y, say (t1, t»). With this choice of ¢ and &, 4; is
negative. (For our conditions on D stated at the beginning of §3 require
that D(v, y) < 0if v < 0.) Then

—pol
v — v < ce Ay < e

Hence v is bounded below. It is even easier to see that v must be bounded
above for m to exist almost everywhere. Let V be an upper bound of | v |.
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Let ky = sup | D(v, y) | for |v| < V, |y | < VT. Again taking t, < i,
v(ti) > v(fy), we find by cstimation of 4, and A; that

]()1) 21_/ + gT

W CXp — . (ts — t).

(14.5) v — vy < (g +
In the event that v; < v., one finds by a similar argument that
(14.6) v, — 01 < {ka(ty — &) + clm(t) — m(tg)]}<exp M)/M

It follows from (14.5) and (14.6) that the total variation of v on [0, 77 has
a bound depending only on m(0), V, and 7' in addition to the constants
g, ¢, and M.

15. Elimination of negative velocities. Conditions on D are those stated
in the opening paragraph of §3.

Let (v, y, m) be admissible in the sense of §2. Since y is continuous on
[0, T, there is a least value f of ¢ such that y(f) = Y. Then v(f—) = 0
and y(t) < Yif ¢t < .

Suppose that there is a value ¢, in (0, {) such that v(t,) < 0. There is
then a least value t; of ¢, 0 = & < {,, such that y(¢) has its maximum value
on the interval [0, ¢,] at & . Then v(4+) = 0, but v(4—) = 0, hence
v(ty) = 0. Clearly y(t,) < y(t:) < Y and y(¢) = y(&) if ¢ is in the closed
interval [t; , t,].

There must also exist a largest value ¢ of ¢ such that y(&) = y(#;) and
y(t) < y(t) forty £t < tp. Thenwv(t,—) = 0.

Consider the function v, ,

_Ju(®), O0=t=4,
(5.1 u() = {v(t th—t), 4<t=T—(b—th).

Then define y:(¢) by (2.2) and m.(¢) by (2.3). It follows that y;, and m,
are related to y and m respectively in the same way that v; is related to v
in (15.1).

The step from (v, y, m) to (v, y1, ma) consists of deletion of the half-
open interval (1, t»], followed by drawing together the separated parts of

the t axis and replacement of the original interval [0, T'] by a shorter interval.
We wish to show that

(15.2) mi(h) < m(h).

If v(t,—) > 0, there is an open subinterval (¢, &) of (¢, t2) such that
v(t3—) = 0 and on which »(¢) is positive. By (2.3),

o(bt)

(15.3) m(tz—) > m(t+) exp S
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If v(t,—) = 0, then

(15.4) m(t—) = m(t+) exp”(t“’j)

)

and there is an open subinterval (¢3, &) of (&4, f) for which, again,
v(t3—) = 0 and on which v(¢) is positive. By (2.3),

(15.5) m(tz—) > m(ty—).
From monotonicity of m(t),

(15.6) m(ty—) = m(la—),

and, in either case,

(15.7) m(t—) = m(tz;—).
Hence

(15.8) m(t) > m(t+) exp v(t27+)

But

(15.9) mi(t) = m(t+) exp vw(tij_) ,

and (15.8) and (15.9) imply (15.2). We note that m;(¢) = m(t + &2 — &)
onh <t=2T — (ta—t),and m(t) < m(t) on0 = ¢t < ¢ . In particular,

(15.10) my(0) < m(0).

If all negative values of v(¢) happened to occur on the deleted interval
(41, t), so that v;(¢) = 0 on its interval, we could then identify (v, , y; , m1)
with (v*, y*, m*) of §14, let the interval [4; , 1,] of that section be any sub-
interval of the present [0, #;], and conclude with the aid of (14.2) that
(v1, 41, M) is admissible; hence, by (15.10), (v1, %1, 71) would be a better
program for our idealized missile than (v, y, m). More generally, if negative
values of »(¢) could always be enclosed in a finite number of half-open sub-
intervals of [0, T, we could apply the above procedure to the leftmost,
then to the next one to the right, etc. After a finite number of steps—say
N—we could have an admissible triple (vy, yn, my) such that vy(t) is
never negative and my(ti—) < m(#). In particular, and with convention
(2.6), my(0) < m(0). The remainder of this section is concerned with the
difficult case in which there arc infinitely many deleted intervals.

One verifics that no two such intervals have a common point, that in-
deed any two are separated by a positive distance. Since they are all sub-
intervals of [0, 7], they are denumerable. Let J, = (1., t.] be a fixed
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sequentialization of these intervals, n = 1, 2, --- . There is in general no
leftmost J, ; if J; is deleted to obtain (v;, ¥, m;), then m; may not be
monotone.

Let B = {t:0 =t =1, »({t) <0}.Clearly E c UJ,.Let A, , B,, and
B respectively denote the characteristic functions of J,, U," J,, and
U J,.. Then B, — Basn — . Let

(1) =[0 [1 — Bu(s)ds, (1) = fo [1 — B(s)] ds.

Funection 7 is nondecreasing and absolutely continuous on [0, T, hence,
with 7 denoting 7(7T') and with 7 on the interval [0, 7], the equation 7(¢) = =
holds either for a unique ¢ or for all £ on an interval. Let ¢(r) be the single-
valued inverse of 7(t¢) obtained by assigning ¢(7) the leftmost solution of
7(t) = 7. Thus t(7) increases with 7, has a possible countable set of dis-
continuities, and is everywhere left-continuous on [0, 7]. We observe that
r[t(#)] = =, and {[r(t)] £ ¢ with equality holding in the latter if
tc[0, 71— UJ,.Ift € UJ,, then t(r) = t has no solution.
Define

(15.11) u(s) = v(t(s)).

If t(s1) is not the left endpoint ¢, of some J, , t(s) is continuous at s; , and
u(s;—) = v(t(s1)—) = v(t(s1)+) = u(si+). If t(s1) is a left endpoint
tin of & J,, t(s3+) = ts . Then, since t(s) is left-continuous, u(s;—)
= o(t(s1) =) = v(tin), and v(tn) = v(tn) = v(H(s1+)) = u(si+).

In any case,
(15.12) u(si—) = u(s;+).

Since v is, by §14, of bounded variation, so is %, which is therefore sum-
able on [0, 7].
Define

(15.13) 2(r) = f u(s) ds.
0
Then by [17, §33.3, §35.3, §38.1),

alr(1)] = f ult(s)1 — B(s)] ds

0
- f 2(s)[1 — B(s)] ds.
0

Ift €0, T} — U J,, then z[+(¢)] = y(¢).
Set

F(r) = :‘;f Dlu(s), z(s)] [exp 1i(s>c——j_—g—s:| [1 — B(s)] ds.



OPTIMAL PROGRAMS FOR AN ASCENDING MISSILE 83

Then
rro1 = 1 [ o), v [exp " I 1~ (o)

Define a mass-function p by (2.3), namely by the relation

(15.14) u(7) exp u(_T)cig_T = M exp |4 —l; g7 + F(7).

We can also define t,(7), u.(s), z.(7), Fn(7), and u,(7) relative to
7.(¢) and B,(?) in exactly the same way as t(7) through u(7) are related
above to 7(¢) and B(t). All statements above covering the latter hold for
the corresponding expressions with index n.

However, function « has the property, not shared by u, , that u(7) = 0
for0 < 7 2= 7(f).Fort ¢ UdJ,,, r.(t) — 7(1) and u,[r,(t)] = u[r(t)]
= v(t).

Since v is bounded, the integrand of F, is bounded uniformly in 7 and
converges to that of F. By the Bounded Convergence Theorem, u,[7.(t)]
— ulr(t)] as n — .

Now if t § Uy” J,, ma(m1(2)) = m(t), and in particular, 4,(0) < m(0).
Similar statements may be made of the relation of each (u,, 7.),n = 2, 3,
-+, to its predecessor. Hence, for ¢t ¢ U J,

(15.15) p(r(t)) = m(t),
and
(15.16) 1(0) < m(0).

Though the u,(s) may not be nonincreasing in s, we proceed to show that
w(s) is.

If # <t < 7 then u(t) = m(t + T — #) and is nonincreasing on [#, 7]
as a result of that property of m on the corresponding ¢-interval. If
0sn<#n<mn=randu(rn) =0, let 7 = min (#, 73). Then

Wn) = () exp W H T =0 4y — () exp TO0
Since u(t) = 0, it follows that F (=) = F(r;), hence that u(r) = u(7r;)
= u(re2). With 7., 7 as last stated and u(7;) > 0, let £; be the supremum
of those ¢ such that t(7;) < t < T and such that if {(r) = { < t, then
v(f') > 0.8et t; = ¢(r1), ta = t(m). Now t; = T or v(t;) = 0 or both;
hence t; < t3, [t , 5] N (U J,.) is empty, and v(¢) > 0 for all { on the interval
th <t <t;. Mty £ tsorty = for both, then 7(t) — 7(t) = t — # for
t =t = t,. Moreover

()] exp "I — o)) exp ") F 9 () - Flr)),
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and

plr(t)] = m(t).
Moreover, if t; £ &, v(t) > O0on [t , t), and, just as we deduced (14.2),
we find that u(7) = ulr(#)] = wlr(&)] = w(r:). If, on the other hand,
ts > 3, then v(&;) = 0. With 73 = 7(&), we have already proved that
w(73) = u(re), while u(71) = wu(7;) by the immediately preceding argu-
ment. We have thus shown in all cases that

(15.17) p(r) = p(r), 0=n=mn

T.

IIA

If { defined in the opening paragraph of this section is 7', the discussion
is complete. It remains to consider the case { < T, in which case either
u(7r) = 0 on (#, 7) or u(r) is positive for some 7 and negative for some.
The cases u(i—) < V and u(f—) > V are handled separately.

In the first case let 7; be the supremum of those 7 such that # < » < 7
and u(7) =< u(#—). We have immediately that # < 7, < 7, that u(7—)
< u(%—), and that u(m1—) < w(#—). If 71 < 7, u(r) is nonnegative on
(1, 7), and therefore u(r—) exp (u(r—)/c) > Me". If, on the other
hand, 71 = 7, there exist 7o, 73, with # < 7, < 73 £ 7, such that

u(re—) = 0, and u(7) is nonnegative on (7., 73). Hence

W(t=) 2 wlre=) > (=) 2 u(n=) = M exp L= M=),

In any event, we have, for this case

(15.18) w(?—) exp Z(LC——Z > Me'".

If we define 4(7) = u(7), #(7) = (7)) for0 = 7 < #, and %W(%) = V,
§(#) = Y, g(#) = M, and if g(r) is then calculated from (2.3) for
0 = 7 < #, the triple (@, &, &) is admissible and a(0) < w(0).

In the second case V < u(#—). Then we cannot without contradiction
have u(#—) = M. We attempt to replace all of the program for » > # and
part of it for + < # with a coasting phase at mass M. There is a least =,
such that w(7) > 0 for 7 on (71, %), and on this interval we may use z as
independent variable instead of 7, with x on (z(7), Y]. Let w = w(x),
x = Y, be the velocity for a coasting trajectory, at mass M, which ter-
minates at « = Y with velocity V. We seek a pair z,, 7o with
2(r) £ 22 < Y,0 £ 12 < 7, such that 2, = () and u(re—) = w(x).
Such a pair always exists. Take x; , 72 to be the pair of largest such values.
Set s(x) = [, dz/w(2), and s(Y) = S. Therefore on [0, S] the function s
can be inverted to give z = s '(s). Let

w(r) = u(r), on 0= 1< 1s;

@(r) =w(@E(r— 7)), on =77+ S
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Then define

a(r) = [ u(s) ds
o
and g(7) by (2.3), as usual, taking i(re + S) = M. By now familiar
methods it may be shown that (i, #, i) is admissible and that @(0) < x(0).
We have now completed the proof that to any admissible program with
its velocity function » anywhere negative there corresponds at least one
other admissible program having nonnegative v and a smaller initial mass.
In seeking a minimizing program we may confine our attention to programs
with nonnegative v.

16. Admissible trajectories are on one side of I'. In this section we again
impose the conditions on drag D stated at the beginning of §3. It is con-
venient to use axes in the (¢, y) plane which are oppositely directed to those
used heretofore and with the origin at the point called (7,Y) in §2 or (0,Y)
in §5. The trajectory I' of §5 now issues from the origin into the first quad-
rant and is convex. The region R of §8 now lies to the right of I" and between
the lines y = 0 and y = Y. Properties (2.1) through (2.4) of admissible
programs now apply as stated with the one exception that ¢ in (2.3) is
replaced by —g. For t; = 0, t; = ¢, we have from (2.3) that

m(t) exp w
(16.1) ‘ t
= Mexpz+1f D(v, y) expwds.
C C Jy C
The boundary conditions (2.5) are now

(162) »(0) =V, y(0) =0, m(0) = M, o(T) =0, y(T) =Y.

As a consequence of §15, we can restrict attention to admissible triples
(v, y, m) such that v(¢) = 0 on [0, T1].
The thrust-free trajectory of §5 now satisfies the equations

(16.3) =g+ D(u,z)/M, T =u,
and the initial conditions
(16.4) z(0) = 0, u(0) =V = 0.

System (16.3), (16.4) has a solution z, u on a maximal interval [0, ),
and either this interval includes a value T, such that 2(T,) = Y or there
is a value 35 = Y such that z(¢) — yy and u(t) — © ast— ¢ .

Given an admissible triple (v, y, m), suppose there is a value #; in [0, T)
such that y(f;) > z(f). Clearly & # 0 and, since « and y are continuous,
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there is a t' < &, with y(¢) > x(¢) on (¢, t). If t; is the infimum of such ¢,
then y(&;) = x(&3) and v(t;+) = u(ds). Set

(16.5) n(8) = v(t+) — u(?).

Case 1. v(tz-+) = u(ty). Since y(t) — x(t) > 0 for ¢in (&5, t2) and arbi-
trarily near ¢;, there exists ¢, € (3, t2) and arbitrarily near t; such that
v(ts) > u(ts). With ¢, having these properties fixed, define 5 as the infimum
of those ¢ satisfying the relations &, = t < ¢ and n(f) = #5(i1). Clearly
t; < t5 , while 5(#5) = n(t;) as a result of the fact that » can have only nega-
tive jumps; therefore &; < &5 < ;.

Observe that

7(ts) < ¢ [exp vltst) _ exp u(ts)] ,
¢ c
and that, by (16.1), the right member can be expressed in the form
4
(166) engz:thFi(ts,ts),
1

where

Filty , ts) = _6[1 _ m(ts)] oxp u(ta)c— gls

m(ts) ’
nl _ _m(t5) - M s v — gt
I’z(tg > t5) = W ' D(U, ?/) eXp c dt,
173 _
Fi(ts, ts) = ~1— [D(v,y) — D(v, x)] exp =g dt,
M Jy, c
143
Fu(ts, ts) = % [D(v, z)e"’® — D(u, z)e“le """ dt.
t3

Each of the first two terms in (16.6) is at most zero. On [t; , ts], y(t) — x(¢)
< n(ts) (ts — t;), hence the third term is below ko(t; — t3)°n(t5) /M, where
k, denotes the product of exp V/c, in which V is an upper bound for »(t),
times the supremum of [D (v, y) — D(v, z)]/(y — x) on the class of all real
values of z, y,v such that 0 £ 2 < y < Y and 0 < v < V. Similarly the
fourth term is dominated by k;(ts — &) n(ts)/M, where k; is the supremum
of [D(v, z)e"’® — D(u, 2)¢*]/(v — u) on the class of real triples z, u, v
satisfying the conditions0 < = < Y, u # v,and 0 < u,v < max [V, u(t,)].
It follows that

(16.7) e (ts) < (Thy + k) (b5 — t;)n(ts) /M.

Now k; and k, do not involve t. Recall that ¢, is arbitrarily near ¢; and
ts < ts = t,. We are therefore free to suppose that ¢, has been so chosen
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that (Thy + ko) (ts — t5)/M < ¢ **'°. Relation (16.7) is then a contradiction
and we infer that there can exist no ¢, in the half-open interval [0, T') satis-
fying the relation y (&) > x(f).

Case 2. v(tz+) > u(t;). A similar argument leads to a similar contradic-
tion.

17. Concluding comments. It may be of interest to record that the
authors, first singly and more recently in conjunction, have had troubles
with one corner or another of this problem over a period of years. It has not
been possible as yet to find the solution if restriction (4.4) is essentially
relaxed, or to solve the problem if »(0) is specified to be greater than that
of the minimizing solution of the present case. An encompassing theory of
global extrema for the class of problems mentioned in the introduction
would clearly be desirable but this appears to be well beyond reach.

If one wishes to place a bound on the rate of mass-flow and yet to admit
the largest class of programs (v, y, m) with this restriction, simply add a
Lipschitz condition on m to our (2.1) through (2.5). The limit function
Mo in our existence theorem then necessarily satisfies the Lipschitz condi-
tion and we have an existence theorem as a corollary to §3. Characterization
of the minimizing triples (v, %o, M) among all those now admitted will
of course involve considerable work. Triples (v, ¥, m) are now all AC but
not in general piecewise smooth. [4] and [5] suggest important parts but by
no means all of a solution of this characterization problem.
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OPTIMAL PURSUIT STRATEGY PROCESSES WITH RETARDED
CONTROL SYSTEMS*

M. NAMIK OGUZTORELI{

Summary. Recently D. L. Kelendzheridze [4, 9] investigated an optimal pursuit
problem for systems described by ordinary differential equations. We present here
an extension of his results to systems described by linear differential-difference equa-
tions with retarded argument, the control functions and the initial conditions being
allowed to vary in given closed compact and convex sets. We also establish here
generalizations of some of the results of J. P. LaSalle [5], .. W. Neustadt [6] and the
author [7].

1. Introduction. We consider two control systems X and Z, given, in the
n-dimensional phase-space, by linear differential-difference equations
with retarded argument of the form

(1.1) F(t+ en) + 2 A2t + 0) = ADu(D),
and
k
(1.2) d(t+ di) + 2 B2t + dy) = B(w(1),
=
where ¢ is a real variable (time), ' = c(_llt’ ¢; and d;(¢ =0,1, --- , m;
j=0,1,---,k) are given constants such that

(1.3) O=c¢g<a< - - <cp, and 0=dy < dy < -+ < di,

Ai(t) and B;j($)(¢ = 0,1, --- ,m;j = 0,1, ---, k) are given n X n con-
tinuous matrix functions, A (¢) is a given continuous n X r matrix func-
tion, B(1) is a given continuous n X s matrix function, z(¢) and z(¢) are
n-dimensional vectors which describe the states of the control systems X
and Z, respectively, at time ¢, u(¢) is an r-dimensional vector function
controlling the motion of the system X and v(¢) is an s-dimensional vector
function controlling the motion of system Z. The components of % and v
will be denoted by w3, -+, u, and vy, - - - , v, , respectively.

Let U be a set of r-dimensional vector functions () piecewise con-
tinuous on each finite interval [ty , {] and V be a set of s-dimensional vector
functions »(t) piecewise continuous on each finite interval [t,", ¢]; U and
V are the “control regions” for the systems X and Z respectively. We shall

* Received by the editors October 1, 1963 and in revised form December 31, 1963.
1 Department of Mathematics, University of Queensland, St. Lucia, Brisbane,
Australia,
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suppose the U and V are closed, compact, bounded, convex and contain
the origin. Vector functions u(¢), defined in U, and vector functions v(f),
defined in V, will be called admissible control functions for the systems X
and Z respectively.

Let ® be a closed, compact, bounded and convex subset of the set of all
real-valued n-dimensional vector functions ¢(¢), continuous in the initial
interval ty =< ¢t < t + ¢, and having the property

(1.4) o(t) = o,

where z, is given. The elements of the set ® will be called admassible initial
conditions for the system X.

Similarly, we shall denote by ¥ a compact, closed, bounded and convex
subset of all real-valued n-dimensional vector functions ¥(¢), continuous
in the initial interval t,* < t < t,* + di and having the property

(1.5) Y(h) = 20,

where z, is given. Functions ¢(¢) which belong to the set ¥ will be called
admassible initial conditions for the system Z.
A solution z(t) of the system (1.1) which satisfies the ndtial condition

(1.6) a(t) =¢(l), H=t=t+cn, ¢ECI

obviously depends on the choice of functions w(¢) and ¢(¢). To indicate
this relationship explicitly we shall denote by z(¢, ¢, u) the solution of (1.1)
satisfying the initial condition (1.6) with the selected control function
u = u(t). It is well known [1] that there is a unique continuous solution of
(1.1) for ¢ = t, which satisfies the initial condition (1.6).

A continuous solution 2(t) of the system (1.2), with the selected control
function v = v(t), which satisfies the initial condition

(1.7) 2(t) = 9(t), t Sttt +d, YEV,

will be denoted, as above, by 2(¢, ¢, v).

The system X will be called the pursuing system and the system Z the
pursued system.

For an arbitrary admissible control »(¢) and arbitrary admissible initial
condition ¢(t) let us assume that there exists an admissible pair «(¢) and
¢(t) such that the trajectories x(t, ¢, u) and 2(¢, ¢, v) of (1.1) and (1.2)
corresponding to the controls u, v and initial conditions ¢, ¥, respectively,
satisfy the equation

(1.8) (T, ¢,u) = 2(T, ¢,v)
for some

(1.9) T > max [ty + cm, tor + di]
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and
(1.10) x(t, o, u) # 2(t, ¥, v), t< T.

The quantity 7 depends on the chosen controls «(¢) and v(f) and the
chosen initial conditions ¢(¢) and ¢(t); therefore we may write
T = T(u, ¢;v,¥). This time T will be called the pursuit time.

If an admissible pair v(¢) and ¢(t) for the pursued system Z is chosen,
the pursuing system X should be controlled in such a manner that the

corresponding pursuit time T'(u, ¢; v, ¥) will assume its minimal value.
Denote it by

(1.11) Toy = min T(u, ¢;v, ¥).
weU,p€®

The system Z should choose an admissible pair v(¢), ¢(¢) which maximizes
the quantity T, . This maximum will be denoted by
(1.12) T° = max min T (u, ¢; v, ¥).
VEV.YEY  uCU,pEd

In the present paper, we wish to investigate the following optimization
problem.

Find the admissible controls u(t) € U, v(t) € V and the admissible initial
conditions ¢ € ®, ¢ € ¥ for which the corresponding pursuit ttme T (u, ¢; v, ¥)
satisfies

(1.13) T(u, ¢; v, ¥) = T°.

The above problem for systems X and Z involving no time delay has
recently been considered by Kelendzheridze [4]. His main objective is
Pontryagin’s maximum principle. We shall follow here a method which is
a synthesis of that used by Kelendzheridze and another developed by
LaSalle {5] and Neustadt [6]. This method has been used recently by the
author [7] for a time optimal control problem with time delay.

We shall generally assume, as mentioned above, that the sets U and V'
are bounded, closed, compact, convex and contain the origin as an interior
point. Particularly, we shall consider the case in which U and V consist of
piecewise continuous vector functions such that

U: {lut(t)l = 1; 1= 1, 27 )T}y
V: {Ivl(t)l = ]-1 .7= 172) ,8}.

We shall generally suppose that the sets ® and ¥ of continuous initial
conditions are closed, compact, convex and contain the origin as an in-
terior point. Only in §5 shall we consider a special case in which the sets
® and ¥ will consist of piecewise continuous functions such that

“¢z(t)‘§1,t0§t§—to+cm, 7":1727”')”})
T e S LK St d, i=1,2-,n.

(1.14)

(1.15)
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Note that, if the retardations ¢; and d; in (1.1) and (1.2) all approach

zero, our optimization problem reduces to the problem which is considered
by Kelendzheridze.

2. The functionals Q*(¢, ¢, u) and O*(¢, ¢, v). Let V(s, t) and W(s, t)
be Bellman-Cooke kernel matrices [1] of the systems (1.1) and (1.2) re-
spectively, and H (s, t) and K (s, t) be the kernel matrices, introduced by
the author in (7], of the homogeneous systems

(2.1) ' (t+ ew) + Z:A,»(t)x(t +¢) =0,
and
(2.2) dt+ dy) + ;Bj(t)z(t +d;) =0,

which correspond to (1.1) and (1.2) respectively.
Consider now the functionals

(23) 9o = [ Hs06(s)ds+ [ V(s,t) Als) uls) ds

and

(24) O(4y,v) = de(s, t) ¥(s) ds + ft W (s, t) B(s) v(s) ds,
where

(25) a=+ty, b=t +cm, ¢=1tb5 d=1U+ds.

As is shown in [7], we have the following representations of the solutions
x(t; ¢’ u) and Z(t, ¢> v)‘

(2.6) ac(t, ¢, u) = @, o, u),  2(4 ¢, 0) = O%(t, ¥, v),

where

27) Q@ ¢, u) = QU — cm,b,u),  OF) = O@ — di, ¢, v).
From (1.8) and (2.6) we can write

(2.8) (T, 6, u) = O%(T, ¥, ),

where T' is the pursuit time, defined in §1. Obviously, 7' = T'(u, ¢; v, ¢).
By its definition, T is single-valued.
Consider now the sets
(2.9) Cl) = Q%L o,u);  ¢€®  uc U,
and

(2.10) E(t) = {0t ¥,v); vE¥, veETV]
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In the remainder of the discussion, we shall need the following properties
of the sets C(?) and E(t), proved in [7].

(I) C(t) and E(t) are compact and convezx.

(I1) If U and V are the sets of all bang-bang control functions, and if U
and V are defined by (1.14), then C(t) = {Q*(t, ¢, @), ¢ € &, @ € U},
E(t) = {O*t, ¢,0),¢ € ¥, 5¢ V).

(III) If Q s an interior point of C(t), then there exists an ¢ > 0 such
that N.(Q) < C(7) for all 7 in (I — ¢, t), where N.(Q) s a neighborhood of
Q of radius e.

3. Existence of optimal strategies. We shall prove now the following
existence theorem, which is an extension of that due to Kelendzheridze
(4, 91.

TaroreMm 1. If for an arbitrary admissible pair v(t) and ¢ (t) there exists
an admassible pair u(t) and ¢(t), such that x(i, ¢, u) = 2(t, ¢, v), then there
exist two pairs of functions u’ € U, ¢ € & and o° € V, ¢° € ¥, which are
oplimals, that s,

= T, ¢, ¥,
where T° is defined by (1.2).
Proof. By hypothesis the set

I ={T,2(T,¢,u) = 2(T, ¢, v);
uelU, veV, ¢C® ¥

(3.1)

is not empty.
Let us choose arbitrarily an admissible pair v*(1) € V, ¢*(t) ¢ ¥, and
consider the following subset of T'.

(82) T ={T"=T(u,¢;0"¢"); w€U¢€dTET.
By hypothesis T™ is not empty.

Let T, 4+ be the greatest lower bound of all 7% ¢ T*,
(3.3) Tv"‘,%* = inf T(“; d’; v*) Il/*).

ucU,pc®
By definition, we have Q*(T*, ¢, u) = ©*(T™, ¢*,v*) ¢ C(T*), T* ¢ *
Let the sequence T € T% ¢ = 1,2, --- , be selected so that

hm Ti* = T,,*,w .

7->00

Consider now the sequence {Q (r* ,¢> u)}, (@ (Tye e, 65w}, 5 = 1, 2,

-, where ¢" = ¢°(t) and u* = u (t) are adm1ss1b1e As shown in [7], for
T¥* — Tyeye < 8, we have ||QF (TL o5 u') — @ (Theye, ¢, u")|| < ¢ where
¢ is an arbitrarily small positive number and

6 = min ¢ ¢
3my me ’ 3Cm M1 M3 ’
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where
my = max [|[V(s, )A(s)]|, me= sup |lull, ms=suplel,
a<s<t ueUtxtg PED
the norm being defined as follows.
max {| a; |}, i = 1,---, \, if & is a A\-vector with
components «; ,
(34) ol = . . v
max {|ei; [}, ¢=1,---,u57=1,--,»ifaisa

p X » matrix with elements «;; .

In the definitions of m; and m. we suppose that ¢ is sufficiently large.
Since the set C(T,xy+) is closed and compact, we can extract subse-
quences

{d’ik(t)}’ {uik(t)}a k= L2,
from the sequences {¢°(t)} and {u’(t)} so that they converge to the func-
tions ¢°(¢) € ® and u’(t) € U respectively. Therefore
(35) 6*(T1!“',¢"‘ ’ 'p*: 1)*) = Q*(Tv','//"a ¢0: uO) € C(Tﬂ','//‘)y

where T,» 4+ is defined by (3.3), v* € V, ¢* € ¥ being selected arbitrarily
so that T = T'(u, ¢; v*, ¢*) € T'™. Obviously Tpeye = T, ¢°; 0™, ¥*).
Consider now the set

(36) PO = {T‘D,l//; v € Va ‘p € \I,}‘

Let T° be the least upper bound of all 7', , € T°.

(3.7) T = sup T(u', ¢5v,9) = sup Thy,
vEV,Y T vEV.YEY

which is equal to T° defined by (1.12). This optimal time T° may be finite
or infinite according as the set I is bounded or unbounded.

Consider first the case in which 7° is finite. Let the sequence T, € T°,
j=1,2 --- be selected so that

Iim Tjo = TO.

j>0

Consider the sequence {©*(T, W, oM}, (O ¢, o)), 5= 1,2, -
where v’ = v’(¢) and ¢’ = ¢’'(¢) are admissible. If

my = max ||[W(s, ) B(s)|l , ms = sup |jvll, ms = sup [[¢],
c<sst vEV,t=c Yew

¢t sufficiently large, we may easily show that, for

0 0 . € €
T T] < min {3m4 ms ’ 3dlc ms me} ’
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we have [|©@*(T°, ¢/, v') — O*(T}, ¥, v')|| < ¢ where ¢ is an arbitrarily
small positive number. Since the set E(T°) is compact and closed, we can
extract subsequences W)}, (@)}, k = 1,2, -+, from the sequences
{¢(t)} and {v°(t)} so that they converge to the functions ¥°(t) € ¥ and
v°(t) € V respectively. Therefore,

(3.8) T = T’ ¢"; 0", ¢),
and
(3.9) QX (T, ¢’y w’) = O°(T°, ¢, ") € E(T").
Consider now the case T° = . Let the sequence T%" € T,k = 1,2, --- ,

be so chosen that

T - » monotonically.

k>

Since T, € T’ we have
(310) ®*(T/607 v, 11/) = Q*(Tkoy d)oy u0)7 k = 17 27 R

for some v € V, ¢ € ¥, for each k. Let us select an admissible pair o*(t),
Y*(t) which satisfies (3.10). Therefore

(311) Tko = T(uo: ¢0) vka ‘l/k)y k= 1,2, ...

Consider the sequences {¢*(t)} and {+*(¢)}, k = 1,2, --- . Since v*(t) € V,
¥*(t) € ¥ and since the sets V and ¥ are compact and closed, we can extract
subsequences {¢*(1)} and {s""(¢)},r = 1,2, - - -, from the sets {¢*(¢)} and
{v*(t)} so that they converge to the functions ¢°(¢) € ¥, v°(t) € V, respec-
tively. Therefore T(u’, ¢°;0°, ¢°) = + .

Remark. Let P be the topological space of points p = (u, ¢; v, ¥), where
u € U, €d,v € V,¢y € ¥ with the metric defined by

sup [lus — ual| , sup & — o,
>a agt<b

(p1,p2) =
T Lol =l g = vl

Consider now the function f(t, p) = |Q"(t, ¢, u) — O*(t, ¢, v)||, t = e,
where ¢ = max [b, d]. It is shown in [7] that

(1) ¢ — f(¢, p) is continuous for ¢ = ¢ and for fixed p € P;

(ii) p — f(t, p) is continuous for p € P and for fixed ¢ = e.

Let po € P and consider the equation f(Z, py) = 0. Let T, be the greatest
lower bound of all the solutions of this equation.

Therefore, f(Ty, po) = 0, and f(t, po) # 0 fort < Ty, T° = e. Suppose
that

(iil) f'(t, p) = ¢(>0) for|t — To| < 8, p € No, where 8 > 0 and
Ny is some neighborhood of py ;

(iv) lim sup | /(¢ p) — f(t, po)| = O.

p>py tze
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Suppose now that p is close to po and consider the solution of f(¢, p) = 0.
For small h we have f(Ty + h, p) = f(To, p) + hf' (To + 6h, p),
(0 = 6 £ 1). By (il) we can choose a neighborhood N; € N of p, such
that 0 = f(To, p) < 3dcforp € N;.If p € Nyand 0 < h < &, then
from (iii) we can get f(To + h, p) = ch > 0. Similarly, if —8 < h = 0,
then f(Ty + h, p) = % dic + ch, which is negative if h = —2§, . It follows
from (i) that there exists a solution ¢ of f(t, p) = 0 satisfying |t — T |
=< 24;. In fact, the argument shows that a solution ¢ exists satisfying

[t — To| £ const. f(To, p),

which tends to zero as p — po, by (ii).

If T, is the lower bound of such solutions we have therefore 7, = 7
+ 5(p), where n(p) — 0 as p — po . On the other hand, by (i), given any
£ > 0, there exists an A(#) > 0 such that f({, po) = A(£) for 0 = ¢
< Ty — & So, by (iv), we have for some neighborhood N: < N, of po,

ft, p) = 34(&) >0 for 0=t =< To— & p € N;.

It follows that 7, > Ty — £if p € N¢. So, finally, | T, — To| — 0 as
p — po. (Note that the case f' (1, p) < ¢ (< 0) for [t — To| < 8y,p € N,
can be treated in a similar way.)

We see that under the hypotheses (iii) and (iv) the functional
T(u, ¢; v, ¥) is continuous in all its arguments. We shall assume the hy-
potheses (iii) and (iv) in the following sections.

4. Properties of optimal strategies. In all the theorems which we shall
prove in this and the next section we shall assume (without specifying it
each time) that the pursuit time 7° is finite and that the convex and com-
pact set C'(T°) has interior points. The latter can be proved under suitable
hypotheses. (Kelendzheridze [9] made use of slightly different assumptions
to prove this fact.) Let A be the capture point at which the system X (with
the admissible pair {u(t), ¢(t)}) encounters the system Z (with the admis-
sible pair {v(t), ¢(1)}) at time ¢ = T(u, ¢; v, ¥). The point A depends upon
the choice of the functions u, ¢, v, and ¢. Let A° be the optimal capture point
which corresponds to the optimal strategy v = u’(t), ¢ = ¢'(t), v = v’(1),
and ¢ = ¢’(t) and to the time ¢t = 7T°. Hence

(41) A= QYT ¢,u) = (T, ¢,v) and

' A" = Q%1 ¢, u') = OF(T", ¢, 0").
If v(t) and ¢(t), selected arbitrarily from the sets V and ¥ respectively,
are kept fixed, the corresponding optimal policy of the system X will be

described by u = u°(t) and ¢ = ¢'(¢) and the capture will occur at t = 7'y .
Therefore,

(42> Q*(T,,,/, ) ¢01 u0> = ®*(Tv¢ ) ll/7 U),



OPTIMAL PURSUIT STRATEGY PROCESSES 97

and

(4.3) Q% (L, 6%, u') # O, ¢, v), for t < Ty,

where

(4.4) Ty = min  T(u,p;v,¢) = T, "0, ¥).
weU.bcd

As shown in [7], the point A,y = Q*(T , ¢°, «”), which is the point A
for u = u’(t), ¢ = ¢°(¢), v = v(t) and ¢ = ¥(¢), is a boundary point of

the set C(T,y) and there exists a unit veetor n = (g, -+, 7.) of the
n-dimensional Fuclidean space R" such that
(45) W'Q*(T'U\b ) d’; u) = W‘Q*(TW ) ¢07 uO)

for all Q*(T,y, ¢, u) € C(T,y). Clearly, the vector n depends upon the
choice of the vector functions v(¢) € V and ¢(t) € V.

By the remark at the end of §3, the functional T',, varies continuously
when the functions »(¢) and ¢(¢) vary continuously in V and ¥ respec-
tively. Since Q* (¢, ¢°, u°) is continuous in ¢ (see [7]), if the admissible pair
{v(t), ¥(1)} varies continuously, the point A,y = Q*(T.y , ¢°, u°) will vary
continuously, in such a manner that it will always be a boundary point of
the set C(7T,y). Let S(¢) denote the boundary of the set C'(¢). Hence
Ay € S(T,y) for every admissible pair.

Let {v'(t), ¥’()}, 7 = 1,2, - -+, be a sequence of admissible pairs such
that v'(t) — 0°(¢) and ¢¥*(¢) — ¢°(¢) uniformly, where {+°(¢), ¢’(¢)} is the
optimal pair for the system Z. Consider the sequence of times

(46) {TJ = Tyiyi = T(uoy ¢’0; vjy ‘I’j)}lw7

which corresponds to the sequence {v”(¢), ¢’(¢)},°. Since

(4.7) "= max Tw = T(u',¢" ", ¥"),
veV.eY

taking a subsequence if necessary, we may assume that

(4.8) T; < Tjyy and Lim T; = T°

oo
Consider now the point A’ defined by (4.1) and the sequence of points
(49) {AJ = Q*(TJ ) ¢0’ uo) = @)*(TJ ) ‘l/j’ vj)}lw-

Since the functionals Q*(¢, ¢, u), ©*(¢, ¥, v) and T(u’, ¢°; v, ¥) are con-
tinuous in all their arguments, we have

(4.10) lim A; = A"

e

We shall now prove the following,.
TuporeM 2. The point A’ is a boundary point of the set C(T°).
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Proof. Suppose, on the contrary, that A’ is an interior point of the set
C(T°). Then, by property (III) in §2, there exists an ¢ > 0 such that
N«(A”) < C(7) for all 7 in the interval 7° — ¢ < 7 < T°, where N(A°)
is an e-neighborhood of A’. The continuity of ®*(¢, ¢°, v°) at ¢t = T° implies
that there exists a 8 > 0 such that ©*(¢, ¥, »°) € N.(A%) for all ¢ in
T° — 6 <t < T Let 2y = min (8, ¢). Then @*(T° — v, ¢°, v°) € N(A")
c C(T° — v). But this is impossible, since 7° — vy < T° and T° is the
minimum value of ¢ such that ©*(¢, ¢°, ") € C(¢).

Making use of Theorem 2 and property (I) in §2, the first part of the
following theorem, which is an extension of Kelendzheridze’s main theorem
[4, 9] can be easily proved.

TurorEM 3. There exists a unit vector ° = (0’ -+, n.") of the n-dimen-
stonal Buclidean space R™ such that

() Q5T ¢, u) S - Q4T &', u),
Jor all admissible pairs {u(t), $(t)}, @ (T°, ¢, u) #= Q*(T°, ¢", u’);
(1) 7O (1", ¥, v) = n°-0%(T" ¢, "),

for all admissible pairs {v(t), Y(t)} which are sufficiently near to the optimal
pair (v'(1), ¥' (1)} and O*(T°, ¢, v) € C(T");

(III) 7 G(A°, (1), T°) = 2" F(A°, w*(T"), T"),
where

F(2(t), u(t), t)

41 m
(10 = ——;Ai(t — em)Z(t — Cm + €i) + A — cm)u(t — cm),
and
G(2(1), v(t), 1)
(4.12)

k
= —ZIB,-(t — du)z(t — di + d;) + B(t — do)o(t — di).

=
Proof. Consider, following the general lines of the method of proof due
to Kelendzheridze, the union T of all the sets C(¢) for ¢ = «. = is an open
set and A° € C(T") < =. Therefore, we can find a number t* < T° such
that ©*(¢, ¢°, 0°) € = for £* <t £ T°. For every ¢ in this interval let r =
7(¢) be the number which is defined by the relation ©*(¢, ¢°, v") € 8(r),
where S(7) is the boundary of the set C(7). Since the elements of the
closure of C'(t) are continuous in all the arguments, S(¢) varies continu-
ously with ¢. From the continuity of the function ©*(¢, ¢°, »°), we see that
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r = 7(t) is continuous in the interval t* < t < T°. We can easily show,
as in the case considered by Kelendzheridze, that

(4.13) () >t for t< T’ and +(T°) = T

Since ©*(¢, ¢°, +°) is on the boundary S(7) of the convex body C(7),
there exists a support hyperplane II, to C'(7) at ©*(¢, ¥°, v°). Let 7, be the
unit vector orthogonal to this support hyperplane which is directed from
0*(t, ¥°, »°) into the halfspace which does not contain the convex body
C(7). For every point Q*(¢, ¢, u) € C(r), the vector Q*(t, ¢, u)
— O%(¢, ¢, ") is directed into the halfspace which contains C'(7). Hence

(414) (9*(t: ¢; u) - @*(t: ‘p(); 00)’ ﬂr) é 0)

for Q*(t, ¢, u) € C(7).

Consider now the sequence of times {7;};* defined by (4.6) which has
the property (4.8). If j is sufficiently large, t* < T; < T°. It follows, from
(4.8), (4.13) and from the continuity of 7(¢), that
(4.15) lim 7(T;) = T"

j>®

Since in n-dimensional Euclidean space the unit sphere is compact, there
exists a convergent subsequence of the sequence of unit vectors {n.(z;}:”
which converges to the unit vector 5 which is orthogonal to the support
hyperplane Iz to the set C(T°) at the boundary point A°, directed into
the halfspace which does not contain the convex body C(T°).

If Q*(¢, ¢, u) is an interior point of the set C(T"), @*(¢, ¢, u) € C(T;)
for sufficiently large j, by property (III) in §2. From (4.14) we see that

(9*(t: @, u) — ®*(TJ ) '/’Oy vO)’ 771(7'1)) =0.

Taking the relations (4.1) and (4.15) and the continuity of 7(¢) into
account, for j — « we obtain

(4.16) @ (t, ¢, u) — Q°(1°, ¢", u), 1) = 0.

Let {v(t), ¥(£)} be an admissible pair for the pursued system Z. 0*(t, ¢, v)
can be captured by the pursuing system X with optimal policy at ¢t = Ty
< T°. Suppose that the pair {v(t), ¥(t)} is sufficiently near to the optimal
pair {0°(t), ¥"(¢)} and is such that ©*(T,y , ¢, v) is an interior point of the
set C(T"). Then, by property (III) in §2 and by (4.8), O*(T. , ¥, v) is
an interior point of the sets C'(7T;) for all large j. Therefore O*(T; , ¢, v)
€ C(Ty).

Consider now the points A;, 7 = 1, 2, -+, defined by (4.9). Since
A; € 8(T), it follows that ©*(T;, ¢, v’) € S(T};).

Since ®* (T, ¥, v) is an interior point of C(T;), and since O*(T;, ¢, v')
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is on the boundary of C'(T;), the vector ©*(T;, ¢, v) — O*(T;, ¢, v’),
which passes through Aj, is directed into the halfspace which contains the
convex body C(T;). Consequently

(417) (®*(T1 ) "p; Z)) - ®*(T1 ) ‘/’j, vj), nr; é O’
for sufficiently large j. Passing to the limit as j — « in (4.17), we obtain
(418) (®*(T07 ’lla 1)) - ®*(T01 5[/01 DO>1 ?7T°) =<: 0.

Using the lincarity of the functional ®*(¢, ¥, v), we may write AO*
= O"(T° ¢, v) — OF(T°, ¢, ") = OF(T°, ¢ — ¢°, v — »°). Then the in-
equality (4.18) can be written in the form
(4.19) (AO*, g0) £ 0.

The formula (4.19) is true for every admissible pair {v(t), ¥(¢)} which is
sufficiently near to the optimal pair {+°(¢), ¢°(#)} and is such that ©*(¢, ¥, v)

c (1.
Consider now the function
(4.20) i) = (@°(t, ¢, u’) — O%(4, ¥, 0"), norp).

Since Q% (¢, ¢°, u’) € C(t) for every ¢, it follows from (4.14) that ;(7T;) £ 0.
Since Q*(7T°, ¢°, u”) = O*(1°, ¥°, v"), we have ¢;(T°) = 0. Since %’(t) and
»°(t) are piecewise continuous and since the kernel functions H (s, t) and
K(s, t) are continuously differentiable in 7; < ¢t < 71° if j is sufficiently

large, the function ¢;(¢) has a continuous derivative in the interval 7'; < ¢
< T° Hence ¢; (\;) = 0 for some A, such that 7; < A; < T°. Therefore

(4.21) lim ¢;'(A;) 2 0.
J>
Consequently
(4.22) (w, nr0) = 0,
where
(4.23) w = G(A, °(1T°), T°) — F (A%, w°(T°), T°),

F and @ being defined by (4.11) and (4.12).

Let C*(T°) be the convex hull of C(7°) and w, and let K* be the convex
cone, with vertex A’, of the vectors A®* which emanate from A°. Since,
by the above argument, the convex set C(7°) and the vectors A®™ and w
all lie on one side of the support hyperplane Iz to the convex body C*(7T°)
at A’, the set C*(T°) and the vector —A®* lie in two opposite closed
halfspaces defined by T, . Hence, the vector —A®* which emanates
from A°, does not pass through interior points of the convex body C*(7°).



OPTIMAL PURSUIT STRATEGY PROCESSES 101

The vectors —A®™ form a convex cone K which is symmetric to K* with
respect to A’. Therefore, K does not intersect the interior of the convex
body C*(7T™). Since C*(T°) has interior points (because C(T°) has), C*(T°)
and K are separated by a hyperplane II°. Therefore the convex hull C*(7°)
and the convex cone K* lie in one closed halfspace defined by II° and the
cone K is contained in the other. Let ° be the unit vector which emanates
from A°, is orthogonal to II°, and is directed into the halfspace which con-
tains K. Thus, for this vector n° the relations (4.16), (4.19) and (4.22)
are satisfied, namely

(1) (2%t ¢, u) — QX(T°, 6", "), 0") <0, for Q%(t,¢,u) € C(T");
(II) (A0* %) <0 for AO®* ¢ K¥;
(II1)  (w, 7°) < 0.
'This completes the proof of Theorem 3.

6. Optimal strategies in a particular case. If the control regions U and
V are defined by (1.14), and if the systems (1.1) and (1.2) are such that
no component of n’-H(t, T° — ¢n) or n°-K(t, T* — dy) is identically zero
on an interval of positive length for n’ 7 0, we can easily show that (see [5])
optimal control functions «’(¢) and v°(¢) are of the form

(5.1) w(t) = sgn [n'V({E, T° — en)A(D)],
fora <t T — Cm , and
(5.2) v'(t) = sgn [’ W (¢, T° — di) B(1)],

forc<t= T —d.

In §1, the sets ® and ¥ of initial functions were defined as closed compact
subsets of the sets of all real-valued n-dimensional vector functions ¢ (%)
and ¥ (f) continuous in the initial intervals a < ¢ £ band ¢ =t < d re-
spectively. If ¢(¢) and ¢(t) are measurable functions in their intervals of
definition, the analysis in the previous sections is still valid. If, in addition
to this,

(5.3) @ {le(®)| =1, a=st=Db, =1, ,n},
and

(54) ¥ {1, e=t=gd, i=1,---,n},
we can show without any difficulty that

(5.5) ¢'(t) = sgnln"-H(t, T — ¢n)l, a =t =D,

and

(5.6) Y1)

Il

sgn[n”-K(t, T° — di)], ¢

I\
I\
&



102 M. NAMfK OGUZTORELI

provided no component of 7" H(t, T° — ¢,) or n°-K(t, T° — d;) is identi-
cally zero on an interval of positive length for n* # 0.
Thus, if the vector n° is known, the optimal strategy {u’(t), - - - , ¢ (¢)}
is completely determined. We shall now develop a method for finding 7°.
Let the functions wu,(t), ¢,(t), v,(t), and ¥,(¢) be defined by (5.1), (5.2),
(5.5), and (5.6), respectively, with » replacing 5’, namely,

57) Un(t) = sgn {nV(t — cm, T — ca) A1)}, b=t =T
¢o(t) = sgn{nH(t, T" — cn)}, @ =t=Db,

and
v(1) = sgn {nW(t —di, T° — dp)B(t)}, c¢=t=T"

(5.8) )
¥n(8) = sgn {nK (8, T" — di)}, cst=sd.

Clearly, more than one 5 may determine the same strategy
(), -+, (D)} and up(t) = 'uo(t): o m(l) = Kbo(t)-

Note that the functions wu,({), - -- , ¥,(t) depend continuously upon 7,
disregarding sets of measure zero. Consequently, the functionals
Q5 (t, By, Un), OF(t, ¥y, vy) and T(u, , ¢, ; vy, ¥y) are continuous in » as well
as in . Let us also note that, if T(u,, ¢y ; vy, ¥,) = T° for some vector n,
the vector n and 5’ determine the same optimal strategy {u’(t), - - - , ¥°(¢)}.

TurorEM 4. There exist two positive numbers v and & such that Q* (¢, ¢n , uy)
and O*(t, ¥, , v,) are boundary points of the set C(T°) for all t in T° — v
<t = T and for all o in ||n — 7’| < 8, provided Q*(t, ¢, us) € C(T°)
and ©(t, ¥y, v2) € C(T").

Proof. Suppose that ©*(¢, ¥, , v,) is an interior point of the set C(T°)
for some ¢ and for some 7. Hence, by property (III) in §2, there exists an
¢ > 0 such that N.(O*(t, ¥y, v,)) € C(r)forall rin T’ — e < 7 £ T°,
where N.(0%) is an e-neighborhood of ©*(¢, ¥, , v,). Consequently,

(5.9) 1©%(t, ¥, ) — A" = ¢

since A’ lies on the boundary of C'(T°). From the continuity of ©*(¢, ¥y , v,)
at t = T° and n = »° and since A’ = O*(T°, ¥y, vyp), we can find two
positive numbers v and § such that

(5.10) 1O%(t, ¢, v0) — A" < e

forall tin T° — vy < ¢t £ T° and for all 5 in ||n — 7’| < e Therefore,
©*(t, ¥y, v,) cannot be an interior point of C(T°) for T° — vy < ¢t £ T°
and ||n — 7°|| < 8, because, in the contrary case, the inequality (5.9) must
be satisfied, which contradicts the inequality (5.10). Since ©*(¢, ¥y, )
€ (T, O*(t, ¥, , v,) is a boundary point of C(T°).
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It can similarly be shown that ©*(¢, ¢, , u,) lies on the boundary of the
set C'(T°).

Consider now the time T, = T(u, , ¢y , vy , ¥y) at which Q*(¢, ¢, , u,) en-
counters ©*(¢, ¥, , v,). As we mentioned above, T, is continuous almost
everywhere in 7. Accordingly, for almost all 4 in ||y — 2°|| < 8, we have
T —y< T, =T

Suppose now that v and § satisfy the conditions of Theorem 4. Then,
Q*(t, ¢y, u,) and O*(t, ¥, , v,) lie on the boundary S(T°) of the set C'(T°)
and coincide for ¢t = T, . Let S° be the portion of S(T°) described by the
points Q% (¢, ¢, , u,) and O*(t, ¥, ,v,) for 7° —y <t < T and ||n — #’|| < 5.

Consider the convex set H° of all vectors n, orthogonal to the support
hyperplanes 11 to S’ and directed into the halfspaces (defined by these
hyperplanes 1I), which do not contain the convex body C(T°). Clearly
7 € H°. Thus,

(5.11) 725 (t, ¢, u) < Q" (Ty, by, uy),
and
(5.12) n0*(t, ¥, v) < 90*(Ty, ¥, vn)

for all Q*(¢, ¢, u) € C(T°), O*(t, ¥, v) € C(T", T’ — v < T, £ T°, and
n € He.

Define the function w,(t) by
(5.13)  wy(t) = G(O(L, ¥y, vg), 04(8), £) — F(Q*(L, b0, Uy), (1), 1),
where I’ and ( are given by (4.11) and (4.12). As in the proof of Theo-
rem 3, we can easily show that

(5.14) (wq(t), m) =0
for all n € H’.
Consider now the function V (¢, ) defined by
(5.15) V (¢, ) = max {Vi(¢, ), Va(t, 1), Vs(¢, n)},
where
Vl(t1 77) (Q*(t7 ¢ﬂ’ uﬂ) - AO) 77)7
(5.16) Va(t, n) = (0*(t, ¥y, v,) — A%, 1),
Vi(t, m) = (wy(8), m).

From the continuity of the functions V.(t,9), ¢ = 1, 2, 3, for all
t (= e = max (b, d)) and for almost all 3, we can easily see that the func-
tion V (¢, #) is continuous in {( = ¢) and in 5, disregarding a set of measure
zero. We have also

(5.17) V(T 9) =0, for o € H'

I
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Let H be the set of all vectors 5 for which
(5.18) Ve, 1) <0,
and denote by H' the subset of H whose clements 5 verify the inequality
(5.19) V(T ) £ 0.
By the inequalitics (5.11)-(5.14), H* < H. Clearly,
(5.20) V(T n) >0 for n€ H— H.

Suppose now that V (¢, n) isstrictly increasingat ¢ = 7° forevery g € H'.
From (5.17), (5.18) and (5.20), we sec that there exists a unique 7'(n)
such that

(5.21) V(T(n),n) =0,

for t in a neighborhood of 7° and in a neighborhood of »° ¢ H'. Clearly,
it n € H, T(n) = T° andif n € H — H', T(n) < T° according to (5.20).
Thus, we have the following theorem, which is an extension of a theorem
due to Neustadt [6] as well as of a theorem due to the author [7].

TarorREM 5. Suppose that the control regions U and V and the sets of initial
Sunctions ® and ¥ of the systems X and Z consist of measurable functions satis-
fying the conditions (1.14), (5.3) and (5.4). Let T° be pursuit time for the
systems X and Z. Then the unique optimal strategy is given by (5.7) and (5.8)
with some vector n in some set H'. If for every n € H" the function V(t, n)
defined by (5.15) is strictly increasing with t at ¢ = T°, then for 1 in a neigh-
borhood of H® and t in a neighborhood of T° the vectors n € H maximize the
time for which V(t,n) = 0.

This theorem is very close to Kelendzheridze’s main result in [4, 9],
when the retardations in X and Z all vanish.

Note that Theorem 5 only gives a necessary condition for an optimal
strategy.

6. Remark. If ®, as in §1, consists only of continuous functions, and if
we know the optimal functions w’(t), 0°(¢), and ¥°(1), the optimal initial
function ¢’(¢) can be obtained by solving the integral equation

b
6.1) f H(s, T° — ¢)¢"(s) ds = P,
where
70—¢,,
(62) P = 0XT" ¢ ") — f Vs, T° — en) A(s)u'(s) ds.

With obvious modifications, we can state a similar result for ¥'(¢) when
© (1), ¢°(¢), and 0°(¢) are known.
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ON THE DIFFERENTIAL EQUATIONS SATISFIED BY
CONDITIONAL PROBABILITY DENSITIES OF MARKOV
PROCESSES, WITH APPLICATIONS*

HAROLD J. KUSHNERf}

1. Introduction and summary. Consider the vector stochastie differential
equation,

(1) dz; = fi(z)dt + ;F,»,c(x)dzk(t), i=1, -, m,

where each z;(¢) is an independent Brownian motion process with unit
variance parameter. Let , f and z be vectors with components ;, f; and
2;, respectively; let F(x) be the matrix with components F;(x), and
V(z) the matrix with components v;;(z), where V = FF’. Let P(a, t) be
the probability density of x(¢) given only the density of z(%), ¢ = &.
Under suitable conditions on f and F, it is well-known that (for almost all
2(+) functions) there exists a unique solution to (1) which is a Markov
process. If P is suitably differentiable, then Kolmogorov’s forward equation,

() D - 3 ()P, D)+ § 3 0u@Pa, D
is satisfied, where the subseript a; denotes the partial derivative.

A problem of great practical importance arises when noise corrupted
observations on x are taken;i.e., the vector dy = g(x)dt 4+ dw is available,
where w is a vector Brownian motion process. For example, 2 may represent
a signal stochastic process and dy/d¢ the (nonlinear function of the) signal
plus noise, or x may represent the evolution of a dynamical system driven
by a noise process and the interest may be in the estimation of various
properties of x or, perhaps, the control of x. In these cases it would be very
desirable to have an expression for the probability density of 2 conditioned
upon the observations, as well as upon the initial data. The existence of such
an equation is suggested by theorems|| in [3, pp. 287-291]. Here, we derive
a partial differential equation satisfied by this conditional density. The
cquation is of the form (2) with an additional term which contains the ob-

* Received by the editors January 24, 1964. This research was supported by the
United States Air Force, under Contracts No. AF 33(657)-8559, and No. AF 49(638)-
1206.

+ Research Institute for Advanced Studies (RIAS), 7212 Bellona Avenue, Balti-
more, Maryland.

1 This could be written without differentials as b = g(x) + ¥, where ¥ is the white
Gaussian noise dw/dt.

|| The relation between our results and these theorems is further discussed in the
Appendix.
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servation in a linear manner, and in many cases, is amenable to convenient
analog or digital simulation; hence, the actual conditional density may be
obtained as it evolves in time. The equation promises to be of great useful-
ness in communications and control problems.

The principal result is the following. For any function of time s(¢), define
8s(t) = s(t + A) — s(t) and ds(t) = s(t + dt) — s(t). Let Eswow' = ZA
and Eézw’ = CA and assume Z is nonsingular.t Let P(a, ¢ | ¢) be the con-
ditional density of x(¢) given all observations up to ¢, and let

df(a, t) = f(a, t)dt + FC=(dy — g(a)dt),
V =V — FCz'(FC)',
(4)  dQ(a,t) = P(a, t|t)-(dy — Eg(a)dt)'’="(g(a) — Ey(a)),

where the expectation E is the conditional expectation using P(a, t| ).
Then P(a, t | t) satisfies

P(a,t 4+ dt|t+ dt) — P(a, t]|t)

(3)

(5) = aP(a,1]) = dQe, ) — 3 (@i, 0 Pla, t] ),

+3 2 (@is(a) P, t] 1) )aquydt.
1,17

In certain cases (discussed in §3j) which are reducible to the case where
a takes on only values z', - - - , ¢, (5) becomes

(5") dP(i|t) = P(i|t)-(dy — Eg(i, ))'27(g(s, 1) — Bg(s, 1)).
Equation (5) is generally rigorously verifiable.

Although (5) can be rigorously verified in a number of cases, it is, of
course, still formal in general (see Appendix), being derived under the
assumption that P exists and is suitably differentiablef. If there is no cor-
relation between the observation noise dw and the noise dz, then C = 0
and df; = fidt and 9,; = v;; . In this case the last two terms on the right of
(5) are the same as in (2), and (5) differs from (2) only in that the former
contains the observation term d@, where dQ is linear in the differential
observation dy.

The same problem was considered in [1], where z was scalar and g(z) = z.
A more general problem was discussed in [2] but, as discussed in [1], the
results in [2] are incorrect through the omission of certain significant terms.
Since the writing of [1], substantial and surprising simplitications (which
were initially inapparent) in the form of the scalar equation have been

t 2 and C are assumed to be independent of z; if £ depended on z, the problem ap-

pears to degenerate to one where x can be determined exactly at every ¢.
{Whenf = F = 0, dP = dQ and is simple to verify.
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obtained. In this paper, taking advantage of these simplifications, the
results for the general vector case with nonlinear observations are derived.
These results include, as special cases, many important situations (as will
be illustrated) that cannot be represented by the scalar case format.

The derivation is performed in §2. Section 3 discusses several special
cases and extensions. The results include as special cases known results [4]
for the filtering problem where the signal and noise are Gaussian and finite
order Markovian.

Usually, when one has a stochastic differential equation, one seeks proper-
ties of the random functions which they define. In this paper, the inverse
problem occurs initially: given a random function, what stochastic differ-
ential equation does it satisfy? The Appendix contains a discussion of this
problem and of the sense in which such an equation is meaningful—as well
as of other points which are important in the derivation.

2. The main result. The derivation proceeds by assuming the finite
difference model (6) and taking formal limits subsequently.

ox = f(x)A + F(x)dz,
dy = g(x)A + ow.

Let Y denote the y(7), 7 < t, the entire set of observations up to ¢; dy
= y(t + A) — y(t) is the observation at ¢ given by (6).

The following notation will be used. Let a and « be the generic value of
z, and let M and N be any random quantities. Let P(a, t; M) denote the
joint density of z(¢) and M ; P(a,t| M) denotes the density of z(¢) condi-
tioned upon M; P(e, t| Y) will also be written as P(a, ¢|t) or as P;
P(a,t|t+ A) denotes P(a,t| Y, dy), the density of z(¢) conditioned upon
the set of past observations Y and also upon the present vector observation
8y; P(M | a, t; N) denotes the conditional density of M, given z(f) = a
and N.

The derivation takes place in two parts. First, let P(a, ¢|¢) be given,
take the observation 8y, and compute P(a, ¢|¢ + A) — P(a, t|t), the
change in the conditional density due to the last observation. This change
is given by (14). The second part of the derivation assumes the change éx
in z, and the Chapman-Kolmogorov equation is applied to include the ef-
fects of éx on the conditional density. Formal limits are then taken and
the derivation is complete.

(6)

Derivation: Part 1. According to the notational convention
Pa,t|t+ A) = P(a,t; Y, d8y)/P(Y, dy)
(") Py |a,t; Y)P(a,t| Y)P(Y)

" P(Y)[P@yla t; V)P, t]Y)da’
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Since the distribution of 8y is completely specified when a is given, (7) may
be written as

(8) P(a,t| )P(5y | a, t)
[Py |a,t)P(a,t]t) da’

In fact, as discussed in [1], P(a, t | t) is a Markov process in function space.
Now, from (5),

(9) P(sy|a,t) ~ Niga, ZAl,

where N[gA, ZA] denotes normal density with mean gA and covariance
matrix ZA.
Substituting (9) into (8) yields

1 11
P(a,t|t) exp| —z= (8y — g(a)A)'=" (8y — g(a)A)
(10) [ 24 ]__

[ Plast ) o [~k Gu = o@)a)'s™ 6y = (@) ] do

)

where da = ]]{da; . Equation (10) may be further simplified by deleting
the common term exp [—2% dy'z"8y] from both numerator and denomi-
natort. Thus,

P(a, t|t + A)
P(a, t|t)

~ exp [6y'2"g(a) — 3¢'(a)="g(a)Al .
f P(a,t|t) exp [By'z"lg(a) — %g’(a)z_lg(a)A] da

R(A, 8y) 2
(11)

Assuming that the appropriate moments of P(a, ¢ | ¢) exist, (11) may be
differentiated any number of times with respect to the infinitesimals A and
8y: . We wish to obtain an expansion of (11) which contains all terms of
order A or less. Since Eoysy’ = ZA, the expansion must be carried to the
second degree in the components of §y, and to the first degree in A. It is
casily shown that the remainder in the expansion has a mean value of
smaller order than A and a mean square value of smaller order than A’

The differentiation of (11) is straightforward. Recalling that E refers
to the expectation using P(a, t | t), we have

Ra(0,0) = —3lg'(a)Z7g(a) — E(g'(a)27g(a))],
R(0,0) =1,
(12)  Ry(0,0) = 27g(a) ~ Z7Hy(a),
1 If = depended upon z, this could not be done.
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Rs,5,(0,0) = (27g(a))(27g(a))" — 227g(a) (2" Eg(a))’
+2(27'Eg(a)) (27 Eg(a))" — E(z7g(a)(27g(a))),

where Rs, and Rj, 5, are the gradient and Jacobian, respectively, of R with
respect to dy. Thus,

(13) Pa,t|t+ A) =
P(a,t|1)[1 + Ra(0,0)A + R'5,(0,0)dy + 33y Rs, 5,(0,0)8y] + 7,

where Er ~ o(A), Er* ~ o(AY).

Although there is frequent occurrence of terms such as Edydy; in prob-
ability theory, (13) is unusual in that these random terms are included
without expectations. It would appear that these terms substantially com-
plicate the result. It is quite remarkable that the term dy.8y; may be re-
placed everywhere by its expectation without altering the result at all. The
arguments for this are given in the Appendix: the replacement will be used
hereafter in the text.t The simplification was not apparent in the earlier
work. We have Esydy’ = Elg(a)A + swllg(a)A + sw] = ZA + o(A).
Various terms in (12) may now be rewritten; e.g., replace &y’ = 'g(a)
-(27g(a)) '8y = g(a)'= dydy'=7g(a) by ¢'(a)=7g(a) A + o(A).

Now, adding and subtracting the terms P(a, t|f) (Eg)'= 'gA and
P(a, t|t) (Eg)' ="' (Eg), using the expectation substitutions for the second
order terms, and rearranging terms yields

P(a,t|t + A) — P(a,t|t) é Q(a, t)

(14) ! «—1 v
= P(a,t|t)-(by — EgA)'Z" (9 — Eg) + s
where, again, Er* ~ o(A”).

Completion of derivation. We are now prepared to use a modification of
the Chapman-Kolmogorov [3] equation to complete our derivation by in-
cluding the effects of x(f) on the conditional distribution. The method is a
modification of the usual formal approach to the derivation of (2).

In general, by the definition of conditional probability,

Pla, i+ Al + A) = fP(a,t|t+ A)Pa, i+ Ala, & Y, 5y) da.
If no observations are taken, it reduces to
P(a,t + A) = fp(a, DP(a,t 4 Ala, 1) de

t Although the second order random terms cannot be neglected since their expecta-
tion is of the order of A, their contribution is essentially deterministic. See Appendix
for more details.
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In our case, since dw is allowed to depend on dz but not on z, the distribu-

tion of z(¢ + A) is completely determined when 8y and z(t) are given.
Thus

(1) P(a, 0+ Alt+ &) = [ Playt]t+ DPGa, 1 + Ala, 1; ) de.
To complete the procedure, multiply (15) by an arbitrary triply differ-

entiable function h(a), such that (19) holds and the integrals (16) exist.
Thus from (15),

fh(a)P(a, t+ Alt+ A) da

- f/h(a+ (a — a))P(ay t|t + A)P(a, t + Ala, ; 8y) da da

o [] [h<a>+ha'<a><a— )

1 ’ ’
+ (0= @)haale) (0 = @) + ol(a = @) (0= )|

X {P(a, t|t + A)P(a,t + Ale, t; 8y) do da}.

Now, the density P(a,t + A | a, t; 8y) is normal. Since it is conditioned
upon &y and z(t), it is also conditioned upon éw. From standard theoremst
on conditional normal variables [10],

Ela — al|dy, z(t) = a] = E[f(e)A + F(a)dz|dy = g(a)A + dw]

I

o = fla)A + (FC)Z7(8y — g(a)A),

El(a — a)*| 8y, 2(t) = o] = E[(f(@)A + F(a)8)"| g(a)A + suw)

>

VA = VA — FCZ'(FC)' A + o(A).

Substituting these results into the last line of (16) yields
(1) [ [ + 1 @) 37@)) + & E b (@) | Plat] 1+ 8) e
2]
where #;; is the (7, 7)th entry of the matrix V. Recall that P(a, t |t + A)
= P(e, t) + 8Q(e, 1).
1 Given two normal vectors s, ¢, with Es = s , Bt = u;, Est’ = Z1,, Ess’ = 21,

Ett' = oo , We ha,ve E[S ] t] = Us + 21222—21“ - Mt) and COV[S I t] = 2 — 2;222_21212 .
(See [10].)
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Consider the term
8f () [P(a, t] 8) + 8Q(a, 1)] =
[f(@)A + FCZ7 3y — g(a)A)]
L+ By — Eg(a)A)'=7(g(a) — Eg(a))IP(a, t]1).
Upon replacing dydy’ by its expectation ZA + o(A) as discussed earlier,

- A
and rearranging, the term becomes* §fP = [fA 4+ FCZ'(oy — EgA)
+ o(A)]P. Upon replacing this in (17) and assuming (19), (17) may be
partially integrated to yield (18).

(18) [ b [P+ 50 = T 6P+ 5 T (Pl + ofa) |

(19) 0 = (6F: PR [ = (55 P, [57% = (5 P)agh [52%.

In (19), when a; = ==, the a;, j # 4, are arbitrary. Equating (18) to
the left hand side of (16) and recalling the arbitrariness of h yields, in the
limit,

ar

Pla,t + dt|t + dt) — P(a, t]|t)
dQ — 2 i(dfiP)e; + % 200y (3:5P) asaydl,
dQ = P(dy — Egdt)' =7'(g — Eg).

(20)

I

The equation (20) is the culmination of all our efforts. Observe that, as
all the components of = tend to « (as the value of the observations de-
creases), (20) tends to Kolmogorov’s forward diffusion equation (in dif-
ferential form). From a formal point of view, (20) may be divided through
by di and viewed as a differential equation with the observation dy/dt as a
driving term or input.

It is easy to obtain a set of ordinary differential equations for the condi-
tional moments of P. The method is given below.

3. Discussion of special cases and extensions.

3a. No dynamics. The simplest case is where f/ = dz = 0. Here z is an
unknown vector. If some initial distribution P(a,t,) is assigned to z, then

(21) dP = P(dy — Egdt)'=""(¢g — Eg)
represents the conditional distribution.

* For brevity, P = P(a, 1), 8Q = 3Q(a, t), g(a) = g and f(a) = f are used when no
confusion will arise.

t As A — 0, the expectation of the o(A) in (17) is 0(A) and its mean square value
is 0(A?). Thus, we have (20) valid in the mean square sense, as discussed in the Ap-
pendix.
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A special case of importance is where x may take on only finitely many
values, &', - -+, 2. Since (21) must hold for each «, it reduces to a set of
s ordinary differential equations with a simple analog computer representa-
tion, even for fairly general observation forms g.

Eg; = Ej:gi(a")P(a’, tle).

3b. Linear dynamics. The case where f(z) = Az, F = constant, g(z) =
Gz, and P(a, 0) is Gaussian, where A and G are matrices, has been discussed
in [4], where the ordinary differential equation for the conditional expecta-
tion of # was obtained. With our form, it is possible to compute all the
moments of P in any case; in the linear case, with linear observations, it
may be verified that our results specialize to those in [4]. This is, of course,
the optimum filter for finite order Gaussian Markov processes.

3c. Filtering. The general problem here may be viewed as an optimum
filtering problem, where dx = fdt 4+ Fdz represents the process, and dy is
the nonlinear noisy observation. Then (20), or the equations for the mo-
ments, represent the form of the optimum filter, i.e., the simulation of (20)
yields a running estimate of the conditional probability.

3d. Dependent observation noise. Up to now, the observation noise
dw/dt has been white Gaussian. Assume 8 = dw/dt is a correlated process
and let it be represented as d = k(8)dt + de, where € is a vector Brownian
motion process with Ede = 0 and covariance (6¢) = ZA. The observation

A
isb = dy/dt = g(x) + B. If the observation is considered to be
(22) dy = dg + dB = (¢ + k(B))dt + de,

the previous theory may be applied: put ¢ + k(e) whenever g appeared.
Now, the distribution of 8 must also be estimated, and the z included the
components of 8. It appears to be typical of the estimation or filtering
problem that, whenever observation noise is correlated, the noisc as well
as the quantity of interest must be estimated. The differentiation is not
easy to simulate. If the observation is assumed to be 8 + = + d¥/dt, where
¥ is the Brownian motion, then by expanding the state vector x by adjoin-
ing B, the theory of the last section may be applied.

3e. Unknown system parameters or system order. Let v be a constant
parameter which either simply parametrizes f or determines the order of
the system dx = fdt + Fdz; f = f(z, v). Let v be given some initial distri-
bution P(y, 0). Then, our results apply to the augmented system

dx = f(z,v)dt + Fdz,
dy =0,
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and we merely replace x by the vector [z, v] in the results. P(a, v, 0)
= P(a, 0)P(y, 0). This is a general solution to what has been called
partial observability by some authors [5].

3f. Determination of the conditional moments. The moments

ms = faiP(a, t|t) da,
(23) 7”(.7‘1; Tt )jr, t) = fH (ai - mi)jip(aa tlt) da;
=1

C(jI; "';jT;t) = fLIlaz]ZP(aatlt) daa

satisfy ordinary differential equations, on the right hand side of which the
observations appear linearly. The procedure is simple and we merely indi-
cate it here.

We have

(24)  deGlr, -+, jor 8) = fI;Ilaiji[P(a,t—i- dt|t + dt) — Pa, ¢|0)] da.

Let h(a) = ][] a. Equating the left hand side of (16) and (17) yields

=1

fh(a)[P(a, {4 dt|t+ dt) — Pla, t]0)] da
(25)
= f h(a)dQ da + f l:ha'(a) df(a) + %t ; haiai(a)f)jj] P(a, t|t) da.

Upon performing the integration in (25), dc is obtained. This question is
also discussed in [1].

3g. Applications to optimal stochastic control theory. The function
P(0, t) is a Markov process, and appears to be the most natural quantity
which one may consider as the state variable of the differential system (1).
To extend the form (1) to the optimal control formulation, write dz =
f(z, wdt + F(z, w)dz, where u is a control function which is to be deter-
mined so as to minimize some error criterion, say

T T
(26) Ef k(x, u, t) dt = Ef f P(a, t|)k(a, u, ¢) da di,
to to
where I is the expectation over all random variables. (See [1], [6], [7],

[8].) Here the optimal control 4" will be a functional of P.
It is possible to write a second order partial differential equation whose
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dependent variable is the minimum of (26) and whose independent vari-
ables are P(a, t | t) and #, and which yields many properties of «’. This
will not be done here. The equation is analogous to those appearing in [6],
[7], {8].1 The method of derivation is exactly that used in [1] for the scalar
z and linear g case.

3h. Poisson z. The results may be extended to all dz for which the
Chapman-Kolmogorov equation is valid; in particular, an equation for P
may also be obtained when 2 is a Poisson process.

3i. The results have numerous applications to special problems in sta-
tistical communication theory; these will be considered elsewhere.

3j. Previous cases extended to case where P(a,l;) is concentrated at
only finitely many points, and z(¢) is not necessarily generated by a dif-
ferential equation. For the most general case, P(a,t,) is a sufficient statistic
for control purposes; that is, the minimum of (26) can be written as a
functional of P(a, t | t) for any ¢, . When F = 0 and P(a, t) is concen-
trated at only finitely many points, it is not usually convenient to take the
point of view of §3g. Here, P is not differentiable with respect to a and
(15) isasum; P(a,t + A| a, t) is either zero or is concentrated at only one
point for any given a.

Although the formerly derived results are not valid for this case, an ex-
tremely simple extension is available—in fact, the extension is rigorously
verifiable (it is essentially the case discussed in Appendix 2).

To view the results in a fairly general form, let us have a choice of n
possible curves z(t), ¢ = 1, - - -, n; the sth having conditional probability
p(i|t) at t. Each 2’ could be the solution to the equation & = f(x) with
a different initial condition, or with a different value of some parameter;
or it could be an arbitrary signal function. The observation is dy = g(a)dt
+ dw, where a takes one of the values (), s =1, ---, n. We will write
(3, 1) = g(2'(¥)).

The method is the following. Instead of keeping track of the arguments
at which P is concentrated, as part of the procedure of generating P, we
keep track of these arguments separately—and assume that the values of
each #°(t) are available; thus, P is applied to the state ¢, ¢ = 1, --+ | m,
which is not subject to dynamical changes. Carrying previous arguments
over, we obtain

(27) dP(i|t) = P(i|1)-(dy — Eg)'=7'(g — Eg).
For this problem, (26) is rewritten as

T
(28) Ef > p(@ | O)k(a’, u, t) d.

top

1 Due to the presence of P, the equation contains functional derivatives as well as
ordinary derivatives.



116 HAROLD J. KUSHNER

Equation (28) yields that the sufficient state variables for control pur-
poses are all the p(7 | ) and their (effective) arguments z'(t) (occasionally
some of the z* can be derived from the others—and may be eliminated as
state variables).

APPENDIX

The appendices contain several interesting facts and demonstrations
relevant to our method of deriving the differential equations satisfied by
certain stochastic processes, such as conditional probabilities. Appendix 1
contains some general remarks and in Appendix 2, the results are verified
for some simple cases.

Appendix 1. We first discuss the meaning of the obtained stochastic equa-
tions by means of an example. Consider the scalar function x = ¢* where
2(t) is Brownian motion; z(t) ~ N(0,0%). We are interested in a differen-
tial equation which represents x: since z(¢) is nowhere differentiable [3], the
equation cannot be obtained in the usual formal manner. Consider

2
(A1) b = ¢ — & = x(e® — 1) =x<6z+%+ )

Truncate the power series expansion and note that

2
(A.2) E[Bx -z <6z + %—)] = o(A),
82\ T
(A.3) E[Bm — =z (62 + E>:| = o(A%).
Thus, in the mean square sense, we have the differential equation
2
(A4) de = x <dz + %) .

Note that, if the dz*/2 term were omitted, (A.2) would be O(A) and (A.3)
would be O(A”); the errors would be of the order of dt, and the resulting
solution would be meaningless.

Now, divide the time interval ¢ into n equal sections and let A = t/n.
Let 6z; = 2((¢ + 1)A) — 2(4A). Thus a discrete approximation to (A.4) is

8z
d; = s | 82 + —
T x <6z 2>

or

n 2
T = x0H<1+az,~+5z">.
1

Now it is easily shown that

(A5) Bz, — ¢] =0, Elz, — ¢’ > 0,as A —> 0, n— .
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Thus, again in the mean square sense, (A.4) represents z = ¢°. If the dz*/2
terms were omitted, (A.5) would tend to some nonzero quantity. This
holds in the general case also, since the truncation errors add linearly. Thus,
the presence of the second order term d2° or dy;dy; is justified.

There are some theorems in [3, pp. 286-291] which prove that, given a
suitably regular continuous Markov process such as x = ¢°, « has a repre-
sentation of the form

dx = Elz(t + dt) — x(t) | x(t)]dt
+ EV(2(t + dt) — 2(t))* | x(t))dw

where « is a Brownian motion process. The major problem appears to be
the identification of the process u. Let Edz® = o’dt. It may be shown here
that odu = dz, or

(A7) de = zo'dt/2 + xdz.

In finite difference form x, = x [ (1 + 62: + ¢°A/2). It is verifiable, by
direct computation, that

(A.8) E[fI (1 + oz + ‘?ff) - fI (1 + oz + UZA/z):r —0,

(A.6)

1 2

as A — 0, thus proving the validity of the replacement. .
Now, we briefly discuss the naturc and interpretation of (dz)*, <
According to the derivation,

n n n (5Zi)2 n 621‘3
(A9) z(t) = leaxi = lexisz,~+ ;x 5+ ;x SrF o

is an exact expression for z(¢). This suggests the integral

(A.10) f (d2)?,

= 2.

which may be interpreted as the limit of Riemann sums. With this inter-
pretation,

fo "(de) = 3 (52)%

In thelimit as A — 0, nA = ¢, O (8z:)® tends to a constant, ¢°t, with proba-
bility one and in mean square. With this definition of (A.10), the integral
over any measurable ¢ set may be defined and stochastic integrals of the
form [ z(dz)? = [ z(dt o*) considered. Similarly, for the higher terms (dz)°,
1 > 2, whose integrals degenerate to zero with probability one and in mean
square. Thus, the replacement of dz* by o’dt is again justified.

Appendix 2. Now, using the limit of the Riemann sum definition of the
integrals we prove, in an indirect although instructive way, that the re-
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placement of dy? by dt ¢? is justified. We limit ourselves, only for simplicity,
to a scalar case with no dynamies where = takes the values 0 or 1.1}

Let P(1,t) = P;. No generality is lost in letting g(a) = a. Here, dP =
dQ and, by rearranging (13), we obtain

dP = P [2(dy — m dt)(a — m)

202 .
+ <%y7 - dt) ((a —m)" — mz)] + 7

where Er ~ o(dt), Er’ ~ o(dt"). Also r(t) — Er(t) is an orthogonal process
and orthogonal to any function of P(a, t). Uponreplacing dy® by its average
value and neglecting r, we have

(A.11)

(av]

(A.12) dP =

Also
(A13) m = Ea = Py,m = E(a — Ea)’ = (1 — P)P;.
Thus, letting P;(1 — Py) = k(P,) = k,
(A14) o’dPy = k[(dy — Prdt) + (dy’/o* — dt)(1 — 2P1)/2] + r,
' o’dP, = k(dy — Pidt) = F[(dy — Pudt) + (P, — Py)d),
where Er ~ o(dt), Er’ ~ o(df’).
Now, P; and P, are always in the interval [0, 1]. Letting e, = P(r)
— Py(r), we have the error

((dy — @i dt)(a — )).

&

g

t t t
oo = f (k — k)(dy — Pydr) + / ke, dr + 02[ r
o 0 o
(A.15)

+ ft k(dy*/o* — dr)(1 — 2Py)/2.
0

Note that (dy — Pydt) and (dy’/s" — dt) are orthogonal processes, and
are orthogonal to any function of Py(r) or Pi(7), r < t. Using these facts,

t t
o Helt = Ef (k — B)%® dr + f o(dr)
0 0

+ Efo e, dr{fo (k — B)(dy — P1dr) +f0 k(dy/ o — dr)(1 — 2P1)/2}.

1 Again, the reference quoted above implies some sort of replacement, but the
Brownian motion in the differential equation is not identified. The technique here
identifies all terms in terms of the observations and properties of the conditional
densities.

1 Generally, the replacement of second order terms by their average values is the
easiest part to verify; it is more difficult to prove that our other limiting operations
are valid.
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Now, observing that k satisfies a Lipschitz condition for P in [0, 1] and
using Schwartz’s inequality on the last product of integrals yields

1/2 T
(A16) Ee® = K, / " e dT+K2{ f " e df} + f oldr)
0 0 0

for some positive and finite K; and K, . Thus Ee,” = 0, since P;(0) = P,(0),
and the validity of (A.12) is proved.

In all cases checked, Doob’s representation theorems (referred to in the
text) yield equations of our form, where the observation noise process w
is identified with the Brownian motion. For the problem of this Appendix,
there are two families of stochastic processes. The first are the family of
actual sample functions P, , when @ = 1 (dy = dt + dw); the second when
a = 0 (dy = dw). Applying Doob’s theorems to each of these yields the
representation (A.12).
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SOME TYPES OF OPTIMAL CONTROL OF STOCHASTIC SYSTEMS*
STUART E. DREYFUSt

1. Introduction. A stochastic system (i.e., a dynamic system involving
random variables) which evolves according to a rule which also involves
variables or parameters under external control is called a stochastic con-
trol system. If these variables or parameters are determined so that the
system behaves as well as possible as measured by some well-defined
criterion, one has achieved optimal control of the stochastic system.

Under varying assumptions concerning the information available to the
controller, different optimal control policies result. In this paper we shall
develop and illustrate several different control schemes and compare their
behavior. In this way we intend to demonstrate that certain control
philosophies that may appear superficially to be equivalent are really quite
different. In the final section we derive asymptotic expressions for the cost
of optimal control using several different schemes. This yields a quantita-
tive measure of the vast superiority of feedback over open-loop control
for a particular stochastic system.

2. A deterministic problem. Let us begin by considering a trivial three-
stage discrete deterministic control problem. Given the directed network
shown in Fig. 1, we wish to determine that path from point A to line B
which has the minimal sum of the numbers written along the three arcs of
the path.

Let us denote a decision to follow the diagonally-up are from an inter-
section by U and the diagonally-down are by D. By examining all eight
possible paths from A to B, we discover that the path D-U-D (diagonally
down, then up, then down) has sum-of-arc-numbers zero and is the unique
optimal solution. We shall call such a designation of the solution, giving the
sequence of control decisions to be followed from specific initial point to
termination, the optimal open-loop control.

A second way of presenting the solution to this problem is to associate
with each node of the figure a decision, either U or D, such that that de-
cision is the initial one of the optimal path from the node to the terminal
line. This set of decisions assigned to nodes is most efficiently determined
recursively backwards from the terminal line [1]. We initially record the
optimal decisions and minimal sum to termination (encircled) at the nodes

* Received by the editors July 22, 1963, and in final revised form April 21, 1964.
This research is sponsored by the United States Air Force under Project RAND—
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF.

t The RAND Corporation, 1700 Main Street, Santa Monica, California.
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along the line C in Fig. 2, and then use the circled numbers to determine
the optimal decisions and sum along D and, finally, from A. The results
are shown in Fig. 3. We shall call such a designation of the solution, giving
the optimal decision associated with starting at each possible state of the
system (i.e., at each node), the feedback optimal control.

The interpretation of Tig. 3 is that the optimal path starting at point A
has sum zero and starts diagonally down. The node reached after making
the downward move has a U written by it, indicating a decision to go
diagonally up. This leads to a node with a down decision. Hence, D-U-D
is the optimal path from A. Note that the feedback representation of the
solution also yields the best path starting from other nodes not along the
D-U-D path.

The important point is that for a specified initial point such as A, the
open-loop and feedback solutions are equivalent for a deterministic process.

3. A stochastic problem. Let us now modify the above problem by in-
troducing a stochastic aspect. We shall assume that the decision designated
by U results in a probability of 34 of moving diagonally up and 14 of moving
down. The alternative decision, D, hasa 34 chance of a diagonally downward
move and a 14 chance of an upward transition. We now have a stochastic
control problem. We can still exert a controlling influence, but randomness
determines the actual transformation of state.

As a criterion for comparing possible control schemes, let us attempt to
minimize the expected sum along the path from A4 to line B.

To determine the best open-loop control policy, we consider all eight
possible sequences of decisions and choose the one with minimal expected
sum. For example, the decision sequence U-U-U has probability 2% of
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actually yielding the path U-U-U with sum 10, % probability of yielding
the path D-U-U with sum 1200, etc. Multiplying the probabilities by the
sums and adding, we get an expected sum Eyyy given by

Bypo = 22:10 + & (1200 + 1210 + 10) + & (10 + 0 + 12)
+ o412 22 360.

It turns out that the sequence U-U-D has the minimal expected sum of
approximately 120.

The best feedback control is computed recursively backwards just as in
the deterministic example. Suppose that, for a given node, the expected
sums starting at each of the two possible nodes to which one might go have
been determined. Then the expected sum from the given node to the
termination under decision U is obtained by multiplying the upward arc
number plus the remaining expected sum associated with the node at the
end of the up-are by 2 and adding % times the corresponding downward
numbers. Decision D is similarly evaluated reversing the £ and %, and the
minimal expected sum is chosen. The minimizing decision and expected sum
(encircled) are recorded at the node. This computation leads to Fig. 4. The
expected sum using feedback control is 8414 and the control policy is the set
of letters associated with the nodes in Fig. 4.

At this point we would like to introduce a third control scheme. Let us
use the optimal open-loop solution to yield our initial decision. Then, after
a transition has occurred, let us observe the result and determine the best
open-loop solution for the new two-stage problem. After implementing the
initial control decision of this optimal open-loop solution, we again observe
the state and use the optimal control decision for the remaining one-stage
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problem. This scheme uses the optimal open-loop initial decision at each
stage, but incorporates feedback in the observation of the actual state
attained. We call this scheme open-loop-optimal feedback control.

This control scheme differs from either of the previous two. The initial
optimal open-loop decision agrees with the feedback decision except for
starting at node A. There, as has been shown, the optimal open-loop control
dictates an upward decision. Therefore, the expected cost of the above
scheme is -84 + 2-85 = 8434.

We can conclude from this example that

1) the pure open-loop scheme incorporating no use of subsequent informa-
tion about actual transitions yields a large expected sum;

2) the pure feedback scheme where the state is assumed known when
the decision is made yields the smallest possible expected sum for a sto-
chastic problem;

3) the open-loop-optimal feedback scheme yields an intermediate ex-
pected sum. Although feedback is used, the fact that feedback is to be used
is withheld from the computation determining the control decisions, which
results in an inferior control scheme.

4. A continuous deterministic problem. Let us now consider briefly a
standard continuous non-stochastic control problem. Given an initial time
to and final time 7T, we wish to use control u(#), &y < t < T, so as to guide

a particle, initially in state z,, toward the origin = 0. We attach a cost
to using control and attempt to minimize the criterion function,

(4.1) fT w(t) dt + 2°(T),

to
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where the first term represents the cost of control and the second term
measures the deviation from the origin at the terminal time. Motion of the
particle is given by the linear differential equation

(4.2) () = ax(t) + dbu(t).

This is a linear control problem with quadratic criterion and has been much
analyzed. We consider it briefly here in order to acquaint the reader with
the type of problem we shall consider subsequently and with the dynamic
programming technique of solution.

The classical necessary conditions for an extremum of the above problem

are given in terms of an adjoint variable or Lagrange multiplier N which
satisfies the equation

(4.3) A= —ax

and terminal condition

(4.4) NT) = 22(T).

The optimal control is given by the condition

(4.5) 2u + Ab = 0.

Solution of (4.3) with boundary condition (4.4) yields
(4.6) A(t) = 2z(T)e*™,

and therefore

(4.7) w(t) = —z(T)be""™?
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80 u(t) varies exponentially with time. The unknown terminal value of «,
2(T), can be expressed in terms of z(¢) by substituting the control rule
(4.7) in (4.2) and solving. The resulting expression for z(¢) in terms of
2(T) can be inverted, and the control at time ¢ is then given in terms of
the state at time ¢ by (4.7). Performing these steps we get

(48) fC(t) — x(t )ea(t to) + (T)b a(T—t) _ x(T)b2 6a(T—2t0+t)’

2a
2 2
(49) ’U(to) — <1 _ g_a + gaem(T—-to)) e—a(T—to)x(T)’
a(T—t)
Y — e 2(t) ’
(4.10) +(T) 1 — i-{- b JERCE)
2a(T—t)
(411) u(l) = — ll); x(t)

. .
_b b” o)

This is the feedback solution for control as a function of state. The optimal
control is exponential in time, or, for a given time, it is a linear function of
the state.

The dynamic programming solution of this problem proceeds as follows.
Define an auxiliary function f(z, ¢) as the minimal obtainable value of the
criterion function (4.1) if we start the problem in state x at time i, £, < ¢
= T. By the principle of optimality linking the initial decision with the
remaining optimal decisions, we have

(4.12) f(z, t) = m(ir§ WA()dt + f(x + (ax + bu)dt, t + dib)].

Expanding (4.12) in Taylor series, dividing by df and letting dt approach 0,
we get

= min |4+ Y of
(4.13) 0= min [u + o (ax + dbu) + at].
Differentiating with respect to  to minimize gives
(4.14) 2wt —o,

and substituting 4 determined by (4.14) in (4.13), we obtain the nonlinear
partial differential equation

)
(4.15) 0= ___:ﬁ“ + ax—g‘é + %—I;‘
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Assuming f(z, t) has the separable form ¢(¢)a* and substituting in (4.15),
we find that g(¢) satisfies the Riccati ordinary differential equation

(4.16) —b’g* (1) + 2ag(1) + ¢'(t) = 0,
with
(4.17) g(T) = 1.
Solution of this equation yields
( ) e2a(T——t)
i) = + ,
(4.18) g 1 — I_)i n g 20
2a ° 2a
whence
2a(T—t) 2
x
z, t) = .
(4.19) I, ) 1— 1_)1 + ieza(r—n
20 ° 2a
Substitution in (4.14) yields the control scheme
b 2a(T—t)
(4.20) u = = =,

_ b 2a(T—t)
1 + 5 e

2a
which agrees with (4.11). Again, as in §2, we see that for a deterministic
problem the open-loop and feedback solutions are equivalent.

6. A continuous stochastic problem [2-5]. To construct a stochastic
control problem, we attach a random variable to the equation defining the
evolution of z. We write the discrete rule

(5.1) z(t + A) = x(t) + [ax(t) + bu(d)]At + £(A1),

where £(At) is a stochastic process with, for all ¢,

(5.2) (1) E(g(at)) = 0;
(5.3) (2) E(£A) = oAt
(54) (3) E(£"(At) = o(At),n > 2;

(5.5) (4) &(Al), ---, £(At,) are mutually independent for non-over-
lapping intervals Aty , - -+, Al, ,
where E is the expected value operator, ¢” is a constant, and = = o(At)

means the limit as Af — 0 of %t is zero. In the conventional notation [6],

£(At) is written as the increment Az, = z(t + At) — z(t), where 2(f) is
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called a Brownian motion process. The limiting process as At — 0 is the
continuous control problem we shall consider. Our criterion function to be
minimized is

T
(5.6) E[ﬂ Muwu+x%Tq,

0
the expected cost of control plus terminal deviation.

The optimal open-loop control is deduced by considering all possible
functions u(t), to = t £ T, and choosing the one that minimizes the cri-
terion (5.6). The cost of control integral is deterministic. Furthermore, if
x(T) is viewed, at the initial time ¢, , as a random variable dependent upon
u(t), one notes that the variance o5z of this random variable is independent
of u(t). Since the expected value of the square of a random variable is its
mean squared plus its variance, we have

(5.7) E(@(T)) = [E@(T)F + o

so we wish to choose that %(¢) which minimizes

T
(5.8) [ wtde+ B

0
Due to the linearity of the equation of evolution (5.1), the expected value
of (T is the value of z(7T) that results from integrating (5.1) with forcing
function u(t) and with the stochastic process £(At) replaced by its mean
value at each time, zero. Hence, our problem reduces, for the special as-
sumptions of linear equations and quadratic criterion, to precisely the
deterministic problem that we solved in the previous section.

This observation leads to a fourth control scheme, called certainty
equivalent control [7]. This scheme replaces the random variables in the
stochastic problem by their expected values and solves the resulting de-
terministic control problem. Certainty equivalent control is seen to be
equivalent to optimal open-loop control in the above example.

To obtain the open-loop-optimal feedback control for the above problem,
we express the control as a function of state, as was done in (4.11), and
use that control having observed the state transition. The actual realization
of the control function then depends upon the realization of the stochastic
process; one expects this scheme to perform better than the pure open-loop
solution.

The pure feedback control law can be derived by dynamic programming.
One defines f(z, ) as the minimal value of (5.6), and writes

(5.9) f(z,t) = min Ig[uZAt + f(x 4+ (ax + bu)At + & ¢t + Ab)].

Hence, expanding in series and taking expectations using (5.2) through
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(5.5),

. N i 1 .9 | of
(5.10) O—n}tm[u +%(ax+bu)+§a (W_‘-a_t]'
Therefore,

p ¥

(5.11) v = __a—gz

= 5

and we must solve the equation

2 (of\
(5.12) 0= — <Zx> +axg£+%azgixf2+gft.
Letting
fle, 1) = g(t)z" 4 h(1),
(5.13) g(T) =1,
wT) =0,

we find that g(¢) satisfies the same equation, (4.16), as in the deterministic
case. Since the optimal control only involves g(¢), we have the same con-
trol rule as in §4, but not the same expected cost, due to the h(t) term re-
flecting the cost of the randomness. Hence, the optimal feedback control
duplicates the open-loop-optimal feedback scheme.

These equivalences of various control schemes are unusual and are the
result of our many assumptions of linearity and quadraticity. In the next
section we shall modify the problem slightly and demonstrate the dis-
similarity of the four different control philosophies we have distinguished.

6. Another continuous stochastic problem. We now modify the above
problem slightly. We assume that the variance of £(At) in (5.1) depends
upon the control decision, with no randomness in the evolution of z if no
control is exerted. This assumption reflects reality in many applications.
We replace (5.3) by the equation

(6.1) E(£(At)) = v’o’At,

where ¢” is a constant. We neglect the cost of control integral in the objec-
tive function (5.6), since the cost of control is now reflected in the uncer-

tainty attendant upon the use of control. Our criterion function is now
merely

(6.2) El2*(T)).
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For simplicity, we take a = 0 in the equation of evolution (5.1), and use
the continuous limit of

(6.3) x(t 4+ A = x(t) + [bu(t)]Aat 4+ £(AL).

We first consider optimal open-loop control. The variance of the random
variable x(T) as viewed at time t, is

(6.4) ft "ot dt

0

and the criterion function equals

6.5) ()P + [ "t d.

By the same reasoning as above, the expected value of z(7) is the value
yielded by replacing the stochastic process £( At) at each time ¢ by its mean,
zero. We therefore have the same problem as in §4 and §5, except for a
factor ¢ in the criterion function and no ax term in the equation of motion.
The adjoint variable A(¢) is, in this case, a constant with terminal value
2E(x(T)). The optimal control is given by

(6.6) u(t) = _Ew;ﬂ

’

and is a constant function of time. Expressed in terms of state, we have
(1)
(6.7) u(t) = A
b (T —t+ 55)

which, as before, is linear in the state at a given time. Using open-loop
control, the expected terminal value of z, if we start at time ¢ in state
x(to), is

0’2513( to)
(68) E[Z(T)] = R 0'2 )
b (T — 1 + l—)3>
and the variance of the random variable x(T') is given by
_ a2 (1) (T — t)

2
6.9 Ta(m) = 2\E
(69) b? (T — 1+ %—Z>

Hence, the value of the criterion function is given by

(610) PO = BTN + ol = ——2= W)
b? (T — t+ %)
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We next analyze the open-loop-optimal feedback control scheme. This
involves using the rule (6.7) for control as a function of state. The equation
of motion becomes

(6.11) w(t + At) = 2(t) — —M—QM + £(AL).
' T+

If we define f(x, t) as the expected value of 2°(T) using the above rule, we
have

(6.12) fa,t) = E| fla— wAl 5+ &+ At
' f T+ ’

which, after series expansion, letting At — 0, and taking the expectation,
gives

2 2 2
NP S

d
N2 g2 | 9t
T—t+ 7 2b2<T—t+") v

(6.13)
b?
Letting f(z, ¢) have the form,
f(z, 1) = g(t),
9(T) =1,

we obtain the linear homogeneous equation for g(t),

, 1 2
(6.15) 9 () + 25 z N 2 g(t) =0,

so that

(6.16) f(z,t) = 2* exp [t 1 il 7 3 — 2 |dr
T""T—I-E b<T—‘r—|—§>

2 2 2'

_ 2 _ 4 o _ 4

617) ~° exp{l 2 <T__ t+02>+21°gb2 21°g<T b w)}.
b

(6.14)

h2
To evaluate the expected terminal x value, given that we start in state
x(t) at time #,, we can solve equation (6.13) with solution of the form
Sz, 1) = g(t)=,
g(T) =1,

(6.18)
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obtaining

0'2 x(to)
(6.19) Elx(T)] = b2 <T a_2> .
— bt

This result is the same as the pure open-loop result (6.8), which is ex-
plained by the linearity of the process.

Analysis of the feedback scheme begins with the definition of f(z, t) as
the value of the criterion if we start in state z at time ¢, & < ¢ £ T, and

use an optimal policy. By the principle of optimality, we have

(6.20) f(zx, t) = min Ig]]'f(x + (bu)At 4+ & ¢t + Ab)],
which yields
. af | uld o af]
Hence, setting the derivative with respect to w equal to zero to minimize,
p &
(6.22) u=—-
1
dz?
and, substituting (6.22) in (6.21),
@)
. v \ex) | of
922
Setting
f(x t) = g(t)xz’
(6.24) ’
we get
b* ,
(6.25) 0=—~590)+g .
Solving for g(¢),
(6.26) fx, 1) = ¢ CDI0
(6.27) w=-"

If we now define h(z, t) to be the expected terminal x value starting in
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state x at time ¢ and using control (6.27), we can characterize h(z, t) by

(6.28) h(z,t) = Ig[h <x — b—jr; At + gt + At>:| ,
where the boundary condition is now
(6.29) hz, T) = .
Letting
(6.30) h(z, 1) = g(d)z,
g(T) =1,
we find
(6.31) h(z,t) = ¢ @0y,

The final control philosophy we have mentioned above is certainty
equivalent control, the optimal control for the deterministic system that
results from replacing all random variables in the stochastic problem by
their expected values. This yields the problem: choose %(t) so that x(T)
given by

x(t) = bu(t)i
x(tﬂ) = 20,

(6.32)

minimizes the expression
(6.33) 2 (T).

A little reflection shows that x(7") can be made zero by any of an infinite
class of controls, and the problem is therefore not meaningful.

We are now in a position to recapitulate our results. Foremost is the
conclusion that the four different control schemes give four different opti-
mal control rules. For open-loop control we have a rule given as a function
of time and, naturally, dependent upon & , z(%), and 7. This rule, which
never depends upon the realization of the stochastic process and which,
in our particular example, is a constant function of time, is (by (6.6) and

(6.8))
(6.34) u(t) = —— %) N
b <T — to+ 55)

The open-loop-optimal feedback control law is expressed as a function of
current state and time and depends upon the realization of the stochastic
process. It does not depend explicitly on the initial state or time. This law
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(6.7) is

(6.35) ) = = 20 7\’
b (T — i+ b-2>

Note that this law is the same as (6.34) initially (for state z(f) at time
to) and that it duplicates (6.34) if and only if the stochastic process takes
on its mean value, zero. The feedback control law depends on the current
time and state, just as does the above scheme. However, due to the fact,
stressed earlier, that the optimization mathematics is aware of the feed-
back nature of the control, we get a law different from (6.35), namely,
(6.27),

(6.36) u(t) = —

which, in this particular case, does not happen to depend explicitly on
the current time. The certainty equivalence concept, as noted earlier, is
inappropriate here and yields no unique control law.

If we examine the asymptotic behavior of the criterion function for a
long process (T — ) starting at time zero in state x,, we see that the
expected value of 2°(T) approaches zero in all cases. This is because for a
long process very little control is exerted at any particular time, hence
there is little randomness and we can steer assuredly toward the origin.
The nature of the approach to zero as a function of the length of the
process, T, is significant. For open-loop control the approach is inverse-
linear, with, by (6.10),

(6.37) E2X(T)] ~ "2;02 T,

For open-loop-optimal feedback control we have inverse-square con-
vergence, with, by (6.17),

4 2
(6.38) El*(T)] ~ T2 72,

b?
Finally, the feedback control scheme yields negative-exponential con-
vergence by (6.26):

(6.39) ElZ(T)] ~ e @7y,

Both the open-loop and open-loop-optimal feedback schemes can be ex-
pected to reach the same terminal x value (see (6.8) and (6.19)), but due
to its feedback nature, the latter scheme has less variance associated with
it. The pure feedback control has an expected terminal value much closer
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to the origin (see (6.31)) since one can aim closer with the assurance that
deviations resulting from the randomness caused by the greater control
will be corrected later. Examining the control rules themselves for a fixed
initial point, one finds that the pure feedback scheme calls for greater
control. This can be explained by the fact that the feedback scheme can
afford to aim closer to the origin in the assurance that overshooting due to
randomness can be caught and corrected. While the open-loop-optimal
feedback scheme will also catch and correct overshoot, the computation
of the control rule is not cognizant of this fact and is, therefore, more con-
servative. Pure open-loop control, of course, will not compensate.

7. Conclusion. We see then that for any but the simplest stochastic
problems, the various control philosophies that are equivalent for de-
terministic problems are quite dissimilar. Further, we have obtained some
quantitative idea of the relative behavior and performance of several
different optimal control schemes.
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ERRATA: A SOLUTION OF THE GODDARD PROBLEM*

BORIS GARFINKEL

Page 366. In (86), replace @ > wmax by @ <@max.

Page 366. In lines 5 and 6, replace the sentence beginning with the word
“From” by the following. From (86) and Lemma 3, 7 < v(z) < u(z), so
that, by (83), g, < 0 for all values of v between 7 and v(z).

* This Journal, 1 (1963), pp. 349-368. Received by the editors April 13, 1964.
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ON THE EXISTENCE OF OPTIMAL FEEDBACK CONTROLS. IL.*
T. F. BRIDGLAND, JR.}

1. Introduction. As has been noted recently [1], [2], two of the major
problems of optimal control theory remain unsolved except in special cases.
These problems are the ones of existence and of synthesis. Generally speak-
ing, the problem of existence, given a control system and a performance
criterion, involves the determination of conditions sufficient to ensure the
existence of a control function which is optimal relative to the criterion.
The synthesis problem requires the expression of the optimal control—
granting its existence—as a function of the state of the control system. This
function is called an optimal (feedback) control law.

In (3], a combined approach to the existence and synthesis problems is
developed by means of a generalization of a technique originated by
Carathéodory [4] and recently expounded in connection with optimal con-
trol by Kalman [5]. In order that we may develop the central purpose of
the present paper, let us outline here those results of [3] which pertain to
existence and synthesis.

Given a control system, represented mathematically by a vector differ-
ential equation

& = f(i, z, u(t)),

together with a specified set of control functions, u(t), it is shown in [3]
that if L(t, z, w) is a functional possessing the property of determinacy,
i.e., if there is a unique function, ¢y(t, 2), for which both

L(ty Z, ¢0(t; x)) =0
and
L(t, 2, u) > 0, u # ooty ),

are satisfied, then ¢o(¢, ) is the unique optimal feedback control law for
the control system in the sense that, along the trajectory, &(¢; to, o),
of the feedback system

& = f(t, z, eo(t, )),
we have
of
L(7, &(75 o , 20), o7, E(75 80 , 20))) dr = 0,

to

* Received by the editors March 20, 1964.
t Department of Mathematics, University of South Carolina, Columbia, South
Carolina.
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whereas, along any other trajectory, x(¢; t, xo, u), of the control system,
we have

o

t L(7, z(r5t0 , x0 , w), u(7)) dr > 0.

0
In these expressions ¢, represents the initial tsme, o the initial state of the
control system, and # an appropriate final time depending on t,, o,
and u.

Now in any given problem, the likelihood that L(t, x, u)—the choice of
which usually is determined by extramathematical factors—will satisfy
the determinacy conditions is slight. However, as pointed out in the final
remarks of [3], if a gauge function, V (¢, x), can be determined in such a
way that L*(¢, z, u) = V*'(¢, ; w) + L(t, z, ) has the determinacy
property, where V™ is a certain generalized total derivative of V, then the
@o(t, ) so determined is the unique optimal feedback control law relative
to the criterion

o

t L(r, &(r; to , w0, u), u(r)) dr.

0
Under the highly restrictive assumption that V (¢, z) is continuously dif-
ferentiable with respect to both independent variables, Kalman [5] showed
that V (¢, ) can be found as a solution to a Hamilton-Jacobi differential
equation. It turns out that V (¢, ) is then given by

i
Vo) = [ Lin (s 6,2), alr,alr 6,2))) dr.

However, Pontryagin and his collaborators [1] have given several examples
of basic problems of optimal control in which V (¢, z), as determined by
the above, does not possess the strong differentiability properties required
by Kalman’s approach. Nonetheless, this representation of V (¢, ) has
considerable appeal not only from the standpoint of the insight it conveys
but also by virtue of the fact that the application of dynamic programming
to optimal control problems rests upon the existence of such a representa-
tion for V.

Once the assumption of continuous differentiability for V is abandoned,
it is still possible to consider a generalized Hamilton-Jacobi equation (the
first of the determinacy conditions),

V+(t, Z;5 ‘PO(t; x)) + L(t) z, ¢O(t; x)) = 0;

and it is with the construction of a solution, of the desired form, of such a
generalized equation that this paper is concerned. Our construction requires
the introduction of a vector p(¢, ) which corresponds to the Lagrange



OPTIMAL FEEDBACK CONTROLS 139

multiplier of classical methods. We shall show that if p(¢, z) satisfies a
certain total differential equation—closely related to the ordinary differential
equation of Pontryagin’s maximum principle—as well as an appropriate
transversality condition, then a unique optimal feedback control law,
eo(t, ), exists and V (¢, ) has the desired form. In addition, we discuss a
method of finding p (¢, ). Our notation and terminology coincide with that
of [3] and a reasonable familiarity with that paper is assumed.

2. Problem formulation. Let U comprise the totality of measurable
functions on I which take values in a given subset ® < R™. Consider the
differential equation

(1) & = f(t, , ul)),

where z, f are vectors in R". We assume the following properties for
It z, )

(i) for each bounded subset D of R", f(¢, z, ¢) is bounded on I X D X &
and, for each u € U, f(t, x, u(t)) is measurable in ¢ for each x and continu-
ous in z for each ¢;

(ii) the Jacobian matrix f,(t, x, ¢) exists and is bounded on I X D X &
for each bounded D C R".
The local existence and uniqueness of solutions of (1) is assured by (i),
(ii); we assume further

(iii) each solution of (1) can be continued to all of 1.
These three conditions ensure that (1) is of class A [3].

We assume the existence of a function ¢ (¢, z, u)—the final time—on
I X R* X U to I(t), satisfying

(iv) ¢, 2(t o, o, w), w) = (te, @0, u), to =t <t(to,2,u),and
we define the set B, as in [3], by

(2) B={(tz) €I XR"|t"t,x,u) >t forsome u € U}.

The set of all w € U for which the defining property of B is satisfied will be
denoted by U(t, x).

Let L(t, z, ¢) be a functionon I X R™ X & to R' for which

(v) L(t, 2, ¢) is bounded on I X D X & for each bounded D € R" and,
for each u € U, L(t, x, u(t)) is measurable in ¢ for each x and continuous
in z for each ¢;

(vi) the gradient vector L. (i, , ¢) exists and is bounded on I X D X &
for each bounded D C R".

We shall call a funetion on I X R" to R™ a gauge vector if each of its com-
ponents is a gauge function [3]. Now let us suppose there is a gauge vector
p(t,z) on I X R" to R" for which

(vii) there exists a function ¢o(t, ) on I X R" to & such that ¢o(t, z(¢))
is measurable for every continuous z(t);
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(viii) in I X R", the condition ¢ 5 (¢, ) implies'
L(t, 2, ¢) + p(t, 2)+[(1, 2, ¢) > L, z, oot, ©)) + p(t, 2)+f(L, 2, octt, ).
Defining £(¢, z), 5(t, ) by
£(t, z) = L, , ¢o(t, x)),
5t x) = [, z, 08, 7)),

we assume that £, F are measurable in ¢ for each z, continuous in z for each
t, and that for (¢, z;) € D, 7 = 1, 2,

(ix) | £, 22) — £, @) = AD) |22 — @ |,

for each bounded D < R". It is a consequence of (x) and our previous as-
sumptions on f that

(3) &= 5(l, x)
is of class 4.
Now define the set B, as in [3], by
(4) B = {(ts, ) € B eo(t, &(t; 10, x0)) € Ulto, o)},

where .ig t; 1o, @) is the solution of (3). For B we assume
(xi) Bisan (n 4+ 1)-cell: B = {(t,2)|0 =t < T;a; < x: < by}.
We may define a functional V (¢, z) on I X R" by

i(tx)
Ve = [ enEnta)dn, (o) € B,
(5) :
= 0, elsewhere,

where (¢, z) is defined by

Hto, 20) = 't z0, wlt; o, 20)).

We assume
(xii) (4, x) is a gauge function on B having a nonnegative Y-derivate.
It is a consequence of (iii), (iv) that, if (o, 20) € B, then (¢, &(¢; 1, %0))
€ Bforallt € [ty, i(ty, x)). Hence, from (5) there is obtained

i (to.20)
(6) V(,&(t;t,20)) = ft L(r, &(r5t, @) dr, 0 =t < Ity x0).

Now suppose that for fixed (4, @) € B, u(t) is an arbitrary control in
U(to , o) ; then by virtue of (iii), (xi) and the continuity of (¢; ¢, zo , u),

1 The notation p(t, x)+f(l, z, ¢) denotes the scalar product of p and f.
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(t,x(t;t, 20, u)) € Bforallt € [ty, T") for some 1" such that {, <7’ < 7.
Hence, again there is obtained from (5)

T(t,x(t5tg,20,u)
(7) V(t7 x(ty tO;xO) u)) = f £’(Ty j(T) t: x(ty tO;xOyu))) dT;
12

Lh2t< T,

Note. In future arguments we shall frequently use the abbreviated nota-
tion x,(¢) in place of x(t;t, 2o, u).

In the sequel, we shall show that, under appropriate conditions, V (¢, )
as defined in (5) is a gauge function on B. We then utilize the results of [3]

to show that ¢o(¢, ) is the unique optimal feedback control law relative to
the criterion

t# (2,20 1)
[ Lz, (), u(r)) dr.
t

0

These results are contained in Theorem 1 below. Before stating this theo-
rem, however, it will be convenient to establish a few lemmas.

3. Fundamental lemmas.

LeEmMa 0. LetJ = [a, b] be a closed interval in I and let f(7, t) be a real-
valued function defined on J X J which s integrable in = for each t, contin-
uous tn t for each v and which satifies

If(Ty tZ) —f(Ty tl) l = M(T) ltZ — U l,

where M (r) is an integrable function of r; then for the function F(r,t) de-
fined on J X J by

mnn=fﬂmom

it follows that the partial derwative, F.(7, t), satisfies F.(t, 1) = f(t, t) ol-
most everywhere on J.
Proof. Tor each ¢ € J, there is a set N, for which u(N,) = 0 such that

F.(r,t) = f(r, 1), r€J —N;.

Let p be the set of rationals in.J; for the set P = U, ,N, we have uo(P) = 0.
Now let ¢ be an arbitrary but fixed point inJ — P andlet {¢,} be a sequence
of points in p having ¢ as a limit. From the Lipschitz condition and the
estimate

t+h

t+h
A O O T MO (WAIR'Y

t-+h

+ ]h—l ; FOS ) dh — f(t ) | + | (8 ) — f(4, 1) |,
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we obtain
t+h

\h’l S IO A= f@ 0

t+h

< ltn—tI'h—l t M(\) dx\

t+h
+ )h“ﬁ JO, ) dN = J6 ) |+ 110 ) = £, ,

from which the conclusion of the lemma follows readily.

Our next result, which plays a fundamental role in the remainder of our
arguments, is a generalization of the classical rule of Leibnitz for differ-
entiation of an integral with respect to a parameter.

LemmA 1. Let Jo and J1 be closed intervals in I and let f(r, t) be a real-
valued function defined on Jy X Ji which is measurable in 7 for each t, con-
tinuous wn t for each T, and bounded by an integrable functron of T onJo X J1 ;
let a(t), B(t) be absolutely continuous, nondecreasing” functions on Jy to J, for
which a < B. If, for almost every t € J1, fi(7,1) exists for almost all 7 € Jo and
s bounded on Jo X J1 , then the function v(t), defined by

B(t)
o) = [ 1,0 ar,

a(

1s absolutely continuous and, for almost all t € J1 ,
) B(8)
0(0) = S8, 08(1) = fa(t), 060 + [ 1o, 1) d.

Proof. The absolute continuity of »(t) is readily verified; we omit the
verification and show that the derivative on the right »" has the form indi-
cated for o. For h > 0 we find

B(t)
W+ 1) = o] = 17 [ e ) = S 0 dr
B(t+h)
+ B[ U e B = S 0] dr
B

a(tth)
s [ [f(r, L+ B) — f(r, )] dr

a(t)

B(tt+h) a(t+h)
+ h‘l{f (e ) dr — f (r, 1) dr}.
B(t) a(t)

(1)
The first term on the right of (v) tends to fi(r, 1) dr as h — 0 (ef.
a(l)

[6, p. 217]). The second and third terms on the right of (v) tend to zero

2 A sufficient condition for this is that the upper right-hand derivates of «, 8
be nonnegative almost everywhere [6, p. 207].
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with h by virtue of the continuity of «, 8 and the boundedness of f,(7, ).
By [6, p. 211], the final terms in (v) may be replaced by

t+h
(®) [ o0 dn,

where the function ¢(r, ¢), defined by
g(r, t) = f(8(7),0)8(r) — flalr),t)a(r),

satisfies the hypotheses of Lemma 0 onJ; X J; . Hence, the consequent of
that Lemma implies that the expression in (8) tends to ¢g(¢,t) as b — 0 for
almost all ¢ € J; .

LemMmAa 2. For fized > 0, the solution, (7;t, z), of dz/dr = F(r,z) isa
gauge vector on the set S = {(t, )| 0 £t < 7,2 € D}, where D is any closed
sphere in R".

Proof. We have

£(rita) = o+ [ 50,50 42)) i
t
hence, we may obtain the estimate
” .’I_J(T, to , 172) —_ 1_7(7', ty , .’171) “ _S_ “] Lo — 1 H

+ | ta — tll[futp] Il 5O\, 25 82, 22)) ||}

_I_

];T AD) || &\ tey ) — &5 8, 20) || dX .

From this estimate, there follow by virtue of the Bellman-Gronwall lemma
the inequalites
NZ(r;t + b,z + k) — &(r; 8, z)|
(8) S (k4 1R[] sup [[$O, 25 ¢+ k2 + )|}
rexp A(D)| 7 — ¢;
(9 N2t ) — 2t a)l| S [loe — aullexp AD) [ 7 — L5
| &(75tn 4 8n, 2n) — T(75 tn, xa)]l
S 6w sup SO EO a4 by @) exp AD) 7 — 1.

tprtnton

(10)

By virtue of (i), sup | ¥| may be replaced in these inequalities by
suprxoxa || f(1, x, ¢)||, and | 7 — ¢ | by a bound of appropriate magnitude.
The assertion of the lemma then follows by virtue of the definition of gauge
function [3], continuity being given by (8), the local Lipschitz property by
(9) and uniform absolute continuity (acu) by (10).
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LEmMA 3. For fixed + > 0, F(r, &(7; t, x)) 2s a gauge vector and
L(r, Z(7; 1, 2)) a gauge function on the set S of Lemma 2.

Proof. The assertion is a direct consequence of (ix), (x), and an argument
similar to that of Lemma 2.

LeMMA 4. The function V (L, x) defined in (5) is a gauge function on B.

Proof. Tor (11, 1), (t2, ) € B, the following estimate is readily ob-
tained from (5):

[ V(ts, 2)) — V(tr,20) | £ (|2 — @] + |82 — tll[tsutp] [, (N b, 20)) |}
102

t(¢1.21)

-A(D)ft oxp (A(D) |7 — 4]) dr

1

+ o — t| sup [ £\, T(\; 8y, 22)) |
[t1.¢2]

+ [t 22) — Tt , 20) | sup | &((r, &(r; ta, 2)) |.

[EC¢1,21),E(tgma)]

By an argument similar to that for Lemma 2, the conclusion follows from
this estimate in conjunction with (v) and (xii).
Now let us define a function ¢(7, t) by

(1) (e, ) = & a5 b wa(0);

of course, ¢ also depends on (Iy, o), but this will be fixed in any particular
argument. The existence of q(r, t) for almost all ¢ € [ty, T”) and each
T € [to, T) is guaranteed by Lemma 2 and [3, Lemma 4]. Since, for each
L€, T") and each r € [ty, T),

(12)  #rbn) = 2wl + [ 50,205 6 20)) d,

t
an cstimate, similar to (8), based on (12) shows that ¢(r, ¢) is bounded
uniformly on [ty, T') X [to, T"). As a consequence of this boundedness and

(x), we conclude by a similar estimate that gt F(r, &(r;t, 2,(1))) is bounded

uniformly on [ty, T) X [ts, T"); that this latter derivative exists is a conse-
quence of Lemma 3 and [3, Lemma 4]. An application of Lemma 1 permits
us to write

q(r, 1) = (4, xu(1), u(t))

13 T
(13) — F(t, 2.(1)) + ft g—tst\, (N 8, (1)) dN
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for almost all ¢ € [t,, T') and each r € [t, T'). A partial differentiation of
(13) with respect to = then permits the statement of the next lemma.
Lemuma 5. For almost every t € [ty, T'), q(r, t) satisfies

S alr, ) = 5. 5(r, alr; , 2(0)),

q(t, t)

almost everywhere on [t, T').
LemMa 6. (a) For each (to, x0) € B,

%V(t, F(t by, 20)) = —&(t, 5t to , 20))

almost everywhere on [ty , 1(ty, 20));
(b) Foreach (ty,x0) € B,

(% V(t, 2u(t)) = —&(4, 2u(8)) + (U1, 2u(2)), T, 2u(8)); £, 2u(8)))

d - HEEMO)) d o
i) + [ 2 e 2 m(0)) dr

almost everywhere on [ty , T").

The proof of (a) consists merely of differentiating (6), whereas (b) is a
consequence of application to (7) of Lemma 1, together with (xii) and
Lemma 3. In the latter case, the proof is similar to that for Lemma 5 and
for this reason we omit it.

Consider the functional k(¢, z, ¢) defined by

k(t7 €, ‘P) = L(t; x, gD) + p(t: x)'f(t, z, ‘p)
— &, 2) — p(t, )5, 2);

(14)

then for all (¢, z) € I X R", k(t, z, ¢) has a minimum on & at ¢o(¢, ). Let
(to ,20) € Band, for arbitrary fixed w € U(ty, x), let o satisfy to < ¢ < 1"
Define ¢ = z,(¢) and ¢*(¢, o, £) = @o(t, &(t; o, £)). Then for fixed
7 € (¢, T), the function k(r,&(r; ¢, z.(t)), ¢*(r, o, £)) has a minimum
at ¢t = o; hence,

(15) 5 K5, 555, 2(0), 6*(r, 0, £)) Juws = 0

for each ¢ for which this derivative exists. Thus we obtain
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Lemma 7. For each (ty, o) € B and each r € (¢, T),
5 €05, 555 4, 2(0)) = Lalr, 2053, 2(0), gulr, 0) s, 0
(16)  + p(r, (15 £, 2u(8))) o[ ful7, &(7; 8, 2u(2)), @u(r, 8))q(7, )
a sy .
- 51 SF(T; CB('T, t; xu(t)))]

for almost all t € [ty, T"), where ou(r, t) = @o(r, &(7;t, zu(t))).
Lemma 8. If p(t, ©) satisfies’

(17) p+(t7 x; §00(t7 x)) + fl‘T(t, z, ‘Pﬂ(t: CB) )P(t; x) + L:t(t) Z, QOO(t) x)) = 07
then the right hand side of (16) has the value

= 2 [p(r, 33 4, 2u())a(r, O]

for almost all =+ € [t, T').
Proof. For (ty, %) € B, (17) implies

a% p(r, &(r;t,2u(8))) + fo" (r, &(7; 8, 2u(1)), eulr, ))p(r, (75 4, (1))

+ Lo(7, &(7; ¢, 2u(t)), @u(7, 1)) = 0

for almost all 7 € [¢, T'). If the scalar product (on the right) of this equa-
tion with the vector ¢(r, t) be formed, the identity (f."p)+q = p-(fuq)
noted and Lemma 5 invoked, the conclusion follows readily.

4. Sufficient conditions for optimal feedback control. From Lemma 6(a),
it follows by virtue of [3, Lemma 3] that

(18) V+(t; j(t7 tO ) xﬂ), (po(t, Ci(t, tO ) xﬂ))) + £(t, j(t, tO ) xo)) = 0

almost everywhere on [t , 1(ty, o)) for each (¢, 20) € B. In a similar way,
replacing (9/0t)£(r, T(r; t, z.(t))) in Lemma 6(b) by

—(8/97)[p(r, &(7; 1, 2u(8))) +q(7, t)]

—as is justified by Lemmas 7, 8 provided p(¢, x) satisfies (17)—we may
write, by virtue of (viii) and [3, Lemma 3],

VH(t, 2(); u(t)) 4+ Lt za(2), u(?))

(19 L 7 - - -
) > { 20,200 1, 5.(0)) & — (32005, ()40,

3 The superscript “T"”’ denotes the transposed matrix.
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almost everywhere on [ty, 7”) for each ({4, %) € B. In (19), we have
written simply 7 for (¢, z.(t)).

Applying (3, Lemma 2] to (18), (19) leads to the conclusion that, for
almost all (¢, ) € B, the following statements hold:

(20) Vit x5 e0(t, ) + £(t, ) = 0;
V(a5 u(t)) + L(t, @, u(t))
(19a) > {e(l(t, x), (U, x)5t, )T (L, x5 u(t))

— p(U(t, ), (U1, )54, @) +q(U(L, @), 1)}
when u(t) ## ¢o(t, ). If the transversality condition
(xiii) £t ), £(I(t, x); t, ) (L, x; u(t))
—p(it, 2), UL, ©); 1, )+ (75 4, 25 u(0)) ]t Z 0
for almost all (¢, z) € B when u(t) # (¢, z),
be assumed, then (19a) becomes
(21) VE(t, x; u(t)) + Lt z, u(t)) > 0 when  u(t) # oo(t, ).

Under this condition then, (20) and (21) together are equivalent to the
statement that L*(¢, z, w(t)) = V' (¢, a;u(t)) + L1, z, u(t)) is determi-
nate on B.

Now let us define the generators II, R by

(22) It to, @0, u) = V(L 2u(t)) +f; L(r, zu(7), u(r)) dr;

(23) R(t, to,ﬁo,u) = H(t, to,ﬁo,u) —_ V(to,ﬁg).

Inasmuch as the generator IT and the function L™ satisfy the conditions of
[3, Theorem 3], it follows from that theorem that R(i; t,, xo, u) satisfies

the hypotheses of [3, Theorem 1]. Thus we may conclude from the latter
theorem:

i(to,z0)
(24) j; £(T) :E(T; tO ) xO)) dT + V({(tO ) xO)) x-({(to ) xO)) tO ) xﬂ))

= V(to ) xO);
tH(tg,20,u)
(25) /; L(T) xu(T); u(T)) dr + V(t#(to , X0, u), .Iu(t#(lo , Zo u)))

> V(tO ) xO)
for each t, and almost all 2, such that (t , xo) € B. Of course, from (24)
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and (5) we find that
(26) V(I(to, ), Z(I(to , 20); 0, 20)) = 0;

however, (26) can be deduced directly from (5) by continuity, so that (24)
contains nothing new.

If the (apparently artificial) assumption
(xiv)  u(t) # uo(t; o, @) implies (&(to, @, u), zu(t(lo, 20, %)) ¢ B

is made, then it is a consequence of (25) and (5) that

ihitg,@9,u)

(27) / Lir, 2u(r), u(n) dr > Vo, 20)
to

and this is~all that is needed [3, (4)] to justify the assertion that, for

(to, @) € B, ¢o(t, z) is the unique optimal feedback control law relative

to the criterion Q(#y, o, u) defined by

t(to,20,u)
(28) Qta, 20, 0) = | Lz, 2u(r), u(r)) d.

0

Remark. The assumption (xiv) may be justified in the following way.

Certainly if the consequent of the assumption holds, then (27) ensues.
Suppose, however, that for some (f, 2,) € B and some u € U(ty, 20),
u % o, that (¢*(to, o, w), 2.(t (1, 20, u))) € B. Then for the “extended
control” u*(t) defined by

. u(t), th <t < 't ) To , U),
w(t) =
u1(t), t#(to y Zo , u) é t,

where w; is optimal from (# (4, o, u), xu(t'(to, 20, w)), it is a readily
verifiable consequence of (25) and (7) that

th(tg,z0,u%)
[ Lz, 2us(0), w(0)) dr > V(o ).
0
Thus ¢o(t, ) is still optimal relative to such “extended controls”. How-
ever, rather than become involved in the obviously messy complications
associated with the concept of extended controls, assumption (xiv) is
made. This discussion shows that (xiv) is thus a convenience rather than an
essential.

Let us now summarize the foregoing results.

TaeoreM 1. If (i),..., (xiv) hold, if p(i, x) satisfies the differential
equation (17), then for each t, and almost all xo such that (ty, xo) € B, the
control

’U/o(t, tO’ xﬂ) = §00(t1 :z(t) lo ) xﬂ))
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is the unique optimal control in Uty , wy) relative to the criterion Q(ty, o, u)
defined by (28), and the minimum value of this criterion is V(to, Xo).

The assumptions (viii), (xiii), (17) are the “key’” hypotheses of Theorem
1 and, as such, may be said to constitute a ‘“minimum principle” for feed-
back controls. The similarity of this “minimum principle” to the “maxi-
mum principle” of Pontryagin is obvious.

b. Determination of p(¢, x). Our discussion of the determination of the
vector p(f, x) will be formal, since it involves the solution of a generalized
nonlinear total differential equation. The existence of solutions to such
equations is moot although in some applications it may be obvious.

Let us suppose, for each (¢, ) € I X R" and each fixed p € R", that the
functional

(29) L, z, ¢) + p-f(t, 2, ¢)

has a unique absolute minimum over ® at gy(¢, z, p). Now suppose that a
gauge vector p(¢, ) can be found as a solution of the differential equation

p+(t) s ¢o(t, x, p)) + f-’BT(t) x, ¢0(t7 z, P))p
+ Lx(t) x, ‘2’0(t) x, p)) = 0.
If this can be done, then it is clear that by taking

(30)

§00(t) x) = ‘1_00(% x, I’(t; x)),
there follows

£(t) x) = L(t) @, ¢0(t) z, p(t) x))):
‘.;'F(t, .’1/') = f(t) x, §2’0(t) z, p(t7 IE))),

and (30) reduces to (17). There remains only to verify that p(¢, x) satisfies
the transversality condition (xiii); actually, the latter condition serves as a
boundary condition for (30).

6. Discussion. While it might seem at first blush that the requirement
(characteristic of the Carathéodory technique) that ¢o(Z, x) be single-
valued is too severe, a little thought convinces one that uniqueness of an
optimal control is essential to the solution of the synthesis problem. In-
deed, one wonders if the requirement of such uniqueness should not ex-
tend even to the ‘“open-loop” situation, i.e., the case of programmed con-
trols. For if, from a given “phase” (it , x,), there is more than one optimal
control relative to a given criterion, one is faced—in practice—with a choice
of only one of these optimal controls and in such a choice there is implicitly
involved another criterion by means of which the aptness of the choice
may be judged. One cannot avoid the conclusion that if the original criterion
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had been sufficiently “strong”, the necessity for such choice would be
obviated.
Theorem 1 having been established under the assumption (xi), it is an

immediate corollary that the theorem remains true with BB assumed to be
of the form

B={(tz)|0<t<T a < a: < by,

a half-open (n 4 1)-cell. But by virtue of a well-known representation of
an arbitrary nonvoid open set [6, p. 18], the validity of the theorem may
now be asserted for any nonvoid bounded open 5. Actually, we could as
well have used, in place of (xi), the assumption that /B is an appropriately
formed set of positive measure. Then, in place of the continuity argument
used to establish (7), we could have used [3, Lemma 2].
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THE BANG-BANG PRINCIPLE FOR LINEAR CONTROL SYSTEMS*
L. M. SONNEBORN anp F. 8. VAN VLECKt

1. Introduction and statement of results. The bang-bang principle has
been treated mathematically by many people starting with Bushaw [1] and
continuing to Neustadt [2]. A rather complete bibliography of these and
other results may be found in [2]. For linear systems the most general results
are those given in [2]. The purpose of this paper is to extend these results
ag far as is possible in one direction. For some particular systems, it may
be possible to use a smaller restraint set, but unless additional hypotheses
are imposed on the system our results are the best possible.

We consider the real linear differential system

(1.1) &= A()x + B(t)u + f(1),

where A(t) is an n X n matrix, B(t) is an n X m matrix, and f(¢) is an
n-vector, each measurable on E' and integrable (absolutely) on each
compact interval. For each measurable (and integrable) function u, called
a control funclion, on a compact interval {, < ¢ < t;, the solution of (1.1)
initiating at x, is

(1.2) 2(t) = X))z + X(2) f: X7'(s)[B(s)u(s) + f(s)] ds,

where X(¢) is the fundamental solution of the homogeneous system
% = A(t)x for which X(#) = I. We consider control functions u(t) on
to = t = t; which lie in a nonempty, bounded restraint set U  E™; that
is, u(t) € Uforeacht tp =t < 1.

With these fixed data {(1.1), xo, to, U}, the set of all endpoints z(#)
defines the set of attainability K,(t,) C E". For any compact V < E™,
Vo will denote the set of extremal points of H(V'), the convex hull of V,
and will be called the set of extreme points of V.

In this terminology our main results are the following theorem and its
corollaries:

TuroreEM 1. If U C E™ is compact and convex, then Ky,(t1) and Ky ()
are compact and convex. Further,

(13) Kvo(tl) = KU(t1)

CoroLLARY 1. If V C E™ is a compact set with conwvex hull H(V') and
extremal point set Vo and W is any set such that Vo € W < H(V'), then

(1.4) Kw(t)) = Kpy(t) =Ky, (t).

* Received by the editors March 23, 1964.
t Department of Mathematics, The University of Kansas, Lawrence, Kansas.
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To see that Corollary 1 follows from Theorem 1, note that A C B implies
that K4 (&;) < Kz(i:) and hence

Kvo(tl) c KW(tl) C KH(V)(tl).

But on the other hand, Kv,(t1) = Kuv(t1) by Theorem 1, so that all three
sets are equal.

COROLLARY 2. If V is the set of vertices of a compact polytope V, then
KVO(tl) = Kv(tl)

It is well known that Ky(f1) is compact and convex whenever U is;
the new feature of Theorem 1 is the assertion that Ky,(t1) is compact and
convex and that Ky,(#) actually equals Ky(#). Theorem 1 asserts that
anything that can be done by a control having values in U can be done by
a control ranging over only the set of extreme points of U. Corollary 2
includes the results of LaSalle [3] and Pontryagin [4]; LaSalle’s bang-bang
principle for the system (1.1) restricted U to be a parallelepiped while
Pontryagin’s results were for a polytope. Theorem 1 also extends the result
of Neustadt [2] in so far as linear systems are concerned. Neustadt’s result
as applied to linear systems can be stated as follows.

TureoreM 2. If V C E™ is compact, then Ky (t1) is compact and convez.
Further, if H(V') s the convex hull of V, then

Kv(t1) = Knoy(t).

To see that Theorem 1 implies Theorem 2, suppose we have a compact
set VC E".Then Vo VC H(V)and Vy = [H(V)] . Hence by Corollary
1, Theorem 2 follows. On the other hand, Theorem 2 does not necessarily
imply Theorem 1 if m > 2. This is evident if one recalls that, for m > 2,
the set of extreme points of a compact convex set need not be compact.

2. Proofs. If f is a function with domain F and A C E, f4 will denote
the restriction of f to A. U is a fixed compact convex subset of E™, and
H={zc B Yo, =1;2,20,4i=1,2, ---,m+ 1}, the standard
m-simplex of B,

DeriniTION. A subset A of a Euclidean space 1s an analytic set if, and only
if, there exists a closed set A(ny, ng, -+, ny) for each finite sequence (ny , ny ,
-+, ny) of positive integers such that

A=UDNA(n,ny, -, m),
S k=1

where S s the set of all infinite sequences of positive integers.

LemMa 1. If E is a bounded (Lebesgue) measurable subset of E™ and
w:E — E" is measurable and A < E" is an analytic set, then w (A ) is measur-
able.
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Proof. If € > 0, there is a compact subset ¢ C F such that E — C has
measure less than e and u¢ is continuous. Since u¢(C) is compact, uc(C)
N A is analytic. Hence u¢ '(uc(C) N A) = ue '(A) which is analytic
and therefore (Lusin [5, p. 152]) measurable. Since e was arbitrary, v '(4)
is measurable.

Lemma 2. If A is a G5 (countable intersection of open sets) in a complete
metric space (X, d), then there is a metric d* for A such that (A, d*) is a
complete metric space with the same topology as (A, d) and d*(z, y) = d(z, y)
forallxz,y € A.

See Hausdorff [6, p. 244].

Lemma 3, which follows, is an extension of a lemma due to Filippov [7].
It and its proof are due to N. Aronszajn (private communication) whose
generous help is deeply appreciated by the authors.

LEmMa 3. If V.C E" s a Gs and ¢:V X [0, 1] — E" is continuous and
y:[0, 1] — E" is measurable and satisfies

y(t) € ¢(V, t) f07' all t€ [0) 1])

then there vs a measurable function v:[0, 1] — V such that
y(@) = ¢(v(t),t) forall t€[0,1].

Proof. Define ¢':V X [0, 1] — E" X [0, 1] by ¢'(u, t) = (¢(u, t), t).
Clearly ¢ is continuous. If ¢ > 0 and u € V, then, due to the compactness
of [0, 1], there is a neighborhood N (u) of u such that d(¢' (N (u), 1)) < e
for all ¢ € [0, 1]. (d(A) is the diameter of the bounded set A.) We also can
require that d*(N(u)), the diameter of N(u) in the complete metric
topology for V given by Lemma 2, also be <e. Thus, since V is separable, we

inductively (on k) define for each finite sequence (n;, ne, ---, m;) of
positive integers closed sets V(n:, ---, ni) such that

(i) V(@) =V,

(i) d*(V(ny, -, m)) < 2%fork > 0,

(111) V(nl, ety ’/Lk_l) = Unk V(nl, cery Mg, nk) for & > 0, and

(iv) d(¢'(V(n, ==, m), 1)) <27

Next we let y':[0, 1] — E" X [0, 1] be given by y'(¢) = (y(t), ), and
let I(Z) = [0,1]. We now prove that there are measurable sets I(ny, - - - ,7)
corresponding to the above sets V(ny, - -, n;) such that

(v) I(&) =10, 1],

(vi) y'(t) € ¢'(V(ny, -+, m), t) for each t € I(ny, -+, n), and

(vii) I(ma, =+ ymr) = Uy Iy, -+, Mg, ) for all k > 0,
where, clearly, if such I'(n,, - - -, n;) exist the last union may be made into
a disjoint union by the usual process.

By hypothesis, I() satisfies (iv). We assume, then, that I(n,, - -+ ,n_1)
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exist satisfying all the above. Then

Y'(t) € ¢ (V(ng, -, me), t) fort € I(ny, -+, mey),

and, therefore,

' (V(ng, -+ my), I(n, -+, my))

= U¢,(V(n1} o ')nk)) I(nly T 7"16—1)) C U¢,(V(n17 )nk)aI(Q))7
ng ny

where each of these last sets is analytic as a continuous image of a G;
(cf. Sierpinski [8, p. 219]). Let

I(ng, o, m) =y & (Ving, -, m), I(F) NI(ng, -, ms).

By Lemma 1, the sets I(n,, ---, n;) are measurable. They clearly have
property (Vll) Now if ¢ € I(nly ] nk), y/ = (y(t)y t) € (¢’(V7 t), t)
=¢'(V, ) and y'(t) € ¢'(V(na, -+, m), I(F)). Thus /' (t) € ¢'(V(n1,

-, M), t), and the constructed sets satisfy (vi) also.

Note that for each k = 0, I(&) = [0, 1] = UI(ny, ---, n). We con-
struct a sequence of “‘step functions” v,:[0, 1] — V by choosing a point
v(ng, -+, m) € V(ng, ---, m) for each (ny, -+, n;) and setting v, (¢)
= v(ny, -+, m) for each ¢t € I(ny, ---, my). The measurability of
I(ny, ---, n) guarantees the measurability of v, . Because of condition
(ii), the sequence {v:(¢)} is a Cauchy sequence in the d* metric and hence
also in the Euclidean metric. Since d* is complete, limgw () = v(t) € V
in d* and hence in the Euclidean metric. Hence »:[0, 1] — V is measurable.
From the continuity of ¢’, we get

lin & (w(t), 1) = ¢ (v(1), 1).

On the other hand, y'(¢) € ¢'(V(ny, -+, m), t) for ¢t € I(ng, -+, m)
and d(¢'(V(ny, -+, m), 1)) < 2% so that

d(y' (1), ¢'(we(1), 1)) < 27,
whence

(¢(v(?), ), 1) = lkiig¢/(vzc(t), 1) =y'(t) = (y(t), 1)

so that, finally, y(t) = ¢(v(t), t). This concludes the proof of Lemma 3.
The next lemma is well known but for the sake of completeness we in-
clude a brief proof.

LuemMma 4. Let V, be the set of extreme points of a compact convex subset V
of a normed linear space. Vo 1s a G .

Proof. Let A, = {z € V |thereexist y,2 € Vand \ € [%, 1 - %il such

that x = Ay + (1 — N)z}. Since V and the interval I, = [%, 1 - %] are
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compact, the set 4, is closed. Therefore 4 = U, _; A, is an F, which con-
tains all points of V except the extreme points. Thus Vo = V — A isa Gs .
The following lemma is used to represent a control function; it was sug-
gested by a similar construction due to H. Hermes [9].
Lemma 5. Let f:[0, 1] — U be measurable. Then f admits a representation
of the form

m+1

(2.1) 1) = 2 o (Du(t)
where the real-valued functions o are measurable, a(t) = (at(t), -,

" (t)) € H for each t € [0, 1] and u::[0, 1] — U, is measurable, i =
1,2 -, m+ 1.

Proof. For each ¢t € [0, 1] there exist a point a(t) = (a'(f), --- ,
o"(t)) € H and points u(t) € U, such that

m+1
1) = 2 (us®).

It remains to show that the functions on the right-hand side can be selected
to be measurable. In order to do that, note that since U, is a G5 the set
G=HXUyX --- XU,

———

———

m+ 1
is a (5 and define a function F:G X [0, 1] — E™ by

m+1
1 2 m+1 7
Fla, o, -+, a 7ul5u25"')um+15t)=zaui-
=1

Then F is continuous on G X [0, 1] and for each ¢t € [0, 1], f(¢) € F(G, t).
Thus by the principal lemma, Lemma 3, there exist measurable functions
a(t) € H and u;(t) € U, such that for all ¢,

m+1
() = Fa), m(®), 5 umaa(t), ) = 2 @' (Oust).
This completes the proof of Lemma 5.

The next theorem is due to Dvoretzky, Wald and Wolfowitz [10, p. 68]
and is an extension of Liapounov’s Theorem [11, 12]. This together with
the preceding lemma enables us to obtain a bang-bang control which ac-
complishes the same end as a given control.

TuroOREM 3. Let the classes of functions 8 and B be defined as follows where
H, is the standard q-simplex in E*:
= {a|a:[0, 1] = H,, a measurable}
= {a|a € B and for each t € [0, 1] exactly one of the components of &

equals one}.

B
B
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Let py, « -+, up be finite measures and let

1 1 1
1 1 2
APQ={</adp'lyn')/adl-"p"/adl"l"";
0 0 0

1

1
fazdﬂp,“',f aqdup> aeﬁ}
) )

1 1 1
APQ={<fO &ldﬂl,"',l aldp'p’°""£ aqd”'p) E!EB-}.

If pi, -+, pp are alomless measures, then A, = A, .
TueorEM 4. If Y is a measurable and (absolutely) integrable n X m
matriz defined on [0, 1],

and

A= {fl Y(0)u(t) dt | u measurable, u(t) € U} R

and

1
Ay = {/ Y () wo(t) dt | uo measurable, uo(t) € UO} s

0
then

A =4,.

Proof. By Lemma 5, if f is measurable with f(¢) € U, then f may be
written in the form (2.1) where ' and u; are as given in the lemma. Thus

[ v a= [ ro [’f (o) |t = ) [ «@uo

1=

where v;(1) = Y (t)u(t).
For each measurable subset £ C [0, 1], define

W) = [ i)

where v, is the jth component of the n-vector v;, ¢ = 1,2, -, m + 1;
j=1,2, ---, n. Each of the measures u;’ is atomless. Next consider the
[(m + 1)* n]-dimensional vector w, , « € B, defined by

1 1 1
1 1 1 1 1
wa=<[ad”’l)"';[“dl-"ln)/adllﬂa"'y
0 0 0
1

1 1
+1
f a dufﬁﬂ,f o dut', - ,f a” d#$+1>-
0 0 0
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By Theorem 3, there cxists a measurable @ with a'(t) = Oor land
L&' (t) = 1, such that we = w; .
Therefore

1 1
=2 1 2
<f «@ dl‘2, ] > a2 dﬂ21, ,f @ dl‘&n),
0 0

1 1 1 1
([ Ny ) ([ o [ 1),
0 o 0
dp,g <
1
(f _mA1 dum+1 e Prian) de+1> <
o

1
m +1 m+1 n
dﬂm+l P ,f 64 dﬂm-l'l),
0

and hence

m+1 m+l

> f o vy dt = f v; d.

=0
Therefore
m+1 m+1 .
f Y(O)F() di = Z f o v dl = Z‘,f & v, di.
If we let
I.={tefo,1]|a' ) = 1}, i=1,2 - ,m+ 1,

then each set I; is measurable, UiZ)' I; = [0, 1], and I, N I, = 8,I; . Next
define

fo(t) = ui(t) for t€1;, 1 =12, .-+, m + 1
Then f, is measurable, f,(¢) € Uy, and

m+1

[ youw =& [ v @

m+1

faMmmm

It

/01 Y(Of(1) d.

Thus any element of A is an element of A, . Since A¢ € A, Theorem 4 is
established.

To finish the proof of Theorem 1, note that without loss of generality
we may assume t, = 0 and #; = 1 so that

ﬂn=c+ofﬁwmmm
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where ¢ = X(1)xy + X(1) f X7 (t)f(¢) dt, C is the nonsingular matrix
X(1),and Y (1) = X‘l(t)B(t) Thus

Ku(tl) = Ku(l) = C + CA
and

KUo(tl) = KUO(]-) =c¢+ CA,.
But, by Theorem 4, A = Ay, so Theorem 1 is established.

3. Remarks.

1. If U is a given compact set, one might hope that a set § C U has the
bang-bang property, namely Ks(t) = Kgw)(t), if and only if U, C S. Un-
fortunately this is not true. For example, consider the (one dimensional)
control system & = z with any restraint set U. Since the set of attainability
(in time ¢) is always the one point ¢z, , we do not have a converse to
Theorem 1.

2. To see that Theorem 1 is, in general, best possible, consider the (three
dimensional) control system # = u when the restraint set U is any bounded
set whose extreme point set U, is not compact. Any subset of U not con-
taining all points of U, obviously fails to have the bang-bang property.

3. As Neustadt [2, p. 115] has remarked, the convexity of the set of
attainability is of importance if it is desired to compute an optimal control
by means of the Pontryagin maximum principle. Moreover, the fact that
the optimal control can always be chosen to be a bang-bang control should
be of use to design engineers.

4. The existence of optimal controls, assuming the system is controllable
ty

and the cost is given by C(u) = f [a(t)x(t) + b(t)u(t) + fo(t)] di, is
to

assured by the same argument as given by Neustadt [2, pp. 115-116] since
we have shown that the set of attainability depends at most on the extreme
points of a compact restraint set. (We are assuming that the target set,
which is closed for each {, moves in an upper semi-continuous manner.)
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STABILITY CRITERIA FOR FEEDBACK SYSTEMS
WITH A TIME LAG*

ALLAN M. KRALLf{

1. Introduction. In the back of many earlier texts on control systems,
topics such as time lag systems, sample data systems and nonlinear systems
appear. At the present time, books are appearing in these various fields
with one notable exception—time lag systems. The principal reason for
this omission is simply that not enough is known about them, especially
when tests for stability are considered. This paper proposes to fill in some
of the gaps in this area.

We will consider a linear feedback system in which the open loop transfer
function has a time lag 7. In a great many instances the open loop transfer
function may be represented by Ke °h(s)/g(s) where g(s) and h(s) are
relatively prime polynomials in s, g(s) = s" + @™ + -+, h(s) = §"
+ bs™ ™" + ... . If the open loop output is multiplied" by ¢* and added to

the input to form the “error”, the closed loop transfer function is of the
form

Ke h(s)
g(s) — Ke®e—*h(s)

Stability problems may then be resolved by studying the zeros of the
characteristic equation

F(2) = g(z) — Ke“e "h(z) = 0,

the system being stable if all the zeros of F(2) have negative or zero real
parts.

Unfortunately, unlike systems with no time lag, F(z) has infinitely many
zeros, and sometimes an infinite number with arbitrarily large positive real
part. Since slight variations in the coefficients of F(z) only vary the zeros
locally, it is necessary to know when such situations occur.

TueoreM 1.1. Let F(z) = g(z) — Ke'e "h(z), where g(z) = 2" + a"™"
4+ oo andh(z) = 2"+ b 4+ -, 7> 0,K = 0and 6 = 0 are real
constants, a; and b; are complex constants.

I. If n > m: the number of zeros of F(2) with positive real part (or lying
m any right halfplane) s finite; if K % 0, F(2) has an infinite number of
zeros with arbitrarily large negative real parts.

* Received by the editors January 30, 1964, and in revised form May 1, 1964.
+ 333 McAllister Hall, Department of Mathematics, The Pennsylvania State
University, University Park, Pennsylvania.

1 By letting 6 = 0, we have positive feedback; § = =, negative feedback. Thus we
can consider both simultaneously.
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II. If n = m: when K # 0, F(2) has an infinite number of zeros given by
(1.1) 2 = = (log, K + i(0 + 2kr)) + o(1),

where k = 0, 1, £2, -+, and only a finite number of other zeros. If
K < 1, F(2) has only a finite number of zeros with positive real parts. If
K > 1, F(z) has only a finite number of zeros with negative real part.

II1. If n < m: the number of zeros of F(z) with negative real part (or lying
in any left halfplane) is finite; if K 5~ 0, F(2) has an infinite number of zeros
with arbitrariy large positive real parts.

Proof. See [7].

TaeoreEM 1.2. With the notation of Theorem 1.1, if n > m or n = m,
K < 1, for fized K, all of the zeros of F(z) with positive real part lie within
a circle of radius p = M 4 1, where

M =sup[flai |+ |K|-|0:}7 ond {|a [}l &0 >m,

M=sup[{iaii_{-|_KKI'|bil}j:| if n = m.

Proof. If |z] > p and Re (2) = 0, then when n > m,

PG 12 12 = X il 2P = K12 b2
2 e =M X |

(i)

_ ezl = Q+M)1+M
2] —1

> 0.

When n = m,

[FE 12 1= K1l = S llal+ K [}z

> 0.

Note that the radius of this circle is independent of 7 as long as r = 0.
Thus in trying to find which values of K lead to stable systems, we need

to consider only the casesn > m and n = m, K < 1. We now extend the

Nyquist eriterion and the root-locus method to cover these situations.
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2. Nyquist criterion. If n > morn = m, K < 1, let R be any number
greater than the number p of Theorem 1.2. R is large enough so that a circle
of radius R centered at the origin contains all of the zeros of g(z). Let Cr
be a semicircular contour varying along the imaginary axis from —R to R
and then from (0, B) to (0, —R) along half of the previously mentioned
circle in a clockwise manner, avoiding zeros of g(z) on the imaginary axis
by arbitrarily small semicircles centered at those zeros.

TuEOREM 2.1. The number of times Ke "h(z)/g(z) passes through ¢ ™ as
2 varies around Cg 1s equal to the number of tmaginary zeros of F(z). If
F(2) has no tmaginary zeros, let P be the number of zeros of g(z) with positive
real parts, Z be the number of zeros of F(z) with positive real paris, N be the
number of counterclockwise encirclements of ¢ * by Ke "h(2)/g(2) as 2
varies around Cr . Then Z = P — N.

Proof. (See [4].) It is well known that the number of counterclockwise
encirclements of the origin by a meromorphic function as z varies in a
counterclockwise manner around a contour is equal to the number of zeros
minus the number of poles of the function contained within the contour.
Now as z varies around Cy, the number of encirclements of e ™ by
Ke h(z)/g(z) is the same as the number of encirclements of the origin by
¢ — Ke ™h(z)/g(2). This is the same as the number of encirclements of
the origin by 1 — Kee¢ ™h(z)/g(z), which is the same as the number of
encirclements of the origin by F(z)/g(z). Since Ck is a clockwise contour,
wesee Z = P — N.

COROLLARY 2.2. A necessary and sufficient condition that F(z) have no
zeros with positive real parts is that N = P.

Note that in constructing the path of Ke "h(z)/g(z) as z varies along
the imaginary axis, the magnitude of Ke "“h(z)/g(z) is the same as when
7 = 0. Only the argument is changed by an amount —7w when z = fw.
Further note that M and N circles may be used the same as when 7 = 0.
(See [6, pp. 141-144].)

There is an alternate method which may be used which involves only the
Nyquist contour with + = 0. This procedure was first used by A. A. Sokolov
and N. N. Miasnikov (see [9, p. 421]) who were considering the Mikhailov
criterion—the Soviet equivalent of the Nyquist criterion.

TueoREM 2.3. Let N (1) be the number of counterclockwise encirclements of
¢ by Ke "h(z)/g(2) as z varies over Cr . Then if the path of Kh(z)/g(2)
does not intersect the unit circle as z varies over Cr, N(7) = N(0) for all
T=0.

Proof. If N(7) % N(0) for some 7 5 0, then, since the Nyquist contour
is continuous in 7, there must be a 79, 0 < 7o < 7, for which the Nyquist
contour passes through ¢~ *’. Thus there is an w such that Ke "*“h(iw) /g(iw)
= ¢ “and | Kh(iw)/g(iw) | = 1, which is impossible. .

If the path of Kh(z)/g(z) does intersect the unit circle, let ¢*®, ™2, - - -



FEEDBACK SYSTEMS WITH TIME LAG 163
i ... be the points of intersection. For each ¢**1, let iw; be a point on
the imaginary axis such that Kh(iw;)/g(iw;) = €'*'. Then if Ke™"h(z)/g(2)
is to pass through ¢ *’ we must have

—iTwj P . .
Ke .h(le) - ez(ai—rwj) — e—w
g(iw;)
or
1
r= =00+ a; + 2kr),
wj
where £ = 0, =1, £2, - - - . Let these nonnegative values of 7 for all 7, k
be arranged in an increasing sequence 7y, T2, - -+, Tn, - -+ . We then have

THEOREM 2.4. If t; and t; are in the same open interval (7, Ti11), then
N(t) = N(t).

Thus tests for stability may be made by considering the ordinary Ny-
quist diagrams with + = 0.

3. The root-locus method. Although the Nyquist criterion is left rela-
tively unchanged for systems with a delay, the root locus diagrams are
radically altered. This is to be expected, since the characteristic equation
contains an infinite number of zeros. We will see, however, that only a
small part of the root-locus diagram is important, and with the aid of some
construction rules, that part may be easily found.

It will be convenient to distinguish between various parts of the root
locus. Hence the following.

DEFintTION. The root-locus of F(z) s the set of all points z such that z is a
zero of h(z), or for which there is a real number K, — o < K < oo, such
that F(z) = 0.

The positive root-locus of F(z) is the set of all points z such that z is a zero
of h(2), or for which there is a real number K, 0 < K < o, such that
F(2) = 0. The zeros of h(z) are included in the root-locus since they are limit
points of the zeros of F(2) for all of the appropriate choices of K, i.e., they are
zeros of F(z) when K = o,

The negative root-locus can be similarly defined although we will not
need to consider it. It is easy to see that the negative root-locus for 6 is the
positive root-locus for = + 4.

TaEOREM 3.1. Let z be a point in the complex plane. The following state-
ments are equivalent.

(1) 2 is on the root-locus of F(z).

(ii)

(31) cos (8 — 7y) Im (h(2)g(z)) + sin (8 — 7y) Re (h(2)g(z)) = O.
(See [5].)
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Proof. Suppose z is on the root-locus. If g(z) # 0 then for some K # 0,
Ke' ¢ /g(2) = 1. Thus

;% = K¢ [cos (0 — ry) — isin (0 — 7y)].

h(2)gz) = K e |g(2) |2 [cos (8 — 7y) — 7 sin (6 — 7y)].
Since K, 7, « are real,
Re (h(2)g(z)) = K '¢" | g(2) [* cos (6 — 1y),
Im (h(2)g(z)) = —K ¢ | g(2) |* sin (6 — 7y).

Multiplying the first by sin (8 — 7y), the second by cos (8 — 7y) and add-
ing, achieves (3.1). So (i) implies (ii).

Conversely, if (3.1) is satisfied, then Im (¢¢ h(2)g(z)) = 0. So
¢®eh(2)g(z) = R(z), where R(z) is real. If R(z) = 0, then either
h(z) = 0 or g(z) = 0 and z is on the root-locus. If R(z) # 0, let
K = |g(z) "/R(2). If K = 0, then g(z) = 0 and z is on the root-locus.
If K 5 0, then Ke“e ™h(2)/g(z) = 1 and F(z) = 0. So (ii) implies (i).

Note that K can be found by

Il

(3.2)

K = ¢"|g(2) | cos (0 — ry)/Re (h(2)g(2)),
or by
K = =& | g(2) [*sin (8 — 79)/Im (h(2)9(@)).
TueoreEM 3.2. The multiple points of the root-locus are isolated and satisfy
(3.3) h(2)lg'(2) + 79(2)] — g(2)k'(2) = 0.

Proof. If z is a multiple zero of F(z) for some value of K, then F(z) = 0
and F’'(z) = 0. Eliminating Ke”e™ from these two equations results in
(3.3). Since (3.3) is a polynomial of degree at most n + m, there can be
only a finite number of isolated multiple roots of the root-locus.

TurorEM 3.3. The points on the root-locus of F(z) for specific K are con-
tinuous functions of K.

This follows directly from Hurwitz’ Theorem (see [10, p. 119]). To
“make’ functions, different branches of the root-locus may be identified
at multiple points first according to argument and then according to mag-
nitude for values of K first slightly less than and then slightly larger than
that value of K giving a multiple point.

THEOREM 3.4. With the exception of mulliple points, the points on the root-
locus of F(z) for specific K are differentiable functions of K.

Proof. (See [3].) Let 2y be a simple zero of F(z) when K = K,. We need
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to show that

Iim — ]
xxo K — Ko

exists, where z is a point of the root-locus and limg-x, 2 = 2, . We have
0 = g(z) — Kee 7h(z),
0 = g(z) — Keee “h(z) — (K — Ko)e“e "h(2),
= (z — 20)W(z) — (K — Ko)e e h(z),

where W(z) ¢ 0 and W(z) = dF/dz|z = 20, K = K,. From this we
find that

0 —7Tzg
z — 2 e” ¢ ™ h(z)
4 Ii . .
(B4 m g = e = K e (W) — 7h(a)

TaEOREM 3.5. If h(2) and g(z) have real coefficients, (3.1) becomes

k_2k+1 2k+1
cos (6 — 7y) Z( D%y > <2k + 1>

@k + 1! = i
(35) (= D™ D (2)4%H (1) + sin (9 — ry) ‘;()L@g;j
()o@ - o

Proof. (See [5].) This follows from expanding h(z) and ¢g(z) in MacLaurin
expansions about x and solving for the real and imaginary parts of h(2)g(z).

TaEOREM 3.6. The root-locus contains the entire real line (y = 0) if and
only if 0 = 0 or 6 = 7w when h(z) and g(2) are real polynomials.

Proof. If the z-axis is contained in the root-locus, then y = 0 is a solu-
tion of (8.5). Thus sin § = 0, and § = 0 or § = . The converse is trivial.

4. The positive root-locus.
TuroREM 4.1. As x becomes arbitrarily large o the right, the positive root-
locus of F(z) approaches

(4.1) y = } (0 + 2%r),

where k = 0, &1, £2, -+ | in the right halfplane asymptotically. Further,
K— wasax— .

As x becomes arbitrarily large to the left, the positive root-locus of F(z)
approaches

(42) y = } 0 — (n — m)m + 2kn),
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where k = 0, &1, &2, --- | in the left halfplane asymptotically. Further
K—0asz— — o,

Proof. Let u(z) = ¢“¢ h(z)/g(z) and consider only those values of z
greater in absolute value than each of the zeros of g(2) and h(z). For those
values of 2z, the positive root-locus of F(z) consists of all points where u(z)
is real and u(z) > 0, i.e., arg u(z) = 2kwr for some integer k.

Now arg u(z) = 6 — 7y + arg h(z) — arg ¢g(z). For bounded y, as
x — o, arg h(z) — 0 and arg ¢g(z) — 0. Thus for bounded y, as x — «,
arg u(z) = 0 — 7y + o(1).

Choose any ¢ > 0 and then any y = (1/7) (6 + 2km) — (1/7)¢, where
k is any integer. If z = x + 4y, arg u(z) = 2kr + ¢ + o(1). By choosing
x > x50 that | o(1) | < /2, we see arg u(z) = 2kr + v where v is be-
tween ¢/2 and 3¢/2. Similarly, if ¢ > z;and y = (1/7) (6 + 2kw) + (1/7)e,
arg u(z) = 2km — &, where § is between ¢/2 and 3e¢/2. Choose = so that
x > xo and z > x;. Consider a straight line between zp = « + #(1/7)
(0 + 2kw) + i(1/7)eand 2z = = + #(1/7) (8 + 2kmr) — 7(1/7)e. Since
arg u(z) is continuous in 2, at some point between zo and 2; , arg u(z) = 2kw
and u(z) > 0.

Note that asx — o, | arg h(z) — arg g(2) | — 0, so that e may be chosen
arbitrarily small. Further note that for each z approaching the asymptotes,
K is given by

—10 712

K= 0@ _ iy 4 oo1)),
h(2)
as ¢t — ©, 80 that K — « agsax — .

The second part of the theorem follows by replacing z by —=.

Note that those values of K for which the root-locus crosses the imaginary
axis increase as the root-locus becomes farther away from the origin. This
means that for fixed K most of the zeros of F(z) lie in the left halfplane, and
also that it takes a larger value of K to force more to cross the imaginary
axis. Thus only a finite part of the complex plane near the origin needs to
be considered.

We need to represent g(z) and h(z) in factored form. Let

g(Z) = I]I (Z - pj)ai) h’(z) = I;I (Z - zj)ﬂj;

where D_; a; = n and Zj B; = m. We also need the following.
DerintrioN. The angle of departure (arriwal) of the root-locus of F(z) at
20 18 the angle made at 2y by the tangent lo the root-locus for increasing (de-
creasing) K.
THEOREM 4.2. As K approaches 0, «; distinct branches of the positive root-
locus of F(z) approach each zero, p; , of g(2). As K approaches =, 3; distinct
branches of the positive root-locus of F(z) approach each zero, z; , of h(z).
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Asin (3.3) this follows directly from Hurwitz’ Theorem (see [10, p. 119]).
TuaeorEM 4.3. If p; is a zero of g(z) of order a;, then the positive root-
locus of F(z) departs from p; making angles

(43) ¢; = ?.%(Z; B:arg (p; — 2:) — ; o arg (p; — p:)

+ 0 — 7y; — 2kn),

wherek = 0,1, -+ oy — land y; = Im p; .
If z; is a zero of h(z) of order B; , then the positive root-locus of F(2) arrives
at z; making angles

(4.4) 6, = Elj (Z; a; arg (z; — pi) — ;; B: arg (z; — z:)

— 0 + 7y; + 2kr),
where k = 0,1, --- ,8; — 1l and y; = Imz;.

Proof. (See [4].) Consider one of the branches of the positive root-locus
which departs from p; . Choose K close to 0 and let z be on that branch for
that value of K. Then we have

K¢ ] (2 — 2:)%

I;[ (2 — pi)ai

= 1.

Taking arguments,
dBiarg (z — 2 — D asarg (z — pi) 4+ 0 — 7y = 2.

Solving for those terms involving p; (or 2;) and letting K approach 0 (or «)
completes the proof.

THEOREM 4.4. Let 2o be any point on the real axis, h(z) and g(z) have real
coefficients, {z:}," and {pi}:" be the real zeros of h(z) and g(z) greater than 2z,
and 0 = 0 (0 = ). Then 2y is contained in the positwe root-locus of F(z) if
and only if D i1 Bi + Doy a; is even (odd).

Proof. (See [4].) Consider the case where § = 0. Since ¢g(2) and h(z) have
real coefficients, zeros of g(2) and h(z), if complex, occur in conjugate pairs.
Along the real axis, if 2; and Z are complex conjugates, arg(zo — 21)
+ arg (20 — 21) = 0.

Now, as in the proof of Theorem 4.1, consider

€ h(z)

u(zo) = g(zO) )

arg u(z) = —1yo + Z Bi arg (20 — 2:) — Z o; arg (20 — pi).
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On the real axis yo = 0 and the arguments from complex zeros drop out.
Thus

arg u(z0) = > Biarg (20 — 2:) — 2 a;arg (20 — po),

where the sums are taken over real zeros.

If D018 + Doiiaiis even, then D iy B — D.i_ia; is also even,
u(z) > 0, and 2 is on the positive root-locus. If D i1 B: + 25— a;is odd,
then i B: — D ie1 aiis odd, u(z) < 0and z is not on the positive root-
locus.

The case where § = 7 is similar.

THEOREM 4.5. If the coefficients of g(z) and h(z) are real, 6 = 0 or =, and
F(2) has a zero of order m at z = a on the real axis for K = K, ,0< Koy < o,
then the positive root-locus arrives at z = a making angles

0 = T k=0,1,--,m—1,

and departs from z = a making angles

¢k=(_2_k;:—1)7‘" k_—_—O’l’...’m_l;

or arrives at z = a making angles

ek=—(2k+1)”, k=0,1,---,m—1,
m

and departs from z = a making angles

b = 2om k=01--,m—1.
m
Proof. (See [4].) Since the coefficients of g(z) and h(z) are real for
= 0, m, if zeros of g(z) — Ke“e h(z) leave or arrive at the real axis, they
do so in conjugate pairs as K varies from 0 to K,. Thus the evenness or
oddness of the number of zeros of g(z) plus zeros of h(z) to the right of
2 = ais the same as that of g(z) — Ko h(z) and h(z).
Write

F(z) = g(2) — K¢ ™h(z) — (K — Ko)e'e h(z) = 0,

where z is on one of the branches of positive root-locus near a. Let
g(z2) — Ke”e h(z) = (z — a)"G(z), where G(a) # 0. G(z) is real on the
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real axis. Then
(z — a)"G(z) — (K — Ko)e'e h(z) = 0;
dividing by the second term and taking arguments,
marg (z — a) + arg G(z) — arg (K — Ko) — 8 + vy — arg h(2) = 2km,

where k is an integer. Thus

arg (z — a) = = (—arg G(z) + arg h(z) + arg (K — K,)

Sl=

+ 0 — 7y + 2kx).

Now —arg G(z) + arg h(z) + 6 — 7y + 2kw approaches either an even or
odd multiple of 7 as z approaches a since G(z) and h(z) are nonzero and real
on the real axis and y = 0. Note that arg (K — K,) is either 0 or = depend-
ing upon whether K > K, or K < K, . Letting K approach K, completes
the proof.

The most frequent occurrence is when there is a double zero of F(z) on
the real axis for some value of K. In this case, 8, = /2, 6; = 37/2 and
@y = O;d’l = T;0r 6 = 0, 0, = 7I'2LIId¢00 = 1l'/2>¢1 = 31r/2

From the preceding theorems it would appear that the root-locus for
time lag systems is similar to those with no time lag. This similarity, how-
ever, is superficial. The root-locus diagrams become radically altered as
simple examples such as z — Ke* = 0 and 2 — Ke ™ = 0 (studied ex-
tensively by E. M. Wright) as well as the asymptotic theorem will testify.

A rather easy procedure has been found by Yaohan Chu [2] for construct-
ing time lag root-locus diagrams. It consists of first constructing a diagram
where there is no time lag and using this diagram to construct the time lag
diagram. We refer the readers to his paper rather than reproduce it here.

Acknowledgment. The author would like to express his thanks to the
referee who is responsible for many corrections and improvements in this
paper.
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SOME CONDITIONS FOR THE STABILITY OF NONLINEAR
TIME-DEPENDENT DIFFERENTIAL EQUATIONS*

H. H. ROSENBROCKY

1. Introduction. In an earlier paper [1] a method was given for investi-
gating the stability of a nonlinear system

(1) k= f(x,0); (0,0 = 0.
The equation (1) was replaced by
(2) x = A(x, 1)x,

and conditions on the elements of A were found which ensured stability .
This method will be applied here to the nth order differential equation

(3) x(n) = f(x’ y e, x(n—l)’ t)r
which will be replaced by
2™ 4+ a4 o 4 i + @z = 0,

a; = ai(x, @, -, 2" 1),

(4)

Conditions on the @; will be found which ensure uniform asymptotic
stability of the point x = 0.
If M, A2, - -+, A\, are the roots of the equation

(5) Nt aA" o ah + e = 0,

then knowledge of the \;(z, &, - - - , ™, t) is equivalent to knowledge of
the a;. Consequently conditions on the a; which ensure stability can be
replaced by conditions on the A;, and it turns out to be convenient to do
this. Conditions are given under which the solution x = 0 is uniformly
asymptotically stable.

2. Derivation of results. For convenience, a special form of the result
proved earlier [1] will first be derived. Equation (4) is written in the form

(6) x = A(x, t)x,

* Received by the editors February 12, 1964, and in revised form April 20, 1964.

1 Cambridge University, Cambridge, England. Now at Electronic Systems Labora-
tory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts.
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where
(0 1 0 0 )
0 0 1 0
(7) ] ,
0 0 0 1
— a1 —0ay —Aag3 — 0y

and the element x; of x replaces x in (4). This way of representing (3) is
not generally unique, because a term such as 22, in the equation for &,
can be regarded as ax; with a; = x» or as axx, with a; = x; . The results
developed later may therefore be applied to any one of the equations (6)
which can be derived from a given equation (3).

The matrix A in (7) may be represented by a point in an n-dimensional
Buclidean space E, having coordinates a; . When this is done, the restric-
tions on A which ensure the asymptotic stability of x = 0 will be expressed
by the condition that A remains always in some region G of £, . The way
in which the region G may be obtained will appear later.

In an open region R of the space {x}, equation (6) is supposed to satisfy
conditions which ensure the existence and uniqueness of solutions starting
from any x € R att = . Also, for all x € R and for all ¢ = ¢ we suppose
that A € G.

The stability conditions are developed by considering a closed, convex,
bounded region H in R, which has x = 0 as an interior point and is such
that each point in the boundary of H is in at least one of a given set of
hyperplanes (these will be n 4+ 1 or more in number).

Let n be the outward unit normal to one face of H. Then we can prove
the following result (see Appendix 1).

TurorEM 1. Let the following conditions be fulfilled.

(i) Forallx € Rand allt = &, A € G.
(ii) For each face of H at every vertex u, and for all A € @,

(8) nAu £ —¢ < 0.

Then x = 0 is uniformly, asymplotically stable. All solutions of (6) starting
at ty = 1ty from some point x; € H, where H is in R, remain in H and lend to
x = 0, uniformly in t , as t — . If R s the whole space {x}, the uniform
asymptotic stability of x = 0 s global.

In the above statement of the method the region R was supposed to be
given and the region H to be sought within R. If the closed region H is
given, however, we need only verify that A € G for x € H, t = 1, . Simi-
larly the existence and uniqueness of solutions need only be demonstrated
for initial points x and times ¢, where x € H, t = {, ; the boundary points
of H will usually require special attention when this is done.



CONDITIONS FOR STABILITY 173

The above results will now be applied to the closed region H which is
the smallest convex set containing the 2n points v in the space {x}:
(9) Vi, = ﬁt(l, a,-,aiz, “ee ’ain_l)’ ’L‘ = 1, 2, “ee ’n,
V;+i = ’_Bz(l, 22 aizy Y ain—l)a 1= 17 2) e, M,
where the «; are all real and distinet and the 8, are positive. The bounding
hyperplanes each pass through n of the points v, of which no two may have
the same value of 7 (see Appendix 2). For convenience call these n points

w, Uy, -+, U,, where u; may be either v; or v,;, and write
1
a;
2
(10) uw =b;| a |,
n—1
a;

so that the possible negative sign is absorbed in b; .

Let x be a point in the hyperplane S defined by w; , us, - - - , u, . Joining
u, to x and to each of the other u,, and expressing the fact that these lines
are coplanar, we obtain

i — w0 — e, W —
(11)
X — U, W — U, -, U0, — url = 07
where the vectors shown are the columns of the determinant. Equation
(11) gives

(12) | —w, U — W, v Uy — W, X, Uy — Uy, o0, U, — U, |
=[ul—ur,u2""'ur7"’,ur—l—ur,ur,ur+l_ur,"’,un —url
=IU1,U2,"‘,unl,

which on expanding has the form
(13) m'x = p,

where m is a certain vector. This equation expresses the fact that the pro-
jection of x on the vector m is constant.
The condition expressed by (8) can now be written

(14) Lw'Au, = —c <0,
p
since it follows from (12) and (13) that —:;m is an outward normal of fixed

length. Then from (7) and (10),
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b: ar
bra,
(15)  Au, =
brarn_l
brar" - br(arn + [¢7% arn_l + v + (1573 + 0/1)
(16) _— (ur b q»),
Oy
where
(0]
0
(17) D, = E ,
0
-
and
(18) ¢ = arn + anarn_l + - Faat+ o
(19) = (ar - >\l)a

1<i<n

and the \; are defined by (5).
On using (16) and (14) we obtain (compare (12))

b
Gr U = Ur, Uy = Uy, oo, Uy = Uy, Uy — — @,
(20) "
W — Uy, oo, Uy — W+ W, U, oo, U] £ —e < 0.

Adding the rth column in the numerator determinant to each other column
gives

arul_lk‘d)r,u2"‘id)r,"’,un_lkq)r
(21) o o oy
=, w0, 0] S —e< 0.
Then using (17) we obtain
( by by b,
b byoy b2 as b on
il — =+ bybs b, A
(22) broa™ by boan™ J
¢r ¢r [
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where A is the Vandermonde determinant [2]

1 1 1
@) A=) 0T T L (=),
15i<jsn
aln—l a2n—-1 ann—l

By using the result analogous to (23) for each cofactor of ¢, we obtain
from (22),

(24) o {1 b, O ér Z (=)~ *= 1 II (@ — o) + A] < —e<0,

o 1Lk<n bk 1<'i<_j§n
2,5 #Zk
b &, (=1)+
25 11— — .
( ) « { oy 1<IcZ<n bk H (ak - aq,) H (a, - O!k) €< O
1=<k k<j<n

Then using (19) and remembering that b; may be chosen with either sign,
we see that (25) is equivalent to

AL (e =) B 1<II< (ar — Ni)
(26) ap—-=2" 4 t=n < —e< 0.
Il (&= ad) 1gkzn | B H (ar — )
115 n 1S:<n
1HET Tk

For simplicity of application it is convenient to introduce arbitrary
positive constants 6, defined in terms of the (arbitrary) constants 8, by
(27) 0, =8 II (e — )| r=1,2-,m,

0<i=n
| Tigr

and to write

(28) %=1_§L§n“_ 7'=1’2,...’n’

where for symmetry the constant oo = 0 has been introduced. Then (26)
becomes

(29) ar{]-—"Yr'i'(sgnar) |71|l Z O é —e < 0.
| arlékl;%n

The result embodied in (29) contains the stability condition which was
sought. If (29) is satisfied for some «,, 6,, r = 1, 2, --- | n, this ensures
that condition (8) is fulfilled. Then if some condition A € G is sufficient
to satisfy (29), Theorem 1 can be applied subject to this condition. Al-
ternatively, since the a; are determined by the A; ,we may prove the re-
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sult subject to & € F, where & = (X\;)and F is some region of the space
{a}. The result which has been proved can therefore be stated in the fol-
lowing way.

TuroreM 2. Let the differential equation (2) have a unique solution in a
region R. Let H be the closed set in R which is the smallest convex set containing
the points (9), and let there exist a region F and a constant e such that (29)
is satisfied for all M € F with some real, distinct o, and positive 0, and for
r=1,2, .-+, n. Then all solutions of (2) starting at t; = lo from some x, € H
remain always i H and tend uniformly, asymptotically to x = 0 provided
that v € F forallx € Hand all t = 1 .

3. Examples. Consider first the second-order differential equation

(30) &+ as(x, 2, ) + w(x, 2, H)x = 0.
Suppose that A; , Az are real, and let the region F be defined by
(31) MEw=MSa<a=0,

where a; and o, are distinet negative constants. Then for & € F,

v = (al - )\1)(0[1 - >\2)

ai(on — ap)

— (ar — M) (a2 — No) <

<0
a(ae — o) ’

which shows that (29) is satisfied with 8, = 6, = 1. Thus if (31) is satisfied
for all x in the appropriate region H and for all ¢ = ¢, all solutions starting
in H at & = { remain in H and tend uniformly, asymptotically to x = 0.
This result is slightly stronger than one obtained previously [3].

Now consider the nth order equation (4), with n > 2, and suppose
again that each A; is real and that F is defined by

<0,

(32)

2

(33) 0s-2=M <, r=1,2-,n
where v
(34) oty < a1 < < <ap=0,
(35) D h=<1—n<l.
Then for & € F, e
lwlzar—)\l.ar—)\z..”.ar—)\r
o a — o o — oy

(36)
. a—r - )\T+1 o e e e o —ar - >\n

Qr — Oyl Ay — Op
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(37) Iyl = 2 =M <,
Oy — Op—1
so that
(38) l—m—lvle X 6=1-— 0. = 7> 0.
0- 1§kl;§n 12h=n

It follows from (34) that (29) is satisfied with e = —ayn. If (33) is satisfied
for all x in the appropriate H, and for all ¢ = ¢, , all solutions starting in H
at & = { remain in H and tend uniformly, asymptotically to x = 0.

Finally, consider (30) again, but allow the \; to be complex. Let F be
defined by

Ren = —m — 9 <0,
Re)\2§—m—n<0,
(39) (Reh + m)* + (Im ) < (m — 9)?,
(ReXs + m)® + (ImN)? = (m — n)%,
Im)\1=~Im)\2
if ImM =0 or ImX =0,
Re)\1=Re>\2

where

(40) 0<n<%.

The geometrical implication of conditions (39) is illustrated in Fig. 1.
In (29) put

o= —m, ay= —m’/n,
(41)

91:17/7”, 02:1—77/7”;
and suppose first that \; and A, are complex,
(42) M= —0+dw, A= —0 — .

The left-hand side of (29) then becomes, for r = 1,

@ i Inl 2= wfl -l (BE5)
1 1

(44) - —m{l - M}

IIA

m? — my
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iw

Fia. 1

By (39) and (40),

(m—0)+ o < (m—n)'=m—mm— (mg —n°)

(45) o
m mn “é ,
so that
m: — my m— myg| T 2

For r = 2 the left-hand side of (29) becomes

(47) 012{1 - Y — ,72} g—:‘}

IIA
8
/_/H
[y
I
I
1)
P
>
|+
=
W—/

9) _ Q”i_‘_lL}
n
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By (39) and (40),

77’L2 2 m2 2
<——— >+w2§<———m—n> + (m — 4)°*
n 7

(49) 2 2
=<7i—m> — m® + 20,
n
and so
(=)

2 ——0) to 2 2

(50) SIOPS A B b —n(m_— )2211) < _g.
ey T

When A; and A, are real, it is easy to see that | y; | and | v2 | are no greater
than the values which they take in (43) and (47) respectively. Hence
for & € F, where F is defined by (39), the condition (29) is fulfilled for
r =1, 2 with e = 5/2. If (39) is satisfied for all x in the appropriate H
and for all ¢ = ¢, then all solutions starting in H at ¢ = ¢ remain in H
and tend uniformly, asymptotically to x = 0.

Appendix 1. Proof of Theorem 1. We first show that condition (8) im-
plies that nAx < —e < 0 whenever A € G and x is a point in the face
of H having n as its unit outward normal. For each such point x can be
written

(51) X = Z“*’u"’

where u, are the vertices of H lying in the face considered, every a; = 0,
and Y. ;o; = 1. Then for any given A € G,

(52) IllAX = Z ain'Aui =< —ez a; = —E€.

Choose a vertex u, of H and let r, be the distance from u, to the origin.
Define the sets U(r), 0 < r = ry, by the property that y belongs to U(r)
if and only if y = 7x/ry, where x belongs to the boundary of H. The sets
U(r) are clearly boundaries of sets which have the same properties as H
and for any y in U(r), n'Ay = n'Ax(r/ry) < —er/ro. If we now let
V(y) = rfor yin U(r), it is clear that V is a Lyapunov function and all
of the conclusions of Theorem 1 are valid.

Appendix 2. Properties of H. The region H is defined by the points v
in an n-dimensional space. We have to show that the bounding hyper-
planes are found by selecting all sets of n points v having different values
of <. This can be proved in the following way.
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(1) Consider a hyperplane S passing through n of the points v, no two
of which have the same value of ¢. Then S does not include the origin.
For if it did the determinant formed from the n chosen points v would be
zero. This determinant [2] is

1 1 1
oy [s%) Ay
BBy Bu| &’ @ an
(53) .....................
n—1 n—1 n—1
(63} (67} Oy
= %88 -+ B JI (a5 — ),
1gi<i<n

which is nonzero when the «; are distinct.

(ii) The n points v which are not in S lie on the same side of S as the
origin. For the straight line joining each vertex in S to the origin, when
continued, passes through a v not in S.

(iii) No hyperplane containing » points v, of which two have the same
value ¢ = p, is a bounding hyperplane. For such a hyperplane includes
the origin, yet does not contain two points v having the same value ¢ = ¢.
These last points lie on opposite sides of the hyperplane.

(iv) From (i) and (ii) it follows that each hyperplane such as S is a
bounding hyperplane. By (iii) there are no others.
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ON EXPONENTIAL STABILITY OF LINEAR DIFFERENTIAL
SYSTEMS*

NAM P. BHATIA}

1. Introduction. In this note we examine conditions on the linear differ-
ential system

(1.1) i = Az,

(where the dot denotes the derivative with respect to ¢) which guarantee
the existence of a quadratic form as a Liapunov function. We also give a
proof of the stability theorem of Perron (see [5, pp. 142-152]) for the
system

(1.2) &= Az + f(¢, 2), f@t,0) = 0,¢t =0,

removing thereby the restriction of boundedness of the elements a.;(¢)
of the matrix A (t).

Throughout this note x denotes an n-vector in R", the real n-dimensional
Euclidean space and A(¢) is an n X n real matrix whose elements a. (1)
are defined and continuouson I = {{:0 £ ¢ < + »}. No assumption as to
boundedness of these elements is made. || z || stands for the euclidean norm
of z. Thus || z ||* = 2’z (" denotes transpose).

It seems relevant to quote the existing results which motivated this
note, with perhaps a few comments. For this we need the following defi-
nitions.

DerinrrioN 1.1. The solution x = 0 of (1.1) 7s said to be exponentially
stable, if there exist positive constants a and a such that for any solution xz(t)
of (1.1), z(ty) = xo, the inequality

(1.3) l2(t) || = af | exp [—a(t — b)], t=t,

holds.

Let B(t) be a symmetric matrix with elements b (t) = b (t) defined
and continuous on I.

DerinttioN 1.2. The quadratic form &' B(t)x s said to be positive defi-
nate if there exists a posttive constant b such that

(1.4) #’B()x = bx'z, t=0.

DerintTioN 1.3. The quadratic form &' B(t)x will be said to have the prop-
erty P if 1t is positive definite and if the elements by (1) of B(1) are uniformly
bounded on I.

* Received by the editors June 8, 1964, and in revised form July 1, 1964.
1 Department of Mathematics, Western Reserve University, Cleveland, Ohio.
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Thus 2'B(t)z has property P if and only if there exist positive constants
b; and b, such that

(1.5) 'z £ 2'B(t)x < bz, 1= 0.

Necessary and sufficient conditions for &'B(t)z to have property P arere-
produced here from [2]: The quadratic form z'B(¢)x has property P if
and only if the matrix B(¢) has uniformly bounded coefficients and the
inequalities

Bi(t) > 0, k=1,2,---,n—1;
B,(t) = det B(t) = &

hold for ¢ = 0, where § is an arbitrary but fixed positive number and B (¢)
stands for the principal minor of the matrix B(¢) of order k.
If V = 2'B(t)x, then we shall set

(1.6) Va(kl.l) =2 I:dB(t)

=+ A'()B(t) + B(t)A(t)]x ,

assuming that the b (¢) have continuous partial derivatives on I.

It is an elementary excercise to show [1, 4] that the existence of a
quadratic form V having property P such that — V. is positive definite
guarantees exponential stability of the solution z = 0 of (1.1). The con-
verse of this theorem has been proved under certain restrictive conditions
on A(t) [1, 6, 7, 8]. Malkin [6] (also reproduced in [1]) showed that:

TueoreEM 1.1 (Malkin). If the solution x = 0 of (1.1) is exponentially
stable and if the elementls au(t) of A(t) are uniformly bounded on I, then
corresponding to each quadratic form x'C(t)x with property P one can give
a quadratic form V. = z'B(t)x possessing property P such that Vi
= —2'C()x. And in fact the following formula determines V.

17 V-Bwe- [ T X (X O] X () X (Dl d,

where X (t) 1s any fundamental matriz solution of (1.1).

Roseau [7, 8] improved upon Malkin’s result and he proved:

TueorEM 1.2 (Roseau). If the solution x = 0 of the system (1.1) 1s
exponentially stable and if the matrix A (t) satisfies the condition

(1.8) R(st) = f ADXHX (W) dr—0 as (s—1t) >0
t
uniformly on s = t = 0, then for every quadratic form x'C(t)x having property

P one can give a quadratic form V = z'B(t)x having property P such that
Vay = —a'C(t)a. In fact formula (1.7) holds.
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In §2 we give an example to show that the existence of a quadratic form
V such that both ¥V and — V7 1) have property P does not imply (1.8)
and give necessary and sufficient conditions for the existence of such a
quadratic form. In this connection we introduce the definition of exponential
decay of solutions of the system (1.1). It turns out that the exponential
decay of solutions of (1.1) implies a certain property of the trace of A(t).
This yields another necessary and sufficient condition for the existence of a
quadratic form V such that V and — V{1 .5 both have property P.

In §3 we introduce a more general notion, ‘“the generalized exponential
decay” (g.e.d.) of solutions of (1.1). This was motivated by Hale’s defini-
tion of exponential stability [3]. We give necessary and sufficient conditions
in terms of the existence of quadratic forms for this case.

In §4 we give a proof by the Liapunov method of Perron’s theorem on
stability of (1.2), without, however, the restriction of boundedness of the
elements of A(¢) as in the classical result [5]. In this we use an idea of
Yoshizawa [9]. Roseau [8] has already proved this result by another method.

2. Exponential decay. Consider the scalar differential equation

(2.1) # = (2t cos & — 1)r.
Its general solution r(t), r(t) = ry, is
(2.2) r(t) = roexp [sin © — sin & — ¢ + to].
Notice that
[7(t) | = |70 le" exp [— (¢ — )], t=t,

so that we have exponential stability. Malkin’s formula (1.7) gives the
Liapunov function

0

V = 7*2/ exp [2(sin 7* — sin ) — 2(r — )] dr,
t
for which V* = —¢* and V satisfies
6—4 . 4
7'2-‘—2— é V é r o=
so that both V and — V™ have property P. Notice however that the co-

efficient (2t cos t* — 1) is neither bounded nor does Roseau’s condition
(1.8) hold. For in this case

R(s, t) = f (27 cos 7 — 1) exp [sin 7* — sin & — (7 — )] dr
t

exp [sin § — sin £ — (s — )] — 1.
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Setting s = ¢ + 1/¢, we notice that s — t —> 0 as ¢ — o, but R(t + 1/¢,¢)
does not approach 0. Notice however that (2.2) satisfies

(2.3) e?|rolexp[—(t—to)] S |r(t) | S €| rolexp[—(t—t)], t=t.

Derinrrion 2.1. The solutions of the system (1.1) are said to decay ex-
ponentially if there exist positive constants a, a, b, B such that every solution
x(t), x(to) = z0, of (1.1) satisfies the inequalities

(2.4) [| zo |8 exp [—b(t — to)]
Sla@ | £ llalleexp [—alt — t)], tZt.

This leads us to the following theorem.

TurorEM 2.1. The solutions of (1.1) decay exponentially if and only if
there exists a quadratic form V = &' B(t)x such that V and — V{1 1) both have
property P.

Proof. Let the solutions of (1.1) decay exponentially. Let &'C(¢)z be
any quadratic form having property P. Set (following Malkin)

V =2 Blt)x = ftw X(HX()z]'C(r) [X () X ' (t)a] dr.

Then V{y = —a'C(t)x and V has property P. To see that V has property
P, notice that there exist positive constants ¢; and ¢, such that

(2.5) ar'r £ 20z £ e’z

Then

o[ 1XOX Walfdr sV saf | XOX W -

We recall now that any solution z(t), x(ty) = o, has the form z(t)
= X(t)X '(ty)x, . This together with (2.4) implies

lo 6 [ e l=2b(r— 0ldr = [ | XOX0 @ | dr

<z f exp [—2a(r — 0)] dr,

ie.,

2

Iz |8 < /t | XX Dz | dr < |2 |° 5,

and thus

'3_2’< =7z <f_2_0‘2’
¢ 2bx9c=V—xB(t)x= 5q 0%
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Suppose now that there is a quadratic form z'B(t)x = V such that V
and — V(.1 both have property P. Let ¢, ¢;, by, by be positive constants
such that

7 7 ’ * ’
brx £V £ bxx and —cwzr < Vay £ —ox .

This implies that

|

|
<
A

* C1
Vaip = — = V.
b.

Along any solution x(t), z(ty) = o, set V(¢) = 2’ (t)B(t)z(t). Then this
last inequality implies

v
=

_62 dV(t)
0 Vi) s —— =

This yields on integration as V() > 0,

C1
B V (1), t

V(W e =2 (- ) | = V(0 5 V) ew | 20w

which in turn implies (2.4) because of the property P of V. Thereby
a = 1/8 = \V/by/by, a = ¢1/2bs, b = ¢y/2b, . This proves the theorem
completely.

A similar proof as above can be constructed to prove the following.

TueorREM 2.2. The solutions of (1.1) decay exponentially if and only if
there exists a positive definite form V of order m with uniformly bounded
coefficients such that — V1.1 (it is also a form of order m) is positive definite
and has uniformly bounded coefficients.

This result improves Malkin’s Theorem 24.5 in [4] in that the restric-
tion of boundedness of elements of A (¢) is removed.

We now prove the following results.

TaEOREM 2.3. If the solutions of (1.1) decay exponentially then

(2.6) k< ftw [exp <2 ft Tr A(s) ds)] dr £ K, 20,

for some positive constants k, K. (Tr A(t) = D i ai(t).)
TuroreM 2.4. If the solution x = 0 of (1.1) 7s exponentially stable and if
there s a positie constant k such that

2.9 ft exp <2ft Tr A(s) ds) dr 2 k, t =0,

then the solutions of (1.1) decay exponentially.
TFor the proof of these two theorems we need the following lemma.
Lemma 2.1. If the solution x = 0 of (1.1) s exponentially stable and
X(t) denotes any fundamental matrix solution of (1.1), then there exist posi-
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le constants a; and as such that
(2.8) ac'es £ a7 (7, 0)Z(r, e < axt'z, T

Here Z(r, t) = adj X ()X '(1).

Proof. Let Y(7,t) = X(#)X '(t). Then Z(r,t) = (det Y(r,t))Y ' (, 1).
Since Y (7, t) has uniformly bounded elements for + = ¢ = 0 the same
holds for the elements of Z(7, t). Now the matrix Z'(r, t)Z(r, t) is sym-
metric and has elements which are continuous functions of ¢, 7. Also
Z'(t, 1)Z (1, 1) = E, the identity matrix, and det (Z'(r, t)Z(r, t)) = 1 for
r = t 2 0. This implies, using the argument of Theorem 1 in [2], the exist-
ence of positive constants a; and as such that (2.8) holds.

Proof of Theorem 2.3. Exponential decay of solutions of (1.1) implies
that the quadratic form

v
%
=

(2.9) 2 [ | XX [XG) X0 dr:l 2
has property P. This implies, because of (2.8), that the quadratic form
2’ U:, [X() X' Z'(r, ) Z(r, 1) [X(+)XT'(@)] df] x
has property P. But this last form is the same as
x l:f:o [det X() X ') d‘r:l =12z ftw [det X(r) X'(0)T dr.

However we have the well known formula for the determinant of a funda-
mental matrix solution of (1.1), namely

det X(¢) = (det X(4)) exp /;t Tr A(s) ds,

which gives det X (r)X ' (¢) = exp f Tr A (s) ds. This shows that property
t

P of (2.9) implies (2.6). The theorem is thus proved.

Proof of Theorem 2.4. Note that exponential stability of the solution
x = 0of (1.1) together with the condition (2.7) implies (2.6). This implies
that the quadratic form (2.9) has property P. If V denotes the quadratic
form (2.9), then Viii = —=2'z, so that the conditions of Theorem 2.1
are satisfied. The solutions of (1.1), therefore, decay exponentially and the
theorem is proved.

It is useful perhaps to give the following theorem, which is really a
corollary of the above two results, but is equivalent to them.

TurorREM 2.5. A necessary and sufficient condition for the existence of a
quadratic form V such that V and — V{11 both have property P is that the
solution x = 0 of (1.1) be exponentially stable and the condition (2.7) holds.
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3. The generalized exponential decay.

Derintrion 3.1. The solutions of the system (1.1) are said to exhibit
generalized exponential decay (g.e.d.), if there exist a nondecreasing function
o(t) possessing a continuous derivative such that ¢(t) — = ast — « and
four positive constants «, a, 8, b such that every solution x(t), x(t) = o,
of (1.1) satisfies the inequalities

[l 2o [[8 exp [—b((t) — (to)]

(3.1)
< 2@ || = [l @ lle exp [—a(é(t) — ¢(t))], t=t.

Remark 3.1. The g.e.d. does not imply exponential stability in general,
as the following example shows. Consider the scalar equation

(3.2) PO

whose general solution is

r(t) = roexp [—(log (¢t + 1) — log (t, + 1))].

We have thus g.ed. witha = a = 8 = b = 1 and ¢(t) = log (¢t + 1).
But we do not have exponential stability.

The following theorem gives a necessary and sufficient condition for
g.e.d.

THEOREM 3.1. The solutions of the system (1.1) exhibit generalized ex-
ponential decay if and only if there exist two quadratic forms V =z'B(t)x
and W = 2'C(t)x having property P and a nonnegative continuous function

6(t) such thatf 0(r)dr = +» and
t
V= —9()W.

Proof. If the solutions of (1.1) exhibit g.e.d., so that (3.1) holds, then
for any quadratic form W = z'C(t)z having property P we set

V= f:" ' (1) [X(H)X X)) 2]'C(r) [X()X ()] dr.

We notice immediately that

V= —¢' ()W

and f ¢'(r)dr = -+ by the assumptions on ¢(¢). Further V has
t

property P. For if ¢; , ¢; are positive constants such that

cx’x £ W = 2'C()z £ ext'r, ¢

v

0,
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we have

clft (1) || X()X () z|’dr £V £ sz ¢'(r) | X(n)X ')z ||* dr.
t
This yields, on using inequalities (3.1),

alz P8, elela
2b = = 2a ’

which is property P for V.
Suppose now that V, W, 6(¢) exist as desired in the theorem. Set ¢(¢)
12
= f 0(r) dr. If by, by, ¢, ¢, are positive constants such that byz'z < V
0
< ba'zand er’s £ W < exx’z, t = 0, then for any solution z(t), z(t) = o,
if V(1) = 2" (1)B(t)x(t), we have

V) < o %1 V(t).

Co
— o PV = S22 s

This yields on integration
V(to) exp [—b(6(1) — ¢(t))] = V() = V(t) exp [—a(s(t) — ¢(h))],

where @ = ¢1/b; and b = ¢/b; . Further this inequality yields, because of
the property P of V, the inequality (3.1) with @ = b/b; and 8 = by/b,.
This completely proves the theorem.

Example 3.2. The solutions of the second order system

. . 2
r =1, Yy=—2— Z‘y7
which is equivalent to the single differential equation
&+ ?x + 2z =0,
exhibit g.e.d. For we may consider the quadratic form
2 2 2
V=x+y + 7
which has property P for ¢ = 2. Then
V= — 22-<x2 + v+ ;xy>
2 s , 3 2 .
Thus we can set W = 2" + y + 7w and 6(t) = 7 Notice that W has

property P for ¢ = 2andf %dt = 4o,
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Remark 3.2. The g.e.d. indeed implies uniform stability. However, it
does not in general imply uniform asymptotic stability which is equivalent
to exponential stability for linear systems [1].

4. The stability theorem of Perron. In the case that the solution x = 0
of the system (1.1) is exponentially stable, the above discussion is incon-
clusive as to the existence of a quadratic form V with property P such that
— Vi is positive definite. Following Yoshizawa [9] we can prove the fol-
lowing useful theorem.

TuEOREM 4.1. The solution x = 0 of (1.1) is exponentially stable if and
only if there exists a continuous funciion v(t, x) having the following prop-
erties:

(i) v(t, 0) = 0 and there are positive constants a and b such that

allz| 2ot z) bz, t

v
k=

(i) v(t, x) 1s locally lipschitzian in x and if we set

viray = lim sup ;1, w(t + h,x + RA(1) ) — o(t, x)],
h>0+

h=>0

then

v £ —cf =,

where ¢ ts a positive constant.
Proof. If v(¢, x) is a function having properties (i) and (ii), set

o(t) = v(t, (1)),
where z(¢), (t) = o, is any solution of (1.1). Then property (ii) implies

lim sup o(t + k) = o(0) < — Ev(t).
B0+ h b
This immediately gives
v(t) = v(t) exp [— % (1 — to):l, t=t,
which in turn implies
1= <2l o] - S0 -w)], =

which is inequality (1.3).

Now suppose that (1.3) holds. Let p be any positive constant such that
0 < p<a. Set

(4.1) v(t, ¢) = sup (I Xt + )X (D) || exp (pr)l.
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We assert that this » has properties (i) and (ii). Note that
IMHév@x)égyﬂxnwm(—mwem(mﬂ=ﬂmm

which is property (i). Further for A > 0, we have
v(t + h,x + hA(t)x)

I

sup [l X(t + h+ )X (¢ + h)(z + hA(D)2) || exp (pr)]

I

exp (—ph)'sgrz [l X(t + )X (1 + h) (& + hA()z) || exp (pr)]

A

exp (—ph)-sup [l Xt + )X 7'(t + k) (z + hA(D2) || exp (p7)]

IIA

exp (—ph)[v(t, ©) + hp(h)],
where ¢(h) — 0 as h — 0. Thus

i S T sup ; lexp (—ph) (006, 2) + (W)} — o(6, )]
= v(¢,z) lim M = —po(t,z) £ —p| 2.
h~>0+

This proves the theorem.

Remark 4.1. We have defined exponential stability in the case of a
linear system (1.1). However, if & = f(¢, z), f(t, 0) = 0, is a nonlinear
system, where z, f are n-vectors and the function f(¢, x) is such that every
solution x(Z, &, o) with x (&, o, ©o) = x, exists for ¢ = ¢, then if the
solutions of this system with || zo | £ h (where h > 0) satisfy the inequality
(1.3) we say that the origin x = 0 of this system is exponentially stable.
It is clear that Theorem 4.1 is applicable to this case with the restriction
that the conditions (i) and (ii) hold for || z || = R, where R is a positive
constant and v{i, is replaced by

skek

™™ = lim sup L w(t 4+ h,xz + hf(t, ) — v(¢, 2)).
0+ = h

We will now prove a stability theorem for the system (1.2), which is
essentially due to Perron. But we do not make any assumption as to
boundedness of the coefficients of A () as in the classical result [5].

TrEOREM 4.2. Suppose that the origin x = 0 of the system (1.1) s ex-
ponentially stable and the function f(t, x) 7s continuous and satisfies the con-
dition

(4.2) i, 2) = o(fl ).

Then the origin x = 0 of the system (1.2) is exponentially stable.
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Proof. Set v(t, ) as in (4.1), where X(¢) is any fundamental matrix
solution of (1.1). Then v(¢, ) has property (i) and is lipschitzian. Now

Kk

v" " calculated for the system (1.2) gives

ﬁ*=hggm%@ymxa+h+axﬂw+mw+WA®
+hf—(t,x))lleXp (pr)] — sup [[| X(¢ + X (O || exp ()]
= — po(t,z) + lirlgoiup [§12115> l X(t-I: T+ R)X 't + h) f(t,2) || exp (or)]]
< — po(t, ) + sup le || J—”(t, z)|| exp [— (@ — p)7]]
= —pv(t,2) + « ll—f(t, ) ||
<

—pllal + al )]
o |1, 2)]
‘”"”"[I‘E—leu ]

Since by hypothesis || f(¢, z) ||/||z]] — 0 as | x| — O uniformly on
0 £t < 4+ =, we conclude the existence of a positive constant h such that

vwg—gnm[ for ||z || < ht = 0.

This implies by Remark 4.1 that the origin x = 0 of the system (1.2) is
exponentially stable. We notice that this conclusion goes beyond the con-
clusion of Roseau [8].
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ON THE SOLUTIONS OF SYSTEMS OF SECOND ORDER
DIFFERENTIAL EQUATIONS WITH VARIABLE
COEFFICIENTS*

I. W. SANDBERGH

Introduction. In the study of parametrically excited dynamical systems,
attention is frequently focused on the properties of differential equations
of the form

(1) dz  gde  poye o ’
de? dt ’

v

0,

in which z is an n-vector valued function of ¢, A is a constant n X n matrix,
and B(t) is an n X n matrix-valued function of ¢. Usually, B(t) varies
periodically with ¢ and one is primarily interested in determining whether
or not the trivial solution z = 0 is stable.

The matrix A is often associated with the damping present in a physical
system. For a given B(t), it is reasonable to expect that the system will be
stable if the damping is sufficiently large in some sense, and it is frequently
desirable to actually determine the amount of damping necessary for
stabilization.

The purpose of this note is to indicate in a simple manner the utility of
the type of results of [1] in obtaining sufficient conditions under which all
solutions of the nonhomogeneous equation

2

(2) %z—c-l-Ag—tx-i—B(t)x:y, t=0,
both approach zero (i.e., the zero vector) as ¢t — « and belong to
Lo, (0, o), the set of measurable complex n-vector-valued functions of ¢
defined on [0, « ) such that the square of the modulus of each component
is integrable on [0, « ). It is assumed throughout that A and B(¢) are com-
plex matrices, that the elements of B(¢) are uniformly bounded and piece-
wise continuous, but not necessarily periodic, in ¢, and that y is an arbi-
trary element of £4,(0, «).

In particular, for a subclass of equations of the type (2) of direct engineer-
ing interest (in which A and B(t) are Hermitian for { = 0), we show that
if the smallest eigenvalue of A exceeds a number that depends in a simple
manner on the eigenvalues of B(t¢), then all solutions approach zero as
t— o and belong to £2,(0, «).

* Received by the editors July 9, 1964, and in revised form October 5, 1964.
t Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey.
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Notation and definitions. Let M denote an arbitrary matrix. We shall
denote by M’, M* and M, respectively, the transpose, the complex-
conjugate transpose, and the inverse of M. The positive square-root of the
largest eigenvalue of M*M is denoted by A{M}; and, if M is Hermitian,
MM} and MM}, respectively, indicate the largest and smallest eigenvalues
of M. The symbol 1, denotes the identity matrix of order n; and s and w,
respectively, are complex and real scalar variables.

Let © denote the set of points at which B(t) or y(¢) is discontinuous.
By a solution of (2) we mean any complex n-vector-valued function x
which is twice differentiable everywhere on [0, ) and satisfies (2) on the
complement of © with respect to [0, « ).

Results and discussion. It is intuitively palatable that all solutions of (2)
should possess a given property if all solutions of the corresponding equa-
tion obtained by replacing B(t) with some constant matrix C possess that
property and B(t) is sufficiently close (in some suitable sense) to C. The
following theorem, which is proved in the next section, is a precise state-
ment consistent with this notion.

THEOREM. Suppose that there exists a constant n X n matriz C such that

(i) det[s’l, + As+ C]l# 0 for Re[s] =0, and
(ii) sup A{B(t) — €} sup A{[—o'l, + iwd + C]™} < 1.
t>0 —0Lw <P

Then all solutions of (2) belong to £2,(0, ) and approach zero as t — «.
It is sometimes possible to considerably simplify the application of this
result to specific cases by exploiting the (easily verified) inequality

A{M} = nmax | mg |,
ik

in which M is an arbitrary n X n matrix with elements m j, .

The following corollary of the theorem provides a simple upper bound
on the amount of damping necessary to stabilize a parametrically excited
dynamical system of a very general type.

CoroLLARY. Let A be a positive-definite Hermitian matriz, and let B(t)
be a positive-definite Hermitian matrix for t = 0. Suppose that

inf M{B(t)} > 0,
t=0

and that
M4} > (sup MB()})" — (inf MB()})™.

Then all solutions of (2) belong to £2,(0, ) and approach zero as t— .
For similar results concerned with the special case in which n = 1,
see [1] and (2, §3, p. 212].



194 I. W. SANDBERG

TaBLe 1

b1/bo Q Qs
0.024 100 41.7
0.040 50 25
0.060 33 16.7
0.080 25 12.5
0.120 17 8.3
0.160 12.5 6.3
0.20 10 5

With regard to the necessity of the condition of the corollary, it is of
interest to consider the recent results of Phillips [3] concerning the determi-
nation of the value of reactance variation in order that parametric oscilla-
tions can just be maintained in a time-varying damped resonant system
governed by (1) withn = 1 and B(¢) = by — by cos wyt, in which by, b,
and w, are positive constants. Using a semigraphical technique and the
results of McLachlan concerning the Mathieu equation, Phillips finds that
if, with a given by(by) ™" < 0.2, the quantity A/b,/A exceeds the appropri-
ate value of @, in Table 1, then there exists w, for which all solutions of (1)
do not approach zero as {— .

The values of @, given in Table 1 were computed in accordance with the
corollary and are such that if, for a given b;(bo) ™", /bo/A does not exceed
the corresponding value of ., then for any real-valued B(¢) such that
(bo — b)) = B(t) = (bo+ by) for ¢ = 0, all solutions of (1) approach zero
as t— . Observe that the values of @, are only roughly twice the cor-
responding values of Q. .

Proofs.

Proof of the theorem. We need the following lemma® which is a very
simple version of the type of result proved in [1].
LemMA. Let k(-) and Q(-) denote measurable n X n matriz-valued func-

tions of t defined on [0, ). Let k(t) possess elements {kq(t)} such that for
p=12

f | kan(t) |7 dt < oo, a,b=1,2 - ,n,

0

and let the elements of Q(t) be uniformly bounded on [0, « ). Let g and f de-
note measurable m-vector-valued functions of t defined on [0, ) such that
g e £2n(0, oo),g(t) —0ast— ®,

¢
fo SO dt < @ for ¢ € (0, ®),

* For the sake of completeness, a proof of the Lemma is given in the Appendix.
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and t
g(t) = f(t) + / k(t — 7)Q(r)f(r) dr, L= 0.

Suppose that, with
K(iw) = f k(t)e™" dt,
0
sup A{Q(t)} sup A{K(iw)} <1
£20 —0L <P

Then f € £2,(0, ©) and f(t) > 0ast— .
Now consider (2) From

dt2+A —I—C—y—[B(t)—C]x, t =0,

we obtain
2(t) + fo k(t — 7)[B(r) — Cla(r) dr = u(t) + v(t)

for t = 0, in which u is a solution of

d*u
dt2+A +Cu 0,

v(t) = l E(t — m)y(r) dr,

and k(-) is the inverse Laplace transform of [s’1, + sA + C] .

In accordance with our assumption that det[s’l, + s4 + C] # 0 for
Rels] = 0, it follows that k(- ) satisfies the conditions of the lemma, u(t)
+ v(t) > 0 ast— o (see the proof of Theorem 6 of [1]), and (u + v)
€ £2,(0, ). Thus, the theorem follows from a direct application of the
lemma.

Proof of the corollary. Let

b=supA(B()}, and b= inf MB()).

Consider the theorem and let ¢ = (b + b)1, . Then, since A is assumed
to be positive-definite, it is clear that condition (i) is satisfied. From the
easily verified inequality

sup A{B(t) — (b + b)1.} < 3(b —b),
t=0
and the identity
Af [— &1, 4 twd + 30 + D) L]} = A{[— 1, + 90D + 3(b+ b)1L]7Y,
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in which D = diagld, , d., -- -, d,] with {d,;} the eigenvalues of A, it fol-
lows that condition (ii) is met if
(3) 3(b—b) sup | [— o + 3(b + b) + dMA}] 7| < L.
Inequality (3) is satisfied if M4} > (B)"* — (b)"". This proves the corol-
lary.

Appendix.

Proof of the lemma. For an arbitrary b € £,,(0, ), let || & || be defined

by
@ 1/2
|| = (]0 h(t)*h(t) dt) .

Assume that the hypotheses of the lemma are satisfied. Let y be an
arbitrary positive number, let

_J1, i 0=t £y,
x(®) = {o, it t>y,
and let f, and g, be defined by

. _ @), if 0=t=y,
PO =30," it 1>y,
g, if 0=t=y,
w® =30 " it >y
Finally, let ¢ be defined by
12
o) = [ k(t = QL) dr, Lz 0
0
Then, from
l
9(0) = 1) + [ bt = DQNS) dr, =)
0
we obtain
fy(t) = gu(t) - X(t)e(t)a t g 07
which implies that || fy [| = g | + [ xe | = [[g | + [ el
Consider || ¢ ||. Let p,(t) and P,(4w) be defined by
(1) = Q) (1), t >0,

P,(iw) = / e “py(t) di, —0 < w < w.
0
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Using Parseval’s identity and the well-known extremal property of the
largest eigenvalue of a Hermitian matrix, we find that

lelp = 2o | : Py (o) *K (i) *K (i) P, (i) do

< sup N(K(iw)) (271')_1[ P, (i) *P, (i) deo

—0C <

< s AUKG)} [ L0%W QO d
—0L WP
< _sup A{K(iw)) bupA QA

Thus, with
r= sup AK(iw)} sup AMQ(1)},

—nL w0

we have (recall that » < 1 by assumption) || f, || £ (1 — 7)™ || g || for all
y > 0. It follows that f € £,,(0, =).

It remains only to show that f(¢) — 0 as t — . Since by assumption
g(t) — 0 as t — =, it clearly suffices to prove that if f € £,,(0, «) and
our assumptions concerning k(- ) and Q(-) are satisfied, then

t
f (¢t — 0)Q(r)f(7r) dr -0 as t— .
0
Let p(t) = Q(2)f(¢) for ¢ = 0, and observe that p € £,(0, ). Thus,
t ® .
f k(¢ — 7)p(r) dr = (2#)_1[ K (i) P(i0)e™ do, {2 0,
0 —c0
in which
T .
Piw) = lim. | ¢ *“'p(t) dt.
T->0 0
Since p € £4,(0, ), and
f |kab(t)l2dt<°°7 a’b=1:27"'7n:
0

it follows that the modulus of each element of the n-vector K (iw)P (tw) is
integrable on the w-set (— %, » ). Thus, by the Riemann-Lebesgue lemma,

f K(iw)P(iw)e™ dw — 0 as t— .

This completes the proof of the lemma.
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A GENERALIZATION OF LASALLE’S “BANG-BANG”
PRINCIPLE*

HUBERT HALKIN{

Introduction. This paper is devoted to some new results for the minimum
time problem for a time varying linear control system.

A fundamental result in this problem is the ‘“Bang-Bang” Principle of
J. P. LaSalle [1]: If there exists an optimal steering function then there exists
a “bang-bang’ steering function which is optimal. In LaSalle’s version of
this principle, a bang-bang steering function is a measurable function taking
on values at the vertices of some hypercube. In this paper we prove the
same principle under the additional restriction that a bang-bang steering
function be piecewise continuous, i.e., continuous at all but a finite number
of points.

This generalization of LaSalle’s Principle transforms an interesting
mathematical idea into a practical engineering tool.

The two main elements of this paper are the following:

(i) We assume that the time varying linear differential equation is piece-
wise analytic with respect to the time.

(ii) We use a generalization of Lyapounov’s Theorem on the convexity
and closure of the range of a vector integral [2].

We conjecture that other existence theorems in the theory of optimal
control [3, 4] could be similarly strengthened.

The **bang-bang” principle. The present paper should be considered as a
continuation of LaSalle’s original paper [1] and we shall suppose that the
reader has that paper at hand.

We shall assume that the elements of the matrices A(t) and B(t) are
functions of ¢ which are defined and piecewise analytic for ¢ = 0.

By a piecewise analytic function f(¢) for ¢ = 0 we mean the following:
for each = > 0 there is a finite set {t, 6, ---, &} with {, =0 < <?,
< --- <t = 7, a finite collection of functions fi(t), fo(¢), - -+, fr(t) and
an ¢ > 0 such that
(1) f(t) = fi(t) for all ¢ € (tiq,t:) and each 2= 1,2, --- |k,

(ii) fi(t) is defined and analytic on (fiy — ¢, t: + €) for each 7 =1,
ek

With LaSalle we shall denote by @ the set of admissible steering functions
and by Q° the set of measurable bang-bang steering functions; we introduce

2,

* Received by the editors June 6, 1964, and in revised form July 31, 1964.
t Analytical and Aerospace Mechanics Department, Bell Telephone Laboratories,
Incorporated, Whippany, New Jersey.
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the new notation Q' to denote the set of piecewise continuous bang-bang
steering functions.

In this paper we prove the following theorems.

TrroreM 1¥. If of all piecewise continuous bang-bang steering functions
there is an optimal one relative to ', then it is optimal (relative to Q).

TraeorEM 2. If there is an optimal steering function then there is always
a precewrse continuous bang-bang steering function that vs optimal.

These two theorems are respective generalizations of Theorems 1 and 2
of LaSalle. In order to prove Theorems 1* and 2*, we need only replace
Lemma, 1 of LaSalle by the following result.

Lemma 1%, Let M be the set of all real valued measurable functions o(t)
on [0, 1] with | a(t) | < 1. Let M" be the subset of piecewise continuous func-
tions in M with | a(t) | = 1. Let y(t) be any n-dimensional function which
18 defined and piecewise analytic on [0, 1]. Define

K={£awwﬁﬁ:aeM}

and

K={famﬂﬂﬁ:a€M?.
0

Then K" is closed and K = K'.
Let M° be the subset of functions in M with | a(t) | = 1 and let

1

K° = {f a)y(t) di: « € M”}.
0

Trom LaSalle’s Lemma 1 we know that K° is closed and K = K°. From

standard results in measure theory we know that K’ < K', where K'

denotes the closure of the set K*. In order to prove Lemma 1* it remains to

prove that K' is closed or equivalently that the set { f y(t) dt: E € @} is
E

closed, where @ is the set of subsets of [0, 1] which are the union of a finite
number of intervals. This last statement is a consequence of the following
theorem which has been proved in [2]:

Suppose that © s a class of subsets of [0, 1] and that 2(t) 7s an n-dimen-
stonal vector function on [0, 1] possessing the following two properties:

(i) € s an algebra of Borel sets such that, if C is any element of ©, then
there exists a collection D¢ of sets D, , defined for every a, 0 = o < 1, such
that ®¢ € €, Dy = C, u(Dy) = au(C) where u denotes the Lebesgue measure
(md Dal C Da2 ’l.f o < ag .

(ii) 2(t) € L'(0, 1) and for every m-vector p,

{t:pe2(t) >0,0=t <1} €¢
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where the dot denotes the scalar product. Then the set

{f z2(t) dt: C ¢ G}
(o}
18 closed and convex.

It is trivial to show that the class @ satisfies condition (i). Let us show
that @ and y(t) also satisfy condition (ii). Since each component of y(¢) is
piecewise analytic® on [0, 1], the real-valued function pey(t) is also piece-
wise analytic for any p. It is thus sufficient to prove that

{t:f:(t) > 0,8 € [tica, L} € @

for each ¢ = 1,2, - .- | k, where f;(¢) is analytic on (fi.y — ¢, {; + €) for
e > 0 and equal to p<y(¢) on (¢, t:). This last statement follows im-
mediately from the fact that if an analytic function is not identically zero
then the set of its zeroes has no accumulation point in the interior of the
domain of analyticity.

Final remarks.

1. If the system under consideration is normal (in the sense of LaSalle)
then Theorems 1* and 2* are an immediate consequence of LaSalle’s
Theorem 3 which states that all optimal steering functions u* are of the
form

w*(t) = sgu[nY (1)),

where 7 is some nonzero n-dimensional vector. (From the definition of
normality we know that no component of 7Y (¢), n # 0, is identically zero
on an interval of positive length; we know also that no component of
7Y (£), 7 ## 0, has a set of zeroes with an accumulation point in the interior
of the domain of analyticity.) Accordingly Theorems 1* and 2* are true
generalizations only in the case of nonnormal systems.

2. The results of the present paper could colloquially be summarized
as follows: anything which can be done with an arbitrary admissible con-
trol can also be done with a relay control with a finite number of switching
times.

Acknowledgment. I am deeply grateful to Dr. Lucien W. Neustadt for
his many valuable comments and suggestions.

* In LaSalle’s paper the veetor y(¢) denotes a column of the matrix function Y (¢) =
X~ (t) B(t), where

X)) =A@ X@) and X(©) = I.

In this paper we have assumed that the elements of the matrices A (¢) and B(t) are
pieccwise analytic. This assumption implies that the matrices X (¢) and Y (¢) are
piecewise analytic.
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SINGULAR OPTIMAL CONTROLS FOR A CLASS OF
MINIMUM EFFORT PROBLEMS*

DONALD R. SNOW{

1. Introduction. Suppose a system is described by the linear second-order
scalar differential equation

(1.1) &+ a(®)d + b(t)z + c(t) = u(?).

We are to find the function u(¢), | 4 | < 1, which drives the system from a
given initial state [x(0), £(0)] to the origin (0, 0) within a given finite time
T while minimizing the integral of | «(¢) |. As is proved in {1, Appendix 1],
any completely controllable second-order linear system can be described
by (1.1) by using a suitable nonsingular linear transformation. Aspects of
this minimum effort problem or solutions to specific examples have been dis-
cussed by various authors (2], [3], [4], [5]. A general discussion of minimum
effort control problems is given in [6].

Since 1958 the standard method of solution of such problems has been
the application of the Pontryagin maximum principle [7], [8] or some
modification of it. It will be shown in this paper that for those systems
where

(1.2) b(t) = a(t),

this method breaks down for large regions of initial states because of in-
sufficient characterization of the optimal control. Problems for which (1.2)
holds therefore belong to the class of singular optimal control problems.
The maximum principle, which is a necessary but not sufficient condition
for optimality, is not useful here since an infinity of control functions are
described by it, not all of which are optimal.

This paper will present a direct analytic method of solution for these
singular problems. We first ask the question: for which initial states in the
phase plane (x, ) do there exist controls %(t), | u | = 1, which drive the
system to the origin (0, 0) within the given time 7'? This set of initial
states is called the T-controllable region of the phase plane and equations

* Received by the editors March 23, 1964, and in revised form September 3, 1964.
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for the boundary of this region will be derived in terms of 7', a(¢), and ¢(¢).
The subregions of T-controllable initial states for which the maximum
principle is not useful will be called the singular subregions and will be com-
pletely described.

We will then determine the optimal controls for any T-controllable initial
state and it will be shown that for each initial state in the singular sub-
regions there are infinitely many optimal controls, most of which are not
bang-coast-bang. T'o have a well-posed problem (unique solution) in these
cases an additional constraint must be specified. Such a constraint might
be the requirement that the response time be smallest. This time would be
less than or equal to the upper limit on the time, 7. For initial states in the
T-controllable region that are not in the singular subregions, the optimal
controls will be shown to be unique. These controls could be obtained by
the maximum principle method as well as by this new method; however,
this new method is direct and eliminates the need of guessing the adjoint
variable initial conditions.

Reference [9] is a recent paper on singular control problems in which the
system equations as well as the integral to be optimized are linear in the
controls. That paper does not cover the present case since the integral here
depends on | u(¢) | which is nonlinear on —1 < u = 1.

To illustrate the method, the results will be applied to an important
special case, namely to the system & 4 a& = u, where a is a constant. The
regions and optimal controls will be shown.

2. Statement of the problem. We will consider the following scalar
differential equation

(2.1) &4 a(t)d + b()x + c(t) = u(t),

where a(¢) and b(t) are given continuous functions, c¢(¢) is a given piece-
wise continuous function, u(t) is the control function, assumed to be in the
class U, where U is the set of all piecewise continuous functions u(t),
|u|=<1,0on0 £t = T, where T is a given (fixed) number. The initial state
and desired terminal state on x(¢) are

(22) [.’II(O), .’II(O)] = (al ) Olz)
and
(23) [=(T), (T)] = (0, 0).

The functional or payoff function to be minimized is taken to be

(24) Tl = /0 Lu(t) | dt.
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The general problem may then be formulated as: find a function u(t) € U
such that the solution of the differential equation (2.1) has initial state
(2.2), terminal state (2.3), and makes Ju] as small as possible.

We first find conditions on the coefficients of the differential equation
such that the usual method of the Pontryagin maximum principle does not
determine the optimal controls. Let #; = « and 2, = & be the state vari-
ables and p, and p, be the adjoint variables of the Pontryagin method. Us-
ing these variables the equivalent first order system, the Hamiltonian, and
the adjoint system are:

I = 2a,

2 = —a(t)xy — b(D)x; — ¢(t) + u.
H = p19‘61-|-p29'62— |u|

(2.5) Equivalent system:

Hamiltonian:
= pis — Pa(t)@ — Pb(D)T1 — poc(t) + pou — [ul
. oH
D= — (%"1 = pzb(t),
(2.6) Adjoint system:
= — O a(t) —
P2 = £ = P2 P1.

According to the maximum principle, any optimal control w(¢) maxi-
mizes H as a function of u. Since the u-dependent terms 1 in H are given

by H = pau — | u |, we can see that an optimal « must satisfy the relation
+1 if pa(t) > 1,
(2.7) u(t) =40 if |p()] <1,

The general method now is to guess the values of p;(0), p.(0) (or use an
iteration method as in [10]), use the given a; , ay , and integrate the system
(2.5)-(2.6), choosing u(¢) according to requirement (2.7). If this trajec-
tory does not have the desired terminal state (0, 0), we guess new values
for p,(0), p2(0) and try again.

DrriNITION. A regular initial state is a T-controllable initial state (e , as)
for which the Pontryagin maximum principle characterizes at least one
optimal control, i.e., there is at least one set of adjoint variable initial con-
ditions such that (2.7) gives an optimal control. All other T-controllable
initial states are called singular initial stales.

ProrositioN 2.1. There are singular initial states for this problem if the
coefficients of the differential equation (2.1) satisfy the relation

(2.8) b(t) = d(t).

If this condition holds only on subintervals of 0 < ¢ < T, the problem
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can be treated separately on these “subintervals of singularity”’. Note that
condition (2.8) does not depend on ¢(t).

Proof of Proposition 2.1. We first show that (2.8) is equivalent to p.(¢)
= =41 being permissible solutions of the adjoint system (2.6). When (2.8)
holds, the adjoint system leads to the equation pp = a(t)p, , which has the
solutions p.(t) = 1. Conversely, substituting ps({) = %1 into (2.6), we
get pi(t) = =a(t) and p,(¢) = £b(¢). Hence (2.8) follows.

Now note that when p.(t) is given, (2.7) determines the optimal control
uniquely except at the values of ¢ for which py(t) = Z=1. If these excep-
tional values of time are isolated, the value of the optimal control at these

times is immaterial. But when p:(t) = +1, we have H = 4 — |u |; and
then, any » = 0 will maximize H giving the maximum value # = 0. When
p. = —1, any u £ 0 will maximize H, again giving the maximum value

H = 0. Thus when p.(¢) = =1, the maximum principle does not charac-
terize the optimal control except to indicate that it must not change sign.
It will be shown in §5 that the two choices of adjoint variable initial con-
ditions [p1(0), p2(0)] = =%[a(0), 1] which give p.(¢) = =41 correspond to
two regions of T-controllable initial states. It will also be shown in §5 that
there are no other adjoint variable initial conditions that lead to optimal
controls for initial states in these regions. Hence these are regions of
singular initial states.

3. A lemma. We now state a lemma without proof.

LemMA 3.1. Given any K (t) = 0, continuous and strictly monotone increas-
ing on [0, T], and two real numbers A and M with0 = A < MT. Let Uy
be the class of all piecewise continuous functions with 0 = u(t) = M on [0, T

or which

T

f w(t) dt = A.
0
For each u € Uy™, let
T
(3.1) f K()u() dt = B, .
0
Let
_J/M iy 0ost=sA/M,
u(t) = 0 if  A/M<t=ZT,
and
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u u
M u () M ug (1)
§/—AREA=A §/—AREA=A
(o} t - 0 -
0 Tt 0 Tt

Fia. 1. Functions ur and ug

(See Fig. 1). Then, for allu € U™, we have
T T

(32) [ EWu@ dt < B, < [ K@ue(t)
o o

and, for any number B in this range, we can find at least one u € Uy™
such that B, = B.

When K (¢) = ¢ this lemma is just a formal statement of the fact that for
a given area, the shape that has its centroid farthest to the left is the tallest
allowable rectangle with this area at the left end. Similarly, for the right
end. In all cases except when B is at the lower or upper limit in (3.2) there
are infinitely many suitable w’s; for example, the rectangle of maximum
height with area A, shorter but wider rectangles located properly, triangles
with area A, etc. This lemma will be the basis for the characterization of
the optimal controls and 7-controllable region.

4. Characterization of the T-controllable region. Throughout the re-
mainder of the paper we assume that the differential equation satisfies
(2.8). Then it can be written in the form

(4.1) let[ga + alDal = u(t) — c(b).

DEriNITION. A control w(t) will be called admassible if it is in U and if it
drives the system from the initial state (2.2) to the terminal state (2.3).

Notation. The T-controllable region in state space (see definition in §1)
will be denoted by R. The subregion for which there are nonnegative ad-
missible controls will be denoted by P and that for which there are non-
positive admissible controls by N. The interiors of these regions will be
denoted by R°, P°, and N°, respectively.

We now reduce the problem to an equivalent formulation.

TueorEM 4.1. Given the initial state (cy , az), let

(42) A = —ay — a(0)ey + f c(t)dt, B=a + [ K()e(t) d,
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where
i s
43 K(t) = [ d ]d
(4.3) ()foeproa(r)rs
Then, u € U 1s admissible if and only if
T
(4.4) A =f w(t) dt,
0
T
(4.5) B=f K(t)u(t) di.
0

Proof. The general solution of (4.1) can be written

o) = ﬁ,((?){ [ 1) = et ds + x+ a0)en)

+ e = [ KO = o)) ).
From this it can easily be shown that z(T) = #(T) = 0 if and only if

[ uls) — o)) ds + e + a(0)an =

0

and

o — /0 K()u(s) — e(s)] ds =

Hence, for u € U, u satisfying these conditions is equivalent to u being
admissible, and these conditions are just (4.4) and (4.5).

For a given initial state, (4.4) and (4.5) give a characterization of the
subclass of U that are admissible controls. To describe the region R we find
the values that A and B can assume for controls in U and then determine
the corresponding initial states (a1, a2). Region R and its subregions are
independent of the functional to be minimized; but, it will be shown in
§5 that the regions P° and N° are the regions of singular initial states when
the particular functional (2.4) is used.

TuroreM 4.2. An initial state (cu , az) 1s 0 region R if and only if

(4.6) _T=A=T,

and
(A+T)/2 T T

(4.7) 2[ K() di < B +f K1) dt < 2 f K@) di,
0 ) T—4y/2

where A, B, and K (1) are defined by (4.2) and (4.3). The boundaries of the
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region are giwen by considering equality to hold on the left and right, respec-
tively, in inequality (4.7).

Proof. For any admissible w(¢), let v(t) = () + 1. Then 0 < v = 2.
In terms of v(¢), conditions (4.4) and (4.5) become

(48) A+ T = f o(t) i,

0
(4.9) B + f K(1) dt = [ K(t)(t) dt.

Conversely, any piecewise continuous v(t), 0 = v = 2, that satisfies these
two conditions corresponds to an admissible w(t).

Now suppose (o, @) € R. Then there is a w € U satisfying (4.4) and
(4.5), and hence a v(t) satisfying (4.8) and (4.9). Since 0 = v = 2, (4.8)
showsthat 0 £ 4 + T = 27, or —T = A £ T. Use of Lemma 3.1 with

M = 2 and the left hand sides of (4.8) and (4.9) as the constants gives

fT K()o,(t) dt < B + [T K(t) dt < fT K(t)oe(t) dt,

r

2|

0

Now suppose that the initial state (e , az) is such that A and B satisfy

(4.6) and (4.7). By Lemma 3.1, there is at least one v(t), 0 < v < 2, that

satisfies (4.8) and (4.9). This v(¢) corresponds to a v € U that is admis-

sible. Hence (a3, a2) € R.

TureorEeM 4.3. An initial state (ay , ay) s in region P if and only if

0

(A+T)/2 T

K(t)dl < B + fT K(t) dt < 2 K(1) dt.

T—(A+T)/2

(4.10) 0<A=T,

and
A T

(4.11) f K()di < B < K(1) dt,
0 T—A

where A, B, and K(t) are defined by (4.2) and (4.3). The boundaries of the
region are gien by considering equality to hold on the left and right, respec-
tiwely, in inequality (4.11).

Proof. Suppose (a; , az) € P. Then thereisau € U,0 = u = 1, satisfy-
ing (4.4) and (4.5). Condition (4.4) with0 < w < 1 gives0 = 4 < T.
Use of Lemma 3.1 with M/ = 1 gives

fT K(Dus(t) dt < B < f K(D)ux(t) di.

By the meaning of %, and uz in Lemma 3.1, this is just (4.11).
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Now suppose initial state (ay, a2) is such that A and B satisfy (4.10)
and (4.11). By Lemma 3.1 with M = 1 there is at least one 4 € U with
0 < u = 1 that satisfies (4.4) and (4.5). By Theorem 4.1 this u is admis-
sible and since u = 0, we have (e, as) € P.

By analogous reasoning with —wu(t), we can prove the following result.

TurorEM 4.4. An initial state (oy , az) 1s tn region N of and only if

(4.12) —T =420,

and
T —A

(4.13) —f K()di<B= -f K@) i,
T+ A 0

where A, B, and K(t) are defined by (4.2) and (4.3). The boundaries of the
region are gwen by considering equality to hold on the left and right, respec-
twely, in inequality (4.13).

By (4.10), (4.12), (4.11), and (4.13), the regions P and N are disjoint
except for the initial state corresponding to A = B = 0. This unique point
in R is the initial state for which the control u(¢) = 0 is admissible, and is
the origin if and only if ¢(¢) = 0. When ¢(¢) = 0, the T-controllable region
is symmetric with respect to the origin since then —w in place of % in (4.1)
leads to the solution —x instead of x. For this case region N is the image of
region P under reflection in the origin. Region R transformed into AB-
space is always symmetric with respect to the origin (regardless of ¢(?))
since conditions (4.4) and (4.5) are linear in u(¢) and the class U is sym-
metric.

We will now subdivide the set of initial states R ~ (P° U N°) into four
mutually disjoint sets R; , 7 = 1, 2, 3, 4. It will be shown in §6 that the set
R ~ (P° U N°) is the set of regular initial states and that the optimal con-
trols for initial states in each of the regions R; have a specific form. To
define these regions, we let

(4+T)/2 T
B, = 2f K() di — f K(1) d,
(4.14) ’ ' . r
B =2 K(t) dt — f K(1) d
(T—4)/2 0

andif 0 £ A £ T, welet

A T
(4.15) Bir = f K@) dl, B = K(1) d

0 T—A

or,if =7 £ A £ 0, we let

T —A
(416)  Buw = — f KW, Bay = - [ K(t) dt.
0
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The description of region R, inequality (4.7), then becomes B, £ B
< By . Region P, which requires 0 = A < 7, is described (see (4.11)) by
BLP é B é BRP' Since P c R, we have BL é BLP é BRP é BR. This

inequality can also be verified by use of the monotonicity and positivity of
K(¢). Then for 0 = A = T the regular initial states satisfy

(4.17) Ri:Bw < B < By,

or else

(4.18) R,:B, =B = By»r.

Analogously, we find that for — 7' < A =< 0 the regular initial states satisfy
(4.19) R;:B, £ B = B,

or else

(4.20) R,:Bry £ B £ By

For the example considered in §7, these regions are shown in Fig. 5.

5. Optimal controls for singular initial states. Given an initial state
(en, @2) € R we can now ask for those admissible controls which minimize
Jlu] in (2.4) since we know at least one admissible control exists. Theorem
4.1 gives a more convenient characterization of the admissible controls.
Note that the quantity | 4 | in (4.2) and (4.4) gives a lower bound for J
for the given initial state since

(5.1) |A|=‘foTu(t)dt|§foTlu(t)|dt=

TaEOREM 5.1. Any admissible control that does not change sign s optimal.

Proof. Equality holds in (5.1) if and only if u(¢) does not change sign.
Since | 4 | is the lower bound for J, any such % must be optimal.

Regions P and N contain all initial states for which there are admissible
controls that do not change sign. Hence for initial states in P and N,
Theorem 5.1 shows that the optimal controls are precisely those admissible
controls that do not change sign. For these initial states there are also
admissible controls that do change sign, but these are not optimal.

To determine the optimal controls for an initial state in P, we compute
A and B from (4.2) and find all nonnegative functions w(¢) that satisfy
(4.4) and (4.5). If the initial state is on the boundary of P, B will be at
the lower or upper limit in (4.11). Hence the optimal control for such an
initial state is the unique nonnegative admissible control for this state,
namely the u or uz shown in Fig. 1. But if the initial state is in P°, the
interior of region P, strict inequality will hold on both sides of (4.11).
Then, by the discussion following Lemma 3.1, there are infinitely many
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suitable u’s. These are of arbitrary form as long as they satisfy 0 = u < 1,
have area A, and have K(t)-weighted integral B. The analogous result
holds in region N.

An additional constraint may be imposed if it is desired to select only
one of the infinitely many minimum effort optimal controls for a given ini-
tial state in P° or N°. This might be desirable in a computational scheme.
An example of such a constraint would be to select that minimum effort
control which makes the system arrive at the origin at the earliest time
to = T. This constraint is simple to apply when ¢(¢) = 0, since then it can
easily be shown that the system must be at the origin at the instant the
control is turned off for the last time. Thus this control is the one with the
area A concentrated as far to the left as permitted by B. It is shown in
Fig. 2 for initial states in P°. This is a minimum fuel control regardless of
c(t),butifc(t) £ 0ont, = ¢t = T, the system does not reach the origin at
time ¢y, and hence this control is not a minimum time-minimum fuel
control.

We have shown that there are infinitely many optimal controls for each
initial state in P° U N° and that most of these controls are composed of
arcs that do not lie on w = +1, 0, or —1. Hence they are not characterized
by the Pontryagin maximum principle (see (2.7)). We now show the fol-
lowing.

TaEOREM 5.2. Region P° U N° is the region of singular initial stales, i.e.,
there are no adjoint variable initial conditions that give a Ponlryagin optimal
control (see (2.7)) for any initial state in P° U N°.

Proof. Condition (2.8) allows the adjoint system (2.6) to be solved ex-
plicitly as p2(1) = [a(0)p:(0) — p:(0)]K (¢) 4+ p2(0), where K(t) is given
by (4.3). This is strictly monotone increasing or decreasing unless the
initial conditions [p,(0), p2(0)] = =[a(0), 1] are used, in which case p»(1)
= 1. For initial states in P° the only optimal controls with 4 = 0 and 1
have at least two jumps; for example v = (1,0, 1) or v = (1,0, 1, 0),
where this notation means that 4 = 1 during the first interval of time,
u = 0 during the next interval, ete. (Controls with only one jump, namely

E/-AREA=A

O T 7
0 ty 1, T

u

{1+

Fig. 2. Mintmum time-minimum fuel control in region P° when ¢(t) = 0
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u = (1,0) oru = (0, 1), correspond to boundary points of P.) To obtain
a control with at least two jumps from (2.7), p.(¢t) would have to change the
sign of its slope at least once. But ps(?) is strictly monotone unless it is
identically =1, in which case (2.7) does not characterize the optimal con-
trols sufficiently anyway. Thus there are no adjoint variable initial con-
ditions that give an optimal control by the Pontryagin maximum prineiple
method for any initial state in P°. The analogous argument works for
region N°. Hence P° U N° is contained in the region of singular initial states.
Theorem 6.1 (below) will show that all the T-controllable initial states
outside P° U N° are regular and therefore that ° U N° is precisely the set
of singular initial states.

The proof of Proposition 2.1 showed that p,(¢) = 41 leads to nonnega-
tive optimal controls. Thus we can think of the adjoint variable initial
conditions [p1(0), p=(0)] = [a(0), 1] as corresponding to all initial states
in the singular region P°. Likewise, we can think of [—a(0), —1] as corre-
sponding to the singular region N°.

6. Optimal controls for regular initial states. Since P and N contain all
the T-controllable initial states which have admissible controls of one sign,
all the admissible controls for the remaining initial states must change sign.
For any admissible u(¢), let

(6.1) w(t) = u'(t) —w (1),

where
u(l) if u(t) = 0,
wh(t) = ,
0 if u(t) <O,
and
B —u(t) ifu(t) =0
u (¢) = ,
0 if u(t) > 0.
This decomposition is unique since at each { we require at least one of
u" or u” to be zero. Using this decomposition, | u(t) | = w*(t) + ™ (1).

TurEOREM 6.1. The indtial states in regions R, , © = 1, 2, 3, 4, are all of
the regular initial states and have unique optimal controls of the forms

u=(—1,0,+1) in Ry,
(4+1,0, —=1) in Ry,
(4+1,0, —1) @ Ry,
u= (—1,0,+1) = R,

U

<
Il
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where this notation means that in Ry , the optimal control has u = —1 during
the first interval of time, w = 0 during the next interval, and u = —+1 during
the last interval, elc.

Proof. Using decomposition (6.1), the functional (2.4) and condition
(4.4) become

T

J=/mem+fxnww A=[ZNU&—/@HUM

Jo 0

Adding, we have
T
J+ A4 =2f u*(t) dt.
0

Since A is a fixed number for a given initial state, minimizing J is equiva-
lent to minimizing
T
(6.2) L:[QNwa
0

Using the transformation v(¢) = w(t) 4+ 1, the admissible controls corre-
spond to the piecewise continuous functions v(¢),0 < v = 2, that satisfy
(4.8) and (4.9), and minimizing (6.2) is equivalent to minimizing the area
above the line » = 1 (the cross-hatched area in Fig. 3). Hence we need to
find the function v(¢) that satisfies 0 < v < 2, has a given area and a given
K (t)-weighted integral, and has the smallest area above the line v = 1.

Consider an initial state in R, (see (4.18));1e., 0= A = Tand B, = B
=< Br. We will show how to obtain the unique optimal control by modifi-
cation of the optimal control for the same A but with B = Byp. This is a
boundary point of region P and the optimal control is given uniquely by
ur(t) in Lemma 3.1. In terms of v(¢), it has total area A + T and K(¢)-

T
weighted integral B, -+ / K (t) dt (see (4.8) and (4.9)) and is shown in
0
Fig. 4. We will modify this function keeping the same total area but so that

(O + o
0 T t
Fr1a. 3. Geometrical interpretation of the problem
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the value of the K(t)-weighted integral (a ‘“‘generalized centroid”) de-
T

creases until it reaches the value B + / K(t) dit. At the same time we
0

need to do this by transferring as little area as possible from below v = 1
to above this line in order to minimize (6.2). Since K (¢) is monotone in-
creasing we can accomplish this by transferring vertical strips from the far
right below the line to as far left as possible above the line. Such a strip is
shown in Fig. 4. By transferring enough such strips to move the generalized
centroid left to the desired value, we obtain the optimal control in terms of
v(t). It is unique since any other admissible control corresponds to a v(t)
with more area above the line v = 1. Transformed back to «(t), the unique
optimal control for any initial state in R, is of the form v = (41,0, —1)
where the first jump is taken as early as possible consistent with the corre-
sponding A and B. An analogous argument works for initial states in R,
Ry, and R, . It is readily seen that these unique optimal controls could have
been obtained by application of the Pontryagin maximum principle (see
(2.7)) with a suitable choice of adjoint variable initial conditions. Hence,
these are regular initial states. Since Theorem 5.2 shows that the remaining
initial states are all singular, region B, U R, U R; U R, is the set of all
regular initial states.

The geometrical argument in the above proof could be replaced by a
simple variational argument but the geometry gives more insight and
shows the uniqueness immediately.

To compute the optimal control for a regular initial state we only need
to find the jump points ¢ and {, since we know the general form of the
control. To do this, we use (4.4) and (4.5) to get two relations between the
jump points and let ¢ be the smallest value that satisfies these two equa-
tions; then, we find the corresponding ¢, . This method is direct and elimi-
nates the need of guessing the adjoint variable initial conditions of the
Pontryagin maximum principle method. The optimal trajectory corre-
sponding to an optimal control may be obtained by using the general solu-
tion of (4.1) which was given in the proof of Theorem 4.1.

L — AREA=A
-

AREA=T

I
r

0

0] T t
Fia. 4. Optimal control for 0 < A < T and Brp
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7. Example. Consider the differential equation & + a& = u, where a is a
constant. If ¢ = 0, this describes the “1/s* plant. If a # 0, it describes a
system with damping term proportional to the velocity. Both of these
systems have many physical applications; e.g., satellite attitude controls,
a body moving in a viscous fluid, ete.

From (4.2) and (4.3) we get

K(t) =X — ),
a
A = —ag — aoy,
B = a;.
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